Matt Chesnais

End-user
About
Matt Chesnais

Lead end user

Over six years, the project used cutting-edge technology to produce near-real-time spatial information on fuel condition, fire hazard and impact to support a wide range of fire risk management and response activities such as hazard reduction burning and pre-positioning firefighting resources and, in the longer term, the new Australian Fire Danger Rating System. Based on the research findings, the researchers have produced the Australian Flammability Monitoring System, an interactive map of immediate fire danger associated with landscape dryness, which uses satellites to collect information about moisture content in trees, shrubs and grass, and assists with prescribed burning efforts and assessment of firefighting resources.
Research team:
This project sought to optimise the use of earth observing systems for active fire monitoring by exploring issues of scale, accuracy and reliability, and to improve the mapping and estimation of post-fire severity and fuel change through empirical remote sensing observations. A particular focus was on the analysis of data obtained from Himawari-8, which is able to provide updated imagery on a 10 minute basis.+++++
This project examined the use of detailed land surface models, satellite measurements and ground-based observations for the monitoring and prediction of landscape dryness. The research team developed a standalone prototype land surface modelling system, called Joint UK Land Environment Simulator based Australian Soil Moisture Information (JASMIN) to produce daily soil moisture analyses at 5km resolution and 4 soil layers. Verification against ground-based soil moisture observations shows that this prototype system is significantly more skilful than both the Keetch–Byram Drought Index and Soil Dryness Index. This project also aimed to improve applications such as fire danger mapping that may require soil moisture information at higher spatial resolution due to the large spatial variability of soil moisture in the landscape, and developed a simple yet skilful model to predict live fuel moisture content for the whole of Australia.
This research tested two established reliable physics-based models—the Fire Dynamics Simulator and FIRESTAR3D—to simulate bushfire scenarios in three broad areas: sub-canopy wind flow, firebrand transport, and propagation of grass and forest fires. The team has made significant inroads into providing usable outputs as well as understanding various aspects of bushfire behaviour. This project was established to create a capability and capacity in Australia to conduct research and understand physical-based wildfire modelling approaches. There are several international groups developing these models, and it is imperative that Australia can interact and work alongside these researchers to translate the findings to the Australian context.
This study is identifying the thresholds beyond which dynamic fire behaviour becomes a dominant factor, the effects that these dynamic effects have on the overall power output of a fire, and the impacts that such dynamic effects have on fire severity. This will necessarily include consideration of other factors such as how fine fuel moisture varies across a landscape. The research team is investigating the conditions and processes under which bushfire behaviour undergoes major transitions, including fire convection and plume dynamics, evaluating the consequences of eruptive fire behaviour (spotting, convection driven wind damage, rapid fire spread) and determining the combination of conditions for such behaviours to occur (unstable atmosphere, fuel properties and weather conditions).
Research team:

Fire behaviour in dry eucalypt forests in Australia (and in many other vegetation types to a lesser extent) is characterised by the occurrence of spotfires—new fires ignited by the transport of burning debris such as bark ahead of an existing fire. Under most burning conditions, spotfires play little role in the overall propagation of a fire, except where spread is impeded by breaks in fuel or topography and spotfires allow these impediments to be overcome. However, under conditions of severe bushfire behaviour spotfire occurrence can be so prevalent that spotting becomes the dominant propagation mechanism and the fire spreads as a cascade of spotfires forming a ‘pseudo’ front. It has long been recognised that the presence of multiple individual fires affects the behaviour and spread of all fires present. The converging of separate individual fires into larger fires is called coalescence and can lead to rapid increases in fire intensity and spread rate, leading to the phenomenon of a ‘fire storm’. This coalescence effect is frequently used in prescribed burning, with multiple point ignitions used to rapidly burn out large areas.

The team has demonstrated the performance advantages of fire propagation models incorporating curvature dependence when applied to simple wind-driven fires at both laboratory and field scales. The research has also produced fundamental insights into how the shape of the fire line affects the dynamic behaviour of the fire as a whole. Coupled fire-atmosphere modelling was used to investigate how fire-induced air movements (pyroconvection) can produce significantly enhanced rates of spread for certain fire shapes.

Send a message to Matt Chesnais (via CRC)

User Contact