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EXECUTIVE SUMMARY 

The Bushfire and Natural Hazards CRC project titled “Mitigating the Effects of 

Severe Fires, Floods and Heatwaves through the Improvements of Land Dryness 

Measures and Forecasts” examines the use of detailed land surface models, 

satellite measurements and ground based observations for the monitoring and 

prediction of landscape dryness. This project will address a fundamental 

limitation in our ability to prepare for fires, floods and heatwaves and is directly 

linked to pre-event planning as well as forecasting of events.   

Currently landscape dryness is estimated in Australia using simple empirical 

models developed in the 1960’s. The most prominent of those used in Australia 

are the Keetch-Byram Drought Index (KBDI; Keetch & Byram 1968) and the Soil 

Dryness Index (SDI; Mount 1972). An initial study performed as part of this project 

suggest that analyses of soil moisture can be improved by using physically 

based land surface models, remote sensing measurements and data 

assimilation. The project has developed a stand alone prototype land surface 

modelling system to produce daily soil moisture analyses at 5km resolution and 

at 4 soil layers. Verification against ground based soil moisture observations 

show that this prototype system is significantly more skilful than both KBDI and 

SDI. 

The present report documents the activities undertaken in 2016-2017. The main 

focus of the year has been on the calibration of soil moisture from a new high 

resolution land surface modelling system allowing for easier utilisation within 

existing operational fire prediction systems. The calibrated outputs will be 

evaluated against numerous case studies that include past bush fire 

occurrences and fuel reduction burns conducted by fire agencies. This work is 

in progress and eight case studies have been identified so far. These case 

studies were selected with the help of end users. All case studies will be 

documented and could be used as training documentation by fire agencies. 
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END USER STATEMENT 

Mark Chladil, Tasmania Fire Service, Hobart 

The Project has finished the initial stage with some provocative results. The traditional 

and simple to calculate soil moisture deficit models have been compared with the new 

JASMIN product and in situ soil moisture measurements. JASMIN shows better results 

than the SDI over the KBDI although there are regional differences. A pilot program now 

is underway to provide fire managers with a JASMIN product scaled to mimic the SDI 

and KBDI potentially suitable for a JASMIN based Drought Factor. This will give an 

alternative soil moisture input for evaluation over coming seasons. Case studies are also 

underway to learn more about the real world outcomes of the JASMIN based soil 

moisture estimates in terms of both dead and live fuel moisture content. Much 

validation needs to be done to realise the potential of better temporal and spatial 

resolution for multiple soil layers. 

Andrew Sturgess, Queensland Fire & Emergency Services, Brisbane 

This project has the potential to provide significant enhancements to one of the 

underpinning elements of understanding fire behaviour. Severe soil moisture deficits are 

one of the drivers of extreme weather events. It is expected that the project will lead to 

improved soil moisture estimation. This in turn will lead to better fuel moisture 

calculations, one of the critical determinants of fire behaviour. 

Fire and emergency agencies have an appreciation of the shortcomings of the current 

soil moisture models but at the same time there exists a degree of comfort with the 

existing models. As such, change management will be an important part of establishing 

this research into operations. End users are encouraged to provide case studies and to 

engage with the researchers to evaluate the products as the research transitions to 

operations. 

With the development of the new National Fire Danger Rating the timing of the 

prototyping provides an ideal opportunity for agencies to establish case studies that 

can be used to test potential improvements to the existing FDR inputs. The moisture 

values for four soil layers will also enhance understanding the links between soil dryness 

and live/dead fuel moisture content. It is hoped that future developments will allow 

further downscaling to better account for variations attributed to topography including 

aspect. 

Being better able to predict severe weather events provides agencies with an 

opportunity to enhance planning, preparedness, response and recovery. If these 

potential benefits are realised through this research it will lead directly to more resilient 

communities, a goal that is shared across all agencies. 
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PROJECT BACKGROUND 

Fire intensity, spread rate and ignition are very sensitive to the fuel dryness 

which in turn is strongly linked to soil moisture content. Estimates and forecasts 

of fuel and soil moisture are the foundation of the fire danger calculations used 

to rate and manage wildfires and to warn of developing fire danger. Similarly, 

estimates and forecasts of soil moisture are essential ingredients to be able to 

forecast with accuracy river flows on a seasonal scales (one to three months), 

which is very much in demand by water managers and reservoir operators. 

Currently landscape dryness is estimated using simple, empirical water balance 

models developed in the 1960’s. The most prominent of those used in Australia 

are the Keetch-Byram Drought Index (KBDI; Keetch & Byram 1968) developed 

by the US Forest Service, and the related Soil Dryness Index (SDI; Mount 1972) 

developed by Forestry Tasmania. These models were designed for easy hand 

calculations over a small number of locations. The KBDI and SDI are found to 

have limited skill in estimating soil moisture, particularly in shallow soil layers 

(Vinodkumar et al., 2017).  

The dependency of fire potential to moisture in a particular layer of soil may 

change with season (Haines et al., 1976). A good soil moisture estimation system 

should therefore work throughout the seasons and should not depend upon a 

fixed depth of soil horizon (like KBDI and SDI) to indicate fire danger. A model 

system employing a multi-layer soil model is suggested to be the best solution 

(Haines et al., 1976). Land surface modelling is an emerging technique that 

could potentially fill this gap. Land surface models (LSMs) are capable of 

estimating soil moisture at different layers and more systematically than the 

empirical methods. 

A prototype high resolution soil moisture information system based on Joint UK 

Land Environment Simulator (JULES) LSM to estimate soil moisture has been 

developed (Dharssi and Vinodkumar, 2017). This system, called the JULES based 

Australian Soil Moisture Information (JASMIN); estimates soil moisture at a spatial 

resolution of 5 km. JASMIN provides information at 4 soil layers, with a 10 cm 

thick surface layer and a soil column of 3 m thickness to represent the root-

zone. This design, allow the JASMIN system to estimate surface soil moisture 

which is representative of dead fuel moisture content and root-zone soil 

moisture that provides information on live fuel moisture content. Verification 

against ground based soil moisture observations shows that this prototype 

system is significantly better than the simple KBDI and SDI models currently used 

operationally (Dharssi & Vinodkumar, 2017). 
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WHAT THE PROJECT HAS BEEN UP TO 

1. Calibration of JASMIN product 

The JASMIN soil moisture is in units of mass per unit area (kg m-2). However, the 

drought factor (DF) calculations require soil moisture deficit (SMD) values 

specified in a range between 0 – 200. This requires appropriate calibration (also 

known as rescaling or matching) techniques for the use of JASMIN soil moisture 

in the current operational DF calculations. A considerable number of studies 

have explored several matching techniques for verification (Draper et al., 2009; 

Su et al., 2013; Vinodkumar et al., 2017) and for data assimilation (Houser et al. 

1998; Walker and Houser 2001; Sabater et al. 2007).  

The present study applies commonly used rescaling methods, including 

minimum-maximum matching, mean-variance matching and cumulative 

distribution function (CDF) matching. As a pre-processing step, JASMIN soil 

moisture  is converted to volumetric units for a selected soil profile. Here we use 

two soil profiles for rescaling. The first one has a depth 0.35 m comprising of the 

top two model layers. The second profile has a depth of 1 m and uses the top 

three model layers. It is possible to rescale all soil profiles that could arise from 

any rational combination of the four available model soil layers. However, we 

have limited our efforts to the above mentioned profiles as the original indices 

were developed to estimate dryness in a shallow layer of soil.  

1.1 Calibration methods 

1.1.1 MINIMUM-MAXIMUM MATCHING 

The first approach involves rescaling JASMIN time series to match its minimum 

(𝛩min) and maximum (𝛩max) to those of SMD in FFDI (𝜗min = 0, 𝜗max = 200). 

�̂� =  𝜗𝑚𝑖𝑛 + (𝛩 − 𝛩𝑚𝑖𝑛)(
𝜗𝑚𝑎𝑥 − 𝜗𝑚𝑖𝑛

𝛩𝑚𝑎𝑥 − 𝛩𝑚𝑖𝑛
) 

This is mathematically equivalent to the approach by Albergel et al. (2012) and 

Vinodkumar et al. (2017), where they normalized soil moisture data sets to a 

standard range 0 – 1. We refer this approach as minimum–maximum (MM) 

matching. The volumetric soil moisture values are normalized based on their 

minimum and maximum values from a six and a half year long daily time series 

(1st Jan 2010 to 1st July 2016). This normalized soil moisture is then subtracted 

from its maximum (i.e., 1.0) to yield soil moisture deficit. 
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1.1.2 MEAN-VARIANCE MATCHING 

In the second approach, JASMIN data (𝛩) is normalized (�̂�) to have same 

mean (μ) and variance (σ2) as the reference (KBDI/SDI) data (𝜗). This is 

achieved through, 

�̂� = 𝜇𝜗 +
𝜎𝜗

𝜎𝛩
(𝛩 − 𝜇𝛩) 

We denote this method as the μ - σ matching. The mean and variance at each 

grid point, is calculated using a six and half year long time series spanning from 

1st January 2010 to 1st July 2016. 

1.1.3 CDF MATCHING 

The cumulative distribution function (CDF) matching (Reichle & Koster, 2004) is a 

non-linear method that matches higher order statistical moments of the 

distributions in addition to the mean and variance. The CDF characterizes the 

cumulative probability of a continuous random variable (X) up to a specific 

value (x). That is, 

𝐹(𝑥) = Pr[𝑋 ≤ 𝑥] 

In CDF-matching, the two datasets are ranked and an operator is calculated. 

In the present study, this operator is a cubic spline fit of ranked JASMIN soil 

moisture values to their corresponding KBDI/SDI values. The cumulative 

distribution of the result now matches the whole range of KBDI/SDI values. CDF 

matching in this study is done by performing a fit on either the daily spatial 

samples of two datasets or by using a long time series of two datasets 

(temporal sampling). 

1.2 Results 

Figure 1 shows KBDI and the corresponding rescaled JASMIN soil moisture 

deficits using four calibration methods from the 1 m profile for 1st January 2013. 

The spatial variability seen in JASMIN product obtained by using the MM 

method (Figure 1b) may correspond to the variability in soil, vegetation, and 

topographical parameters that JASMIN take into account to calculate soil 

moisture. Given the linearity of MM method, rescaling preserves the spatial 

structure and temporal correlation in the original data. This is an important 

property, as land surface based soil moisture products exhibit very good 

temporal correlations with observations (Vinodkumar et al, 2017; Dharssi & 

Vinodkumar, 2017). Since the MM method do not use KBDI/SDI as reference for 

rescaling, like other methods, they do not inherit missing land values seen in 

these reference products. 
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The JASMIN product from 1 m profile, re-scaled to KBDI using μ-σ method for 1st 

January 2013 is shown in Figure 1c. The μ-σ approach appears to smooth out 

the JASMIN soil moisture field, compared to that from MM method (Figure 1b). 

Also the μ-σ rescaled product (Figure 1c) is wetter than the MM product. The 

south eastern part, especially Tasmania, becomes wetter when using μ-σ 

approach compared against the MM method is used. The missing land points in 

the reference dataset are carried over to the rescaled dataset in this 

approach. Also, at locations which are very dry and have very low temporal 

variability in the JASMIN dataset, the μ-σ rescaling method tend to exceed the 

theoretical maximum of reference dryness index. 

The temporal CDF matching (figure 1e) seem to introduce the wet bias in the 

reference KBDI data. This is evident over south-eastern Australia and especially 

Tasmania, where KBDI is known to have a large wet bias (Vinodkumar et al., 

2017). However, matching the temporal distributions of the two datasets is 

found to give a better correlation than that using the spatial distributions (Table 

1). The spatial CDF matching (Figure 1d) seem to have reduced some of this 

bias, if not all. The JASMIN system simulate mainly wet soils in the eastern half of 

the country (not shown), which is captured in the rescaled outputs. The western 

half is generally drier compared to the KBDI. 

The cumulative probability curves of the KBDI and their corresponding rescaled 

products for 1st January 2013 are given in Figure 1f. These probabilities are a 

good representative of the cumulative probabilities of the whole time series for 

each product. The probability of having values lower than 100 mm in the MM 

matched JASMIN product is very low. The KBDI (black line) displays a wet bias 

compared to the MM matched product (orange line). The shift towards a 

wetter soil in JASMIN products rescaled using μ-σ method (Figure 1c) is evident 

from their CDF (green line) compared with that from MM method (orange line). 

Normalization using the mean and variance of a wet KBDI makes JASMIN 

product wetter, resulting in a decrease of Kolmogorov-Smirnov (K-S) statistics 

from 0.25 in MM method to 0.09 for μ-σ method. Since spatial CDF matching 

corrects all moments of the distribution, regardless of its shape, the cumulative 

probabilities of KBDI (black line) and spatial CDF matching (light purple line) 

looks almost identical. However, the statistical errors associated with limited 

sample size may result in small differences in the cumulative probability of two 

distributions, as depicted by the K-S statistics. The cumulative probability curve 

of temporal CDF matching (maroon curve, figure 1f) shows that this product is 

wetter than KBDI. 
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Figure 1. a) KBDI and the corresponding JASMIN sm rescaled using four methods for 1st 

January 2013: b) MM,  c) μ–σ, d) CDF spatial and e)CDF temporal matching. (f) the 

cumulative probability from KBDI and the four corresponding rescaled products. The 

recaled JASMIN soil moisture corresponds to the 1 m profile. 
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The JASMIN product rescaled to SDI using MM method (figure 2b) have a similar 

spatial structure to the JASMIN product rescaled to KBDI using the same 

 

Figure 2. a) SDI and the corresponding JASMIN sm rescaled using four methods 

for 1st January 2013: b) MM,  c) μ–σ, d) CDF spatial and e)CDF temporal 

matching. (f) the cumulative probability from SDI and the four corresponding 

rescaled products. The recaled JASMIN soil moisture corresponds to the 1 m 

profile. 
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method, and differ only in their magnitude due to slight difference in respective 

maxima of SDI (200 mm) and KBDI (203.2 mm). Use of SDI mean and variance to 

normalize makes JASMIN product wetter (figure 2c) compared to that from the 

MM product. The spatial CDF matching produce a wetter eastern half 

compared to the other products (figure 2d). Also, the soil moisture deficit from 

the spatial CDF matching appears to be noisier than the other products. The 

product obtained from the temporal CDF matching is fairly similar to that 

obtained from μ–σ matching (figure 2c) in spatial structure.  

Figure 2f depict the cumulative probabilities from SDI and four rescaled JASMIN 

products for 1st January 2013. There is a high probability for SDI (black line) to 

have values equal to 200 (i.e., maximum). This is possibly due to the maximum 

values observed over large portion of central Australia. The cumulative 

probability from MM method is given by the orange line. The soil moisture deficit 

up to about 135 mm in the MM method has a dry bias compared to that in SDI. 

Above this value, the product based on the MM approach has a wet bias. 

Interestingly, the use of the SDI mean and variance to normalize, results in a 

drier JASMIN product (green line) for  values below ~180 mm. Here, the K-S 

statistics are reduced from 0.24 to 0.14, indicating a closer probability 

distribution. The matching of higher order moments using the spatial samples 

give an almost identical distribution (light purple line) to that of SDI. The 

cumulative probabilities of temporal CDF matching (brown line) in the lower 

spectrum of soil moisture deficit values are fairly identical to that from the μ–σ 

method (green line). However, for higher soil moisture deficit values, the CDF 

temporal matching product is observed to be wetter than that from μ–σ 

method.    

2. Verification of calibrated products against in-situ 

observations 

Each of the products discussed here is compared by calculating Pearson’s 

product moment correlation against in-situ soil moisture observations. We have 

not limited the verification of KBDI, SDI and JASMIN rescaled to either of these 

traditional indices to regions where they are used operationally. Imposing such 

a limit on verification would severely limit the sample size and ability to deduce 

a meaningful statistical conclusion. The period of verification is from January 

2012 to February 2013. Measurements used here comprise of 17 sites from 

OzFlux network and 6 from CosmOz network. The details of the sites used are 

given in Figure 3. Readers are referred to Vinodkumar et al. (2017) for more 

information on these two soil moisture networks. 

The correlation scores for both actual and anomaly time series are provided in 
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Table 1. The anomaly correlations between models and observations are also 

calculated. Anomalies are computed for each time-series by using a 31 day 

sliding window to calculate the window mean (𝚯). The anomaly A is then 

computed using Ai = 𝚯 – 𝛩I, where ‘i’ is the day of interest. The correlation values 

presented here are a network average. To calculate the average correlation, 

the method of Corey et al. [1998] is used to apply a Fisher’s Z transformations. 

Table 1 depicts the Pearson’s product moment correlation for KBDI and three 

rescaled JASMIN products from the 0.35 m model soil profile. The highest 

correlation for both standard (0.85) and anomaly (0.66) time series over 

CosmOz network is obtained for the MM method. The correlation against 

CosmOz for full KBDI time series is 0.72. The corresponding anomaly correlation is 

0.46. Against OzFlux surface observations, the highest correlation of 0.84 is 

obtained for MM matching method and the lowest of 0.75 is obtained for 

spatial CDF matching method. The correlation for KBDI is 0.76. The largest 

anomaly correlation of 0.74 is also obtained for the MM method. KBDI has the 

lowest anomaly correlation at 0.58. When compared against OzFlux root-zone 

observations, MM matching method and μ–σ method deliver the highest 

correlation for full (0.86) time series whereas the highest anomaly correlation 

(0.68) is obtained for temporal CDF matching method.  

 

The correlation for normal and anomaly time series from all JASMIN products 

are generally higher than that of KBDI. The MM and μ–σ methods give a higher 

correlation than the CDF matching techniques. The correlation from μ–σ 

method is fairly close to MM method. The linear transformation in both methods 

has preserved the correlations. The temporal CDF matching consistently give a 

higher correlation than the spatial CDF matching technique. 

 

Figure 3. Observation sites: a) OzFlux, b) CosmOz. 
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In situ 

network 

Correlation Anomaly correlation 

KBDI MM μ–σ 
CDF 

KBDI MM μ–σ 
CDF 

Spatial Temporal Spatial Temporal 

CosmOz 0.72 0.85 0.84 0.79 0.82 0.46 0.66 0.60 0.49 0.55 

OzFlux 

(surface) 
0.76 0.84 0.83 0.75 0.82 0.58 0.74 0.71 0.60 0.69 

OzFlux 

(root 

zone) 

0.85 0.86 0.86 0.77 0.85 0.66 0.67 0.66 0.56 0.68 

Table 1. Pearson’s correlation for KBDI, JASMIN soil moisture rescaled using 

minimum-maximum matching, mean-variance matching and two CDF 

matching methods. The values represent a network average. JASMIN products 

correspond to 0.35 m model soil profile. 

Correlations for the JASMIN product rescaled from the 1 m soil profile moisture 

using different methods is presented in Table 2. The correlations obtained for 

CosmOz from each rescaling method that uses 0.35 m JASMIN soil profile shown 

in Table 1 is generally greater than that use 1 m profile (Table 2). This is not 

surprising as CosmOz observations represent shallow layer soil moisture. The 

comparison of the JASMIN product rescaled with respect to KBDI and OzFlux 

surface and root zone observations also indicate that the rescaling done on the 

JASMIN product from the 0.35 m profile, in general, yield a higher correlation 

than that from a 1 m profile. About 42% of the deep layer observations in OzFlux 

have probes located at 0.5 m. Only 16% of total sites have probes located at 1 

m. This possibly made the 0.35 m model profile more representative of 

observations than the 1 m profile.  

In situ 

network 

Correlation Anomaly correlation 

KBDI MM μ–σ 
CDF 

KBDI MM μ–σ 
CDF 

Spatial Temporal Spatial Temporal 

CosmOz 0.72 0.77 0.77 0.70 0.74 0.46 0.56 0.53 0.46 0.51 

OzFlux 

(surface) 
0.76 0.76 0.75 0.64 0.73 0.58 0.64 0.62 0.56 0.59 

OzFlux 

(root 

zone) 

0.85 0.84 0.84 0.72 0.83 0.66 0.65 0.64 0.53 0.64 

Table 2: Pearson’s correlation for KBDI, JASMIN soil moisture rescaled using 

minimum-maximum matching, mean-variance matching and two CDF 
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matching methods. The values represent a network average. JASMIN products 

correspond to 1 m model soil profile. 

In situ 

network 

Correlation Anomaly correlation 

SDI MM μ–σ 
CDF 

SDI MM μ–σ 
CDF 

Spatial Temporal Spatial Temporal 

CosmOz 0.83 0.84 0.84 0.72 0.83 0.55 0.66 0.65 0.50 0.61 

OzFlux 

(surface) 
0.80 0.84 0.84 0.79 0.84 0.60 0.74 0.74 0.61 0.71 

OzFlux 

(root 

zone) 

0.86 0.86 0.86 0.81 0.86 0.66 0.67 0.67 0.60 0.66 

Table 3: Pearson’s correlation for SDI, JASMIN soil moisture rescaled using 

minimum-maximum matching, mean-variance (μ–σ) matching and two CDF 

matching methods. The values represent a network average. JASMIN products 

correspond to 0.35 m model soil profile. 

The comparisons with SDI and JASMIN products rescaled from 0.35 m model soil 

profile are given in table 3. The correlation obtained from comparison with 

CosmOz for full (anomaly) time series of SDI is 0.83 (0.55), JASMIN rescaled using 

MM method is 0.84 (0.66), μ–σ method is 0.84 (0.66), spatial CDF matching 

method is 0.72 (0.50) and temporal CDF matching is 0.83 (0.61). The spatial CDF 

matching has a poorer skill than even the traditional SDI. The anomaly 

correlations from the JASMIN MM method are the highest closely followed by 

the μ–σ method. This indicates that these two methods are able to better 

capture the short term variations. 

The correlations with surface soil moisture observations show that the MM, μ–σ 

and temporal CDF matching methods have similar correlations with a value of 

0.84. SDI correlation is 0.80. The highest anomaly correlation value is 0.74 

observed for both the MM and μ–σ methods. SDI has the lowest anomaly 

correlation with a value of 0.60. For OzFlux root-zone observations, all the 

products except that from spatial CDF matching provide a correlation of 0.86. 

The spatial CDF matching method gives the lowest correlations for both full and 

anomaly time series. The anomaly correlations of all other methods are fairly 

similar. 

Table 4 depict the same as Table 3, but for JASMIN rescaled products from a 1 

m model soil profile.  Again, for CosmOz, the use of first two model layers (table 
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3) give a better skill over that of first three model layers (table 4). The 

correlations are reduced when using the first three model profiles, indicating an 

increase in representativity error between observations and model. The 

comparison against both OzFlux surface and root zone observations has a 

similar pattern to that observed for CosmOz. Overall, the spatial CDF matching 

method is inferior to other three methods in terms of correlation. The difference 

in correlations between the MM method and μ–σ matching method is 

negligible. 

In situ 

network 

Correlation Anomaly correlation 

SDI MM μ–σ 
CDF 

SDI MM μ–σ 
CDF 

Spatial Temporal Spatial Temporal 

CosmOz 0.83 0.77 0.77 0.59 0.77 0.55 0.56 0.55 0.39 0.51 

OzFlux 

(surface) 
0.80 0.76 0.76 0.73 0.77 0.60 0.64 0.63 0.54 0.59 

OzFlux 

(root 

zone) 

0.86 0.84 0.84 0.78 0.86 0.66 0.65 0.63 0.53 0.61 

Table 4: Pearson’s correlation for SDI, JASMIN soil moisture rescaled using 

minimum-maximum matching, mean-variance (μ–σ) matching and two CDF 

matching methods. The values represent a network average. JASMIN products 

correspond to 1 m model soil profile. 

3. Comparison of calibrated JASMIN products with fire 
radiative power data 

Following methods shown in Holmes et al (2016), evaluation of soil dryness 

products against Moderate resolution Imaging Spectro-radiometer (MODIS) fire 

radiative power (FRP) data are presented in this section. FRP estimates are 

available with every active fire pixel reported in the MOD14 and MYD14 fire 

products derived from the MODIS instrument on-board Terra and Aqua satellites 

[Giglio et al., 2003]. The MODIS FRP retrieval is based on the relationship 

between the emitted fire energy and infrared brightness temperature estimates 

in the 4 μm region (Kaufman et al., 1998). The algorithm is valid for FRP retrievals 

of fires with flaming temperatures greater than 600 K and occupying a pixel 

fraction less than 0.1 [Wooster et al., 2003]. The FRP is given in a unit of mega-

watts (MW) per pixel. 
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Figure 10 depict scatter plots of MODIS FRP against KBDI and JASMIN products 

rescaled to KBDI using various methods. The KBDI display wet soils with dryness 

values < 100 mm for some fires with intensity > 2000 MW. The shift towards a drier 

soil in JASMIN MM rescaled product (figure 10b) attributes these large intensity 

fires to higher soil moisture deficits. Results from the scatter plot for μ–σ method 

(figure 10c) are quite different to that from MM method. Most of the high 

intensity fires in μ–σ method occur at SMD values 50 – 180. This is also true for 

JASMIN product rescaled using  both spatial (not shown for brevity) and 

temporal CDF matching (figure 10d).  

 

Figure 4. Scatter plot depicting MODIS FRP product against a) KBDI, JASMIN 

rescaled using b) MM method, c) μ–σ method and, d) temporal CDF matching 

method. JASMIN products correspond to 0.35 m model soil profile. The datasets 

span from January 2013 to February 2013. 
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The scatter plots of MODIS FRP against SDI and JASMIN products rescaled to SDI 

using various methods are given in figure 11. The dry bias in SDI compared to 

KBDI is evident in the respective scatter plots. The high intensity fires in SDI (figure 

11a) are associated with drier soils than KBDI (figure 10a), resulting in data 

points being shifted towards the dry end of SDI scale. The MM matching 

method (figure 11b) is drier than SDI. The difference between μ–σ (figure 11c) 

and temporal CDF matching (figure 11d) seem only marginal, even with 

matching of higher order statistical moments in the later method. 

4. Identification and evaluation of case studies 

The results presented above provide only a part of the evaluation carried out 

on different matching algorithms applied to JASMIN soil moisture. One of the 

key aims of this rescaling exercise is to make use of the calibrated JASMIN 

product in operational fire danger ratings. Hence, work has been undertaken 

 

Figure 5. Scatter plot depicting MODIS FRP product against a) SDI, JASMIN rescaled 

using b) MM method, c) μ–σ method and, d) temporal CDF matching method. 

JASMIN products correspond to 0.35 m model soil profile. The datasets span from 

January 2013 to February 2013. 
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to evaluate JASMIN products for multiple fire cases occurred over a range of 

time and locations. We intend to evaluate at least a dozen fire cases. So far, 8 

case studies have been identified which include bushfire occurrences and fuel 

reduction burns. The cases under consideration at present are: 

i. Bushfire cases 

a. State Mine Fire, NSW, October 2013 

b. Dunalley Fire, Tasmania, January 2013 

c. Wuthering Heights Fire, Tasmania, Jan 2016 

d. Lake Mackenzie fire, Tasmania, January 2016 

e. Ballandean fire, Queensland, October 2014 

ii. Fuel reduction burns 

a. Lancefield, Victoria, September 2015 

b. North-east Victoria, March 2017 

c. Orbost, Victoria, March 2017 

A sample plot of soil moisture deficit within the final fire boundary, valid on 18th 

October 2013 for the State Mine fire in New South Wales is shown in figure 6. 

 This evaluation will be carried out with the help of end users who have 

experience in evaluating such products in an operational environment. We also 

plan to produce near real-time outputs for end users as a pilot project to 

evaluate the products on a day-to-day basis. 

 

 

Figure 6. (a) The Keetch-Byram Drought index and rescaled JASMIN soil 

dryness using (b) MM, (c) μ–σ and (d) CDF Spatial matching methods for the 

State Mine fire in New South Wales. The plot is valid for 18th October 2013. The 

shape of the plot represent final fire boundary. The black stars depict hot spots 

detected by MODIS instrument. 
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NEWS 

SEMINARS, WORKSHOPS AND CONFERENCES 

AFAC 2016 

Dr Vinodkumar and Dr. Imtiaz Dharssi attended the 2016 AFAC Conference 

held in Brisbane. Dr Imtiaz Dharssi gave a presentation titled “A new high 

resolution land dryness analysis system for Australia”. Dr Vinodkumar presented 

a poster titled “Soil dryness in fire danger rating: Time for a change in 

approach?”. 

BUREAU OF METEOROLOGY R&D SEMINAR 2017 

Dr Vinodkumar gave a presentation titled Towards an Improved Land Dryness 

Estimate for Fire Prediction at Melbourne on 17th May 2017. The seminar was 

open to End-users and others at sites outside the Bureau of Meteorology 

through Video Conferencing. 

PUBLICATIONS LIST 

JOURNAL PAPERS 

Vinodkumar, I. Dharssi, J. Bally, P. Steinle, D. McJannet, and J. Walker, 2017: 

Comparison of soil wetness from multiple models over Australia with 

observations. Water Resources Research, 53(1) 633–646. ISSN 1944-7973. 

doi:10.1002/2015WR017738. 

REPORTS 

Vinodkumar and I. Dharssi, 2016: Downscaling of soil dryness estimates: A short 

review. BNHCRC Milestone Report. 

Vinodkumar and I. Dharssi, 2017: Evaluation of daily soil moisture deficit used in 

Australian forest fire danger rating system. Bureau Research Report No. 022. 

Dharssi, I. and Vinodkumar, 2017: A prototype high resolution soil moisture 

analysis system for Australia. Bureau Research Report, Under review. 

Vinodkumar and I. Dharssi, 2017: Use of remote sensing measurements and 

data assimilation techniques to improve estimates of landscape dryness. 

BNHCRC Milestone Report. 
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CURRENT TEAM MEMBERS 

• Imtiaz Dharssi, Project Lead, R&D Division, Bureau of Meteorology, 

Melbourne. 

• Vinod Kumar, Scientist, R&D Division, Bureau of Meteorology, Melbourne. 

• Claire Yeo, Severe Weather Meteorologist, Bureau of Meteorology, 

Melbourne. 

• Jeff Kepert, Senior Scientist, R&D Division, Bureau of Meteorology, Melbourne. 

• Peter Steinle, Senior Scientist, R&D Division, Bureau of Meteorology, 

Melbourne. 

• Jeff Walker, Professor, Dept. of Civil Engineering, Monash University. 

• Adam Smith, Scientist, Bureau of Meteorology, Melbourne. 

• Ian Grant, Senior Scientist, Bureau of Meteorology, Melbourne. 

• Alex Holmes, PhD Student, Monash University. 

• John Bally, Lead End User, Bureau of Meteorology, Hobart. 

• Paul Fox-Hughes, End User, Bureau of Meteorology, Hobart. 

• Mark Chladil, End User, Tasmania Fire Service, Hobart. 

• Adam Leavesley, End User, ACT Parks. 

• Andrew Sturgess, End User, Predictive Services Unit, QFES, Brisbane. 

• Rob Sandford, End User, Country Fire Service, South Australia. 

• Ralph Smith, End User, Department of Fire and Emergency Services, Western 

Australia. 

• David Taylor, End User, Parks Tasmania. 

• Stuart Matthews, End User, NSW RFS.  
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