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Abstract: Flood is a frequent natural hazard that has significant financial consequences for Australia.
In Australia, physical losses caused by floods are commonly estimated by stage-damage functions.
These methods usually consider only the depth of the water and the type of buildings at risk.
However, flood damage is a complicated process, and it is dependent on a variety of factors which
are rarely taken into account. This study explores the interaction, importance, and influence of
water depth, flow velocity, water contamination, precautionary measures, emergency measures,
flood experience, floor area, building value, building quality, and socioeconomic status. The study
uses tree-based models (regression trees and bagging decision trees) and a dataset collected from
2012 to 2013 flood events in Queensland, which includes information on structural damages, impact
parameters, and resistance variables. The tree-based approaches show water depth, floor area,
precautionary measures, building value, and building quality to be important damage-influencing
parameters. Furthermore, the performance of the tree-based models is validated and contrasted with
the outcomes of a multi-parameter loss function (FLFArs) from Australia. The tree-based models
are shown to be more accurate than the stage-damage function. Consequently, considering more
parameters and taking advantage of tree-based models is recommended. The outcome is important
for improving established Australian flood loss models and assisting decision-makers and insurance
companies dealing with flood risk assessment.

Keywords: flood damage assessment; flood risk; stage-damage function; multi-variate analysis; flood
loss-influencing parameters; tree-based analyses; FLFArs; risk reduction

1. Introduction

In recent decades, flood risk is growing, due to climate change and increase in vulnerability of
properties at risk [1–3]. In Australia, floods are the most costly of all disaster types [4], contributing
29% of the total cost of the nation’s economy and the built environment [5,6]. Accordingly, flood risk
management is attracting more attention [7–9], and results are used to inform disaster management
policy and support the development of risk reduction measures [10,11]. Flood risk management has to
be based upon an appropriate evaluation of flood hazard and flood vulnerability [12,13], including an
assessment of damage and effectiveness of risk reduction measures [14–16]. Therefore, loss estimation
and consequence assessment is an indispensable part of flood risk management [17,18]. However,
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compared to the available methods and information on flood hazard, flood damage models are still
crude, and understanding of the damage process is largely unknown [11,15,19,20].

Flood losses can be grouped into four different classifications: direct tangible, direct intangible,
indirect tangible, and indirect intangible damages [21]. The direct classification takes place due to
physical contact with flooded objects, but the indirect category is induced by the direct damage on a
wider scale of space and time [22–24]. Tangible losses can be quantified financially, while intangible
losses cannot [7,25]. The existing methods for flood damage assessment are commonly focused on
direct tangible damages of residential, industrial, agricultural, and commercial sectors. However,
residential buildings are usually more affected by floods [26]. Consequently, the focus of this study is
on direct, tangible damage to residential building structures after a short inundation.

Stage-damage functions are the international standard of flood loss assessment [2,27,28].
The simplicity of stage-damage functions is the main reason for their common usage. However,
studies have shown that they might be subject to significant uncertainties since some influencing
parameters are neglected in their damage assessment [15,26]. Flood damage is a complicated process
and is dependent on a variety of parameters. These can be classified into impact parameters (e.g., flood
depth, flood duration, flow velocity, water contamination, and return period) and resistance parameters
(e.g., building characteristics, private precaution, early warning, emergency measures, flood experience,
and socioeconomic status) [24]. These parameters may not be independent of each other, and their
single or joint effects are widely unknown [15]. However, the majority of flood damage models have
attempted to propose simplified approaches based on the type or use of elements at risk and the
inundation depth of water [8]. Consequently, using these models might increase the uncertainty of
results, particularly when they are employed in study areas other than the area of origin [6,27,29,30].

Nonetheless, there are some exceptions. Wind et al. (1999); Penning-Rowsell and Green (2000);
Smith (1994); and Parker et al. (2007) studied the effects of early warning time and preparedness on
the magnitude of flood damages [15,21,31–33], and some multi-parameter models have recently been
developed for quantifying the single or joint effects of influencing parameters [26]. For instance, in
the UK, a conceptual model has been drawn up to suggest the critical parameters that should be
considered in flood loss assessment, albeit without discussing the weight of contributions or the
importance of parameters [15,34]. In Japan, a multi-variate model has been developed by Zhai et al. (2005),
although the performance of the model has not been validated or compared with other flood loss
models [15,35]. In Germany, a Bayesian network for flood damage assessment has been developed
by Vogel et al. (2013) [36]. Another multi-parameter model is related to 2002, 2005 and 2006 flood events
in Germany and has been established and developed by Thieken et al. (2005), Kreibich et al. (2005, 2007) and
Elmer et al. (2010). This multi-parameter model (FLEMO) has been developed, applied, and validated
for private households and companies at both the micro- and meso-scale [7,24,28,37–42]. These studies have
demonstrated that multi-parameters consideration can improve flood loss modelling in Germany [15].

The interaction or influence of different parameters can be explored with a tree-based modelling
statistical analysis. This approach has frequently been used by hydrology and water resource researchers.
However, it is still novel in the domain of flood-loss modelling. Merz et al. (2013) have recently
analysed the FLEMO flood loss model dataset with a tree-based data mining approach. The results of
this study revealed that the depth of water, area of buildings, return period of flood, contamination,
duration of flooding, and precautionary measures, respectively, have the highest influences on flood
loss assessment in the region of study [15,26]. Also, these analyses show that the tree-based damage
model is more accurate than the FLEMO multi-parameter model. Another study with the same
concept has been developed for the city of Can Tho in the Mekong Delta. In this area of study, as
opposed to Germany, the flood had a shallow depth with a long duration. Consequently, inundation
duration, equated with the depth of water, was the greatest influencing factor. In addition to these two
parameters, the single or joint effects of 22 more predictors have been evaluated and examined [26].

To our knowledge, the tree-based approach has not been developed and validated for Australia,
and we hypothesise that this method would be more accurate than the existing traditional
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stage-damage functions. The objective of this study is to employ tree-based data mining methods to
examine the effect and importance of damage-influencing parameters using a dataset collected from
2012 to 2013 flood events in Queensland. The performance of the tree-based models is also compared
with the outcomes of a newly established multi-parameter loss function (FLFArs) from Australia.

2. Study Area and Data

For this study, two areas were chosen. The first survey area is the city of Bundaberg in Queensland,
Australia, located in the vicinity of the Burnett River waterway north of the state capital, Brisbane
(Figure 1). The Burnett River catchment is located in South-East Queensland, with the main system
incorporating the rivers of Three Moon Creek, Burnett River, Nogo Creek, Auburn River and the Boyne
River, in addition to many other creeks and tributaries. The total Burnett River catchment area is
approximately 33,000 square kilometres. This area is bound by the catchments of the Fitzroy and Kolan
Rivers to the north; the Dawson and Condamine Rivers to the east and the Brisbane and Mary Rivers to
the South. The Burnett River catchment has had a long history of flooding that has impacted both the
urban centres and rural areas [43]. The Bundaberg ground elevation and the Burnett River catchment
are illustrated in Figures 2 and 3. In recent years, the city of Bundaberg has experienced some extreme
flood events. The most recent flood responses from Bundaberg Regional Council date back to the
floods in November 2010, January 2013, February 2013, and February 2015 [2]. During the flood event
in January 2013, 200 businesses were inundated, and over 2000 residents and 70 hospital patients
were evacuated. Furthermore, the performance of lifelines was disrupted, and infrastructures were
impacted [44]. This flood event that occurred from 21 to 29 January 2013 was a result of the Tropical
Cyclone Oswald, and the associated rainfall and flooding had a catastrophic effect on Queensland
and it is considered to be the worst flood experienced in Bundaberg’s recorded history. The height
of the floodwaters in Bundaberg city from Burnett River reached 9.53 metres at its peak, and over
2000 properties were affected [2]. The extension of the water depth is illustrated in Figure 4. Bundaberg
Regional Council estimated that the public infrastructure damage from the flood event of 2013 was
approximately AUD 103 million [2]. The second study area is the city of Roma, located on Bungil Creek,
a tributary of the Condamine River in the Maranoa region in Queensland (Figure 5). The flood event in
2012 is considered to be the worst flood experienced in Roma’s history, having inundated 444 homes.
This flood event that occurred from late January to early February 2012 was a result of heavy rainfall.
The boundary of the flood is illustrated in Figure 6. The Maranoa Regional Council estimated that
the public infrastructure damage from the natural disaster events of 2012 was approximately AUD
50 million [2]. The return periods of both flood events have been estimated to be approximately
100 years, based on the flood frequency analyses [43].
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The empirical dataset used for this study (457 loss cases from the 2013 flood and 150 loss cases
from the 2012 flood) was gathered after these two flood events from the Queensland Reconstruction
Authority, a governmental responder organisation to Queensland disaster events. The official
dataset—which was collected by either two or three post-disaster on-site surveys based on a
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standardised procedure and unified guidelines of the survey—provides data on the intensity of
hazard (i.e., water depth, information on water contamination, and information on flow velocity),
characteristics of buildings (i.e., material, floor space, construction type, number of building storeys,
information on utilities and solar panels, and emergency measures undertaken), and the magnitude of
losses. It is worth mentioning that for every building, the magnitude of damage has been explained
based on the affected structural components. Accordingly, based on the average value of damaged
items relative to the total value of the structure, the descriptions of damages have been exchanged
into a percentage of damages [2]. Further complementary data (e.g., building age, length of residency,
average replacement building value, the number of residences, and socioeconomic status) was collected
from the National Exposure Information System of Australia [51]. Consequently, the final dataset
provides 20 attributes on 607 inundations. Candidate predictors are either extracted directly from one
attribute (e.g., water depth or building area) or transformed from several attributes (e.g., building
quality or flow velocity). Data preparation and data transformation are discussed further below.

‚ Water depth and water contamination: this information was collected in two post-disaster
surveys. The value of water depth fluctuated between 0 cm and 700 cm above ground. However,
for 96% of buildings, this attribute was equal to or less than 350 cm. Also, the existence of
sewage, biological, or chemical contamination has been checked and reported by visual inspection
and smell. Accordingly, water contamination was ranked based on the reported material and
the existing chemical hazards, from 0 (no contamination) to 2 (chemical contamination), with
1 representing only sewage contamination.

‚ Flow velocity: flow velocity was assessed according to the comments of inspectors about the
amount of water penetration inside of buildings, the volume of deposited materials, and the
type of sediment next to the house (mud, sand, gravel or stone). Afterwards, this information
was transformed and ranked as calm (1: no deposit or only mud sediment), medium (2: sand
sediment or a considerable amount of water penetration), or high (3: gravel or stone sediment or
high volume of deposits) flow velocity.

‚ Emergency measures: the dataset provides information about whether or not people undertook
any action against water infiltration, e.g., pumping water out or cut-off of electricity supply.
Subsequently, these actions were ranked from 0 (no measure was undertaken) to 3 (many measures
were undertaken), with 1 representing that only water was pumped out, and 2 representing that
only electricity supply was cut off. The “cut-off of electricity supply” measure had a greater
weight due to the high value of electrical equipment [2].

‚ Precaution measures: the indicators of precaution measures were defined and ranked based on the
construction type (3: high-set open under, 2: low-set with suspended floor, or 1: high-set enclosed
under or slab on ground); protection of utilities and power system against water impacts (1: no
protection, 2: protected); availability of solar-panel power provider (1: not available, 2: available);
and the number of building storeys (1: one-storey buildings, 2: two-storey buildings). Eventually,
precaution measure indicators were calculated and weighted by multiplying the above ranks.

‚ Flood experience: the areas of study have experienced a variety of flood events in recent
years [2,52]. Therefore, this parameter has been assessed and averaged according to the length
of residency. Overall, about 11% of households moved into the areas one year or less before
the events, weighted 1. About 31% of families settled there in the last five years, weighted as 2.
Residents with more than five years length of residency were weighted 3.

‚ Building quality: this item is a function of age (i.e., constructed pre- or post-1981) and material
(e.g., timber, brick, concrete, or metal) of buildings. Age of buildings was weighted 1 if the
structure was constructed pre-1981 and 2 if it was constructed post-1981. Also, the resistance of
different materials against impacts of water is judged and ranked: 1 for timber, 2 for brick, and 3
for concrete or metal, according to the Australian building guidelines for flood prone areas [53].
Finally, this candidate predictor is defined by multiplying the weight of age by the weight of
the material.
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‚ The value and floor space of building: for every building, the value was calculated by multiplying
the total area reported by the inspectors by the average replacement value per square metre
extracted from the national exposure information system of Australia [51]. In this study, besides
considering the area of the buildings, the contribution of the residents’ density with the extent
of losses has been taken into account. Accordingly, floor space of the building was calculated
per person, by dividing the total area by the number of residents.

‚ Socioeconomic status: this category includes information about ownership status and monthly
income (i.e., low: $1–$599, middle: $600–$1,999, or high: greater than $2,000). Also, it represents
buildings whose residents need special attention (i.e., aged less than five or more than 65;
needing assistance with a core activity; or do not speak English well) or low education residents
(i.e., the highest educational attainment of all building residents is year 11 or below).

Following the approach of Merz et al. (2013) and Chinh et al. (2015), these predictors were
classified into five main categories: (1) flood impact; (2) emergency measures; (3) precaution and flood
experience; (4) building characteristics; and (5) socioeconomic status (Table 1). Table 2 shows the
Pearson correlation coefficient of the final candidate predictors and the loss ratio. As expected, and as
other researchers have claimed [2,15,24], water depth has the highest absolute correlation with loss
ratios (Figure 7). However, many other variables—such as flow velocity, contamination, precaution
measure, floor space per person, the value of the affected building, and building quality—are also
significantly correlated to damage ratio.
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Table 1. Description of the 13 candidate predictors (C: continuous, O: ordinal, N: nominal).

Categories Predictors Type Range

Flood
impact

WD Water depth C between 0 cm and 700 cm above ground
Vel. Flow velocity O 1 = calm to 3 = high
Con. Water Contamination O 0 = no contamination to 2 = heavy contamination

Emergency EM Emergency Measures O 0 = no measure undertaken to 3 = many measures undertaken
Precaution,
experience

PM Precaution Measures O 1 = no measure undertaken to 4 = many measures undertaken
Exp. Flood experience O 1 = few flood experience to 3 = recent flood experience

Building
characteristic

BQ Building quality O 1 = very bad to 6 = very good
BV Building value C 1756 to 3594000 AUD
FS Floor space per person C 13 to 870 m2

Socioeconomic
status

SA Special attention resident N 0 = No, 1 = Yes
Own. Ownership status N 0 = rent, 1 = own
Inc. Monthly income O 1 = $1–$599, 2 = $600–$1,999, 3 = greater than $2,000
LE Low education residents N 0 = No, 1 = Yes

Table 2. Pearson correlation of the 13 final candidate predictors, see Table 1, and loss ratio. Significant
correlations (5% significance level) are marked bold.

Pearson Correlation Coefficient

- WD Vel. Con. EM PM Exp. BQ BV FS SA Own. Inc. LE
Loss Ratio 0.62 0.23 0.19 ´0.05 ´0.16 ´0.03 ´0.07 ´0.14 ´0.15 0.04 ´0.03 ´0.04 0.02

3. Statistical Methods

Regression trees and bagging decision trees were applied to determine the prominent
damage-influencing parameters, to understand their effect on the extent of structural damage,
and to compare the performance of the tree-based models with an established flood loss function.
The tree-based analyses were performed with the Weka machine learning software [54].

3.1. Regression Trees

Regression trees are machine learning methods for constructing prediction models from data
where the target variables are continuous values [55]. Tree-based regression models are known for their
simplicity and efficiency when facing up to domains with a large number of variables and data [56].
They are constructed by sub-dividing the predictor data space into smaller areas such that in each split,
the dataset is partitioned into two sub-spaces. In this regard, each terminal node is labelled with a
question and the binary branches are labelled with the answers. Subdivision should be performed
in such a way that the predictive accuracy is maximised, and errors are minimised. In other words,
the algorithm searches over all possible split values of all predictor variables to identify the split
which minimises an error criterion. Overall, trees should be complicated enough to take advantage of
information that increases predictive power, while simple enough to ignore random noises that do not
enhance the accuracy of results [15].

If a decision tree model is fully grown, it may lose some generalisation capability, and if the
training data contains any errors, it can lead to poor performance on unforeseen cases. This issue is
known as overfitting and needs careful attention [57,58]. One way to avoid overfitting is tree pruning,
which was employed in this study. Tree pruning is a technique in machine learning that decreases
the size of decision trees by taking off sections of the tree that give little power to classify instances.
Pruning reduces the complexity of the final classifier and hence improves predictive accuracy by the
reduction of overfitting [59].

In this study, the target variables were relative structural loss values and trees were constructed
using the entire dataset. Therefore, some repeated binary partitioning questions construct the structure
of the tree, from the root node to the terminal nodes (or leaves). Terminal node values give the average
loss ratio of all data values of the terminal node [15]. In other words, the prediction of loss ratio is the
average of the training dataset that belongs to every leaf.
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The prediction error used for Figure 8 is estimated by a 10-fold cross-validation technique based
on the average absolute deviation of the estimated ratios from the observed values (MAE). In this
regard, the shuffled data was first partitioned into 10 equally-sized segments (folds). A tree was
computed 10 times. In each iteration, a different fold of the data was held out for model testing while
the remaining nine folds were used for model training. Eventually, the error was averaged over all
constructed models [6,60].
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3.2. Bagging Decision Trees

The bagging predictor is a method for generating a multiple version of a predictor and using this
to get an aggregated predictor. The multiple version is formed by making bootstrap replicates of the
entire dataset and using each replica to grow a new regression tree. The response of a bagging decision
tree is the average of all individual regression trees. Bootstrapping and ensemble models make the
response strong enough to cope with variation in data and avoid the overfitting issue. Tests on real and
simulated datasets using regression trees have shown that compared to an individual regression tree,
bagging can substantially enhance the stability and accuracy of the model’s performance [15,61–64].
About one-third of data is not used for training the individual regression trees. This segment, called
out-of-bag data, is the observation data utilised for error estimation and feature importance assessment.

The quality of a bagging tree, used for exploring the feature importance, is measured by the
average error of predictions of all regression trees compared with the observation data (out-of-bag
data). In this regard, the values of one variable in the out-of-bag examples is randomly permuted,
and the increase in the out-of-bag error is measured: the greater the growth, the more important the
feature [15,26,62].

3.3. Comparing the Performance of the Tree-Based Models with FLFArs

The tree-based models constructed in the previous stages, based the on the entire dataset, were
utilised for loss ratio estimation and comparison with the stage-damage function. For a meaningful
comparison, all models should be derived from the same dataset [15]. Accordingly, the performance
of the tree-based model was compared with a newly established multi-parameter flood loss model
(FLFArs) [2], which has been derived from the same flood event data.



Water 2016, 8, 282 11 of 18

The results of the damage models have been compared with the following resampling procedure.
First, 100 samples are randomly pulled out from the original data set, and each model is implemented
with this random sample. Errors in the estimates from the aforementioned models in contrast to the
actual values are evaluated by three error measures: mean absolute error (MAE), root mean square
error (RMSE), and correlation coefficient. Then, this step is repeated 200 times and the average of
errors converged to a final constant value. Finally, the performance of the damage models is compared
according to the converged values of the averaged errors (Figure 11).

4. Results and Discussion

4.1. Importance and Interaction of the Damage Influencing Parameters

4.1.1. Regression Trees

Regression trees were created in different sizes. Figure 8 compares the various trees based on
the cost error parameter. The largest tree was stopped with 19 terminal nodes (Figure 9). As stated
before, trees should be complicated enough to take advantage of information that increases predictive
power, while simple enough to ignore random noises that do not enhance the accuracy of results [15].
Accordingly, after using tree pruning technique for all sizes of regression trees, the tree with 19 terminal
nodes and a minimum value of error (0.0652) was selected. In this tree, five predictors out of the
13 candidates were considered and correlated with loss ratios. Table 3 shows how many times these
predictors were used in decision nodes and how these parameters are correlated with loss ratios.
A positive correlation means that the loss ratio increases or decreases as the candidate predictor
increases or decreases, and the reverse for a negative correlation.

Water depth is the most significant predictor, available in nine decision nodes and correlating
positively with the loss ratio. This outcome is as expected, and accords with previous research [11,32].
After water depth, floor area (space area per person) is the most important influencing factor, correlating
negatively with loss ratio. The space area might be substantial if the depth of water is greater than
64 cm. This result accords with the findings of Thieken et al. (2005) and Merz et al. (2013), who
showed that the building loss ratio decreases if the total floor space of the building exceeds 139 m2 or
120 m2 [15,24]. However, in this study, the area of the building reduces the extent of losses if it exceeds
150 m2 per person (Figure 9).

Another important factor that correlates negatively with the extent of losses is the precautionary
measures. In the pruned tree with 19 leaves, the precautionary measures are important only for
larger water depths (>177.5 cm). This outcome is opposite to the results of the studies in Germany,
where the effects of the precautionary measures were significant only for shallow water depths [15,39].
This matter can be explained according to the flood characteristics and the precaution measures
considered. As stated, in this study, water depth was the most significant impact factor. On the other
hand, the construction type (i.e., how much the first floor has been raised up) and the number of
building storeys had the most influential effects on the weighting of the precautionary measures.
Accordingly, when the flood depth is shallow, and hazard has little impact, these measurements do
not significantly affect the calculated extent of losses. However, when the impact of the flood (water
depth) is considerable, precautionary measures—either by substantially decreasing the water depth on
the floor of the building, or by protecting the building fabrics placed at higher levels—will remarkably
reduce the extent of losses.

As with precautionary measures, building quality has an inverse effect on the structural loss
ratios if the water depth is greater than 177.5 cm. This accords with the above finding that water depth
is the greatest influencing factor of the floods, and the resistance parameters are meaningful if the
depth of water (hazard impact) is significant. The building value indicator was also presented in three
decision nodes of the right part of the tree. Nonetheless, its correlation with the loss ratio is not clear.
In other words, on this dataset and in large flood depths, variation in the building value does not
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have a defined relationship with the trend of the loss ratio. This can be interpreted as a weak local
correlation between this predictor and the loss ratio, or as an inherent uncertainty in the data.
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FS: floor space, PM: precaution measures, BV: building value, BQ: building quality).

Table 3. Damage-influencing variables of regression tree with 19 leaves.

Candidate Predictors No. of Decision Nodes Correlation with Loss Ratio

Water depth 9 +
Floor space 3 ´

Precaution measures 2 ´

Building value 3 N.A.
Building quality 1 ´

Water contamination and flow velocity were not found to correlate with the loss ratios. This result
confirms the outcome of Kreibich et al. (2009) and Merz et al. (2013), who showed that the effects of the
flow velocity and the water contamination are significant only if the depth of water is shallow and the
level of energy head is low [15,65]. Since in this study these predictors are reported simultaneously with
large flood depths, they do not have a major effect on the extent of the damage. Other defined indicators
such as emergency measures, flood experience, and socioeconomic status do not have an evident
meaningful relationship with the loss ratios, although these parameters (e.g., water contamination, flow
velocity and socioeconomic status) might be related to the loss ratios if an unpruned tree was grown
on the dataset. As stated, although unpruned trees might have better performance on the original data,
overfitting phenomena could affect their performance for an independent dataset. Accordingly, the
authors have not developed unpruned trees for this part of the study. Furthermore, due to the joint
effects of parameters, the interaction of emergency measures should also be discussed in the context of
warnings and alerts issued during the event.

4.1.2. Bagging Decision Trees

As mentioned earlier, the bagging decision tree is formed by making bootstrap replicates of the
entire dataset and using each replica for growing a new regression tree. This step was completed up to
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200 times until the average of the ensemble errors became stable. Afterwards, the feature importance
and the ranking of the predictors were calculated based on the results achieved from random permute.
The grading of the predictors is water depth, space area per person, precautionary measures, building
value, building quality and flow velocity (Figure 10). Other candidates show slight feature importance.
This ranking is very similar to the results obtained from the regression trees, see Table 3.
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4.1.3. Performance of the Applied Damage Models

In this part of the study, the performance of the tree-based models was compared with FLFArs

multi-parameter flood loss function. As mentioned before, both approaches (the tree-based models
and the stage-damage function) were derived based on the same dataset.

To compare the performance of the tree-based models with FLFArs, 200 sets of 100 affected
buildings were randomly drawn from the original dataset; each model was applied to every building
record and the errors were calculated and averaged over all samples.

Results show that there is a distinct improvement in the tree-based models’ performance over
the FLFArs model, which is due to the consideration of more candidate predictors. Also, there is a
small improvement in the fulfilment of the bagging decision tree compared to the regression tree. The
metrics are the higher value of the correlation coefficients, the lower value of the errors, and the lower
variation of the results. This improvement is due to the reduction in the variances of the dataset and
the greater accuracy of the model (Figure 11). In Figure 11, MAE represents the average absolute
deviation of the estimated ratios from the observed values and is a quantity used to measure how close
the estimates are to the empirical data. The RMSE also expresses the variation of the estimated ratios
from the observed ratios. It signifies the standard deviation of the differences between the modelled
values and observed values [41,66].
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Figure 11. Comparison of the flood damage estimation models (FLFArs: Australian stage-damage
function, RT: regression tree, BT: bagging decision trees). Bar graphs represent the converged average
values of the results, calculated over 200 sets of data samples, and the error bars show the spread of
the results.

5. Conclusions

Flood damage assessment is an important component of flood risk management since inaccurate
damage estimation leads to wasted effort, money, and resources for the organisations involved in risk
mitigation. The majority of flood damage models have attempted to propose simplified approaches
based on the type or use of elements at risk and the inundation depth of water. However, flood damage
is a complicated process, dependent on a variety of factors. Accordingly, the traditional stage-damage
functions are subject to significant uncertainties since some influencing factors are usually neglected.
If the water depth is the only hydraulic factor considered, the models are not flexible enough to
transfer and use in a new area of study. On the other hand, multi-variable models are also subject to
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uncertainty, particularly since additional variables are taken into account. Therefore, they also entail
additional sources of uncertainty. This study used a multi-variate statistical analysis to explore the
interaction and effect of many influencing parameters on the extent of flood losses. In this regard,
tree-based approaches (e.g., regression trees and bagging decision trees) have been applied, and a
dataset collected from 2012 to 2013 flood events in Queensland has been utilised. Previous studies
have shown that tree-based models are very effective in identifying the significant damage-influencing
parameters and their interactions with the extent of losses since they can extract the local relevance of
every predictor. Accordingly, this study has taken advantage of this approach.

The results of the Australian dataset show that water depth is the most significant predictor,
correlating positively with the loss ratio. After water depth, floor space per person is the most
important influencing factor, correlating negatively with loss ratio. This predictor is substantial if the
depth of water is greater than 64 cm and the area of the building exceeds 150 m2 per person. Another
important factor that correlates negatively with the extent of losses is the precautionary measures.
The precautionary measures are important only for large flood depths (>177.5 cm). This outcome is
opposite to the results of the studies in Germany, where the effects of the precautionary measures were
significant only for shallow water depths. As with precautionary measures, building quality has an
inverse effect on the structural loss ratios if the water depth is greater than 177.5 cm. The building
value indicator was also presented in three decision nodes of the tree. However, its correlation with the
loss ratio is not specified. In this study area, water contamination and flow velocity were not correlated
with the loss ratios. Also, it has been shown that socioeconomic status does not play a fundamental
role in flood loss mitigation in the areas of study. As the results of the tree-based approaches show,
the following damage-influencing parameters are important: water depth, floor space per person,
precautionary measures, building value, and building quality. The high importance of water depth is
in accordance with traditional stage-damage functions. However, to the best of our knowledge, the
influences of other parameters have not been studied comprehensively for flood damage assessment
in Australia.

Finally, the performance of the tree-based models was compared with the outcomes of a newly
established multi-parameter flood loss function (FLFArs) from Australia. It is demonstrated that
the new tree-based model, due to considering more parameters, can estimate the extent of losses
more accurately. The evaluation of model performance in this paper is based on random samples
which are not independent of the data used for model development. Hence, the comparison of model
performance does not give information about the transferability of the models.

Accordingly, it is recommended that further development of Australian flood damage models
consider more candidate predictors (especially the important parameters stated in this study), and take
advantage of tree-based models. Further research will be aimed at examining a more comprehensive
dataset to explore the significance of other influencing factors (e.g., return period, long duration
flooding, sediment loading, and early warning) and using an independent dataset to evaluate the level
of transferability of the tree-based models in time and space.
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