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alone do not guarantee adequate model simulations or rainfall estimates. Areal rain-

fall obtained from gauged observations does not produce the best streamflow sim-

ulations. This suggests that the rainfall observations may not be representative of

catchment rainfall.

When evaluating a rainfall-runoff models suitability for forecasting purposes it is es-

sential that the model is able to adequately simulate past streamflow observations.

The results demonstrate that good streamflow simulations and unbiased innova-

tions can be obtained from biased rainfall estimates. Consequently, careful consid-

eration needs to be paid towards uncertainty in all components of the water cycle

before claims were made that a rainfall-runoff model is able to simulate good stream-

flow for the right reasons.

5.6.3 Innovation mean for the assimilation period

Over the course of the assimilation period the innovation mean at each time step

will ideally fluctuate about zero. The mean of the innovation means for an entire

time series is calculated for each of the 125, 000 rainfall time series and parameter

sets, models and RS SM product and presented in Figure 5.8. The best represen-

tations were centered around 0 and have rainfall volumes closest to the observed

rainfall volume over the rainfall estimation period. When assimilating SMOS SM,

FIGURE 5.8: The left panel is 3-D histogram showing the mean of
the daily innovation mean for each of the 125,00 rainfall time series
and model parameter sets and the estimated rainfall volume for the
estimation period for each of the models and RS SM combinations.
The right panel zooms into the 3-D histogram for the case when the

SMOS RS SM product is assimilated into the SAC-SMA model.
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the innovations from the SAC-SMA model were largely contained between 0.01 and

−0.03 (mm/mm). The innovations for the 5 remaining experimental combinations

do not have both positive and negative values. Consequently, some bias is present.

The rainfall volumes estimated with the SAC-SMA model were contained between

2900 and 3300 mm. This variance in estimated rainfall volume is larger than that

shown by the HyMod and PDM rainfall estimates. Further, the extent of rainfall vol-

umes obtained by the SAC-SMA model encompasses the observed rainfall volume

of 3205 mm for the Warwick catchment. This suggests that the unbiased rainfall

estimates obtained using the SAC-SMA will benefit from the unbiased SM obser-

vations from SMOS. Without CDF matching, the SAC-SMA configuration will not

benefit from assimilating AMSR-E SM observations. When assimilating SMOS SM

observations into HyMod the mean of innovation mean is close to 0. Conversely, the

biased rainfall estimates obtained from HyMod demonstrate that the rainfall esti-

mates were unrealistic and that the innovations alone provide insufficient evidence

to draw a positive conclusion. This bias is made more evident by the increased

discrepancy between the innovations obtained for SAC-SMA and HyMod when as-

similating AMSR-E observations, and the innovations obtained for SAC-SMA and

HyMoD when assimilating SMOS observations. Conversely, the low bias observed

for innovations in the PDM/AMSR-E experiment demonstrates that assimilating a

biased soil moisture product into a biased model or model with biased rainfall esti-

mates may still yield good results. To obtain robust streamflow forecasts unbiased

models need to be paired with unbiased rainfall observations/forecasts/estimates

and unbiased RS SM observations. Uncertainty in all components of the water cy-

cle needs to be considered.The demonstrated methodology can be used as tool to

estimate rainfall, or reject models and RS SM observations for a given catchment.

5.7 Conclusions

Previous studies have demonstrated that rainfall estimates obtained via the sole in-

version of either streamflow or soil moisture are often unrealistic or lack temporal

specificity. This research builds upon a previously developed rainfall estimation
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methodology by analyzing the rainfall estimates using innovations from the assim-

ilation of RS SM data. The methodology presented can be used by hydrologists to

make informed choices regarding model choice and satellite choice. Permutations

of estimated rainfall time series, model parameter sets, hydrological models, and RS

SM data are analyzed. Rainfall estimates were obtained for the SAC-SMA, HyMod

and PDM rainfall-runoff models via a process that involved the dimensionality re-

duction of input data using the DWT. An objective function that balances estimates

of streamflow and rainfall was used in conjunction with the sampling algorithm

DREAMZS to simultaneously estimate model parameters and rainfall time series.

Cumulative plots of the estimated rainfall time series showed that superior stream-

flow estimates could be simulated with model dependent rainfall estimates, and

that all models demonstrated improved streamflow simulations with lower thant

observed rainfall time series estimates. Further, the range of estimated rainfall time

series was found to be dependent on the model. Data assimilation using the EnKF

produced innovations close to 0 when SMOS and AMSR-E RS SM were assimilated

into HyMod and PDM respectively. Yet, the rainfall estimates from these models

were still discarded as their rainfall volumes during the rainfall estimation period

were outside the range of rainfall volumes observed at the gauge. Realistic rainfall

estimates and EnKF innovations were obtained with the SAC-SMA and SMOS RS

SM. To be considered robust, rainfall estimates obtained via inversion need to pro-

duce superior streamflow simulations, be able to simulate soil moisture states that

exhibit little to no bias when compared to RS SM observations, and be within an

acceptable range of gauge based rainfall observations.
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Chapter 6

Conclusions and further research

6.1 Overview

The research conducted throughout this thesis made steps towards increasing the

skill of flood forecasts. Over three tasks this research developed and utilized tech-

niques that enhance the hydrological communities’ understanding of uncertainty in

rainfall observations and the influence those uncertainties have on streamflow sim-

ulations from rainfall-runoff models. As a greater understanding of uncertainty in

rainfall observations and the way in which those observations influence streamflow

simulations is developed, techniques to condition rainfall forecasts become more re-

liable. As rainfall forecasts become more reliable, flood forecasting skill increases.

For this research to be operationalized further work involving a variety of hydro-

logic basins and models needs to be conducted. The methodologies described would

need to be run for each catchment such that QPF’s can be conditioned on rainfall es-

timates that are known to provide good hydrological simulations.

6.2 Summary of main findings

6.2.1 Hydrologic model input data reduction

Rainfall and its uncertainty can be estimated by describing rainfall observations us-

ing parameters and utilizing model inversion techniques. As it is computationally

infeasible to estimate a unique parameter for each rainfall observation, there exists a
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need to be able to efficiently and effectively reduce rainfall observations to a smaller

number of parameters. To ensure the robust inversion of rainfall-runoff models to

obtain rainfall estimates, methods to reduce the dimensionality of hydrologic model

input data were explored. Due to their wide-spread acceptance as transforms for

model input data reduction in fields outside of hydrology, the DCT and DWT were

used to compress and reconstruct rainfall observations from the MOPEX data set.

Succinct descriptions of the DCT and DWT were given along with an outline of pos-

sible benefits each of the transform may provide. High- or low-frequency param-

eters of the DCT can be estimated. Conversely, if the DWT is used, a modeler can

choose to estimate a combination of either time or frequency DWT parameters. Us-

ing standard simulation performance summary metrics, descriptive statistics, and

peak errors to compare the ability of compressed DWT and DCT transform parame-

ters to reconstruct MOPEX rainfall data, it was determined that the DWT was most

effective at preserving high-magnitude and transient rainfall events. After analy-

sis of the bias, variance, skewness, and kurtosis, it was demonstrated that rainfall

reconstructions from the DWT were closer to the observed rainfall data, and that

the DWT was more effective at preserving long term trends. Consequently, it is rec-

ommended that the DWT be used as a model input data reduction technique for

hydrologic studies that have both short and long time steps.

6.2.2 Rainfall estimation

Since the DWT was found to be more effective than the DCT at preserving rainfall

observations, the DWT was used to reduce model input data for the estimation of in-

put uncertainty. While the DWT can be used to reduce the dimensionality of model

input data that originates from any measurement instrument, in this study the DWT

was only used to reduce the dimensionality of gauge-based rainfall estimates. Using

the DREAM(ZS) sampling algorithm,and a likelihood function that balances input

rainfall and streamflow error allowed for multiple configurations of DWT param-

eters to be used to estimate model parameter distributions and entire rainfall time

series. This methodology allows rainfall to be estimated when none was observed.
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When compared to the benchmark sole estimation of model parameters, the simul-

taneous estimation of DWT rainfall and model parameters yielded realistic rainfall

estimates and streamflow simulations. The RMSE of these streamflow simulations

was improved by a factor of up to 1.78. Consequently, a methodology to realistically

estimate rainfall time series has been developed. This methodology was used in a

subsequent study that used 3 models to compare rainfall time series, their respec-

tive model parameters, and their ability to simulate streamflow and soil moisture

observations.

The use of the DWT as a model input data reduction technique in conjunction with

model inversion techniques provides an increased understanding of hydrologic un-

certainty by providing a technique that both improves streamflow simulations and

estimates rainfall input, including when none was observed. The efficiency of the

model inversion process along with computational power place an upper limit on

the resolution of uncertainty and length of rainfall time series that are able to esti-

mated.

6.2.3 Analysis of rainfall estimates

Past attempts to estimate rainfall through the inversion of streamflow or soil mois-

ture have been either unrealistic or lacked temporal specificity respectively. Conse-

quently, this study filled the need for the development of a methodology that con-

strains rainfall estimates obtained through the inversion of streamflow observations

with soil moisture observations. The developed methodology utilized past studies

that reduced model input data and simultaneously estimated model parameter dis-

tributions and entire rainfall series. These techniques were applied to the SAC-SMA,

HyMod, and PDM rainfall-runoff models. Cumulative plots of estimated rainfall se-

ries demonstrated that rainfall estimates are model dependent. Compared to the

benchmarks in which only model parameters are estimated, all models were able to

obtain superior streamflow estimates when both rainfall time series and model pa-

rameters were estimated. Analysis of EnKF innovations obtained from each model

when different RS SM products were assimilated demonstrated that innovations
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close to zero can be obtained for models that have biased rainfall estimates. Rain-

fall estimates that were close to the gauge based observations were obtained from

the SAC-SMA model. Further, innovations either side of zero were obtained when

SMOS RS SM observations were assimilated into the model parameter and rainfall

time series estimates obtained from the SAC-SMA model. To be considered robust,

rainfall estimates obtained via the inversion of streamflow need to be able to; pro-

duce superior streamflow simulations, simulate soil moisture states that exhibit little

to no bias when compared to RS SM observations, as well as estimate rainfall that is

within an acceptable range of gauge based rainfall observations.

It has been successfully demonstrated that rainfall estimates can be constrained by

soil moisture observations. Different configurations of models and choice of RS SM

product for assimilation demonstrate white noise EnKF innovations. In some sit-

uations this is a result of the assimilation of the biased AMSR-E soil moisture into

models that obtain biased rainfall estimates. When the unbiased SMOS RS SM prod-

uct was assimilated into the the SAC-SMA model innovations either side of 0 were

obtained, providing an additional element of physical realism to the rainfall retrieval

process. The results obtained do not indicate that the assimilation of soil moisture

observations restricts the efficacy of the rainfall retrieval process in the presence of

model structural inadequacy.

6.3 Opportunities for further research

The provision of improved QPF’s is expected to increase flood forecast skill. Af-

ter being constrained by RS SM observations, the rainfall estimates obtained using

model input data reduction and inversion techniques can be considered realistic.

Further, in comparison to the gauge based rainfall observations, the rainfall esti-

mates simulate superior streamflow. These rainfall estimates can be used in place of

rainfall observations to condition and improve QPFs.

Since the reduction of rainfall dimensionality in hydrology is a relatively new con-

cept there are still many areas that can be explored. Model input data can be reduced
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using any number of different transforms. As the choice of analysis wavelet influ-

enced how errors were corrected for, the exploration of different wavelet families

in the reduction of model input data may be used to extract information about the

uncertainties present in the modeling process.

Since, there is a limitation on the number of transform parameters that can be esti-

mated within a feasible time frame the identification of transform parameters that

convey the most detail may increase the effectiveness of the estimation process.

However, doing this may mean that parameters are only estimated for rainfall events

that show the greatest fluctuation in observed rainfall. An alternative approach

would be to selectively estimate rainfall parameters at times when the simulated

streamflow deviates significantly from the observed streamflow.

For the estimation process to converge in a desirable time frame it is more impor-

tant that the search space of the parameter estimation problem be kept to a mini-

mum than it is that the number of parameters be kept to a minimum. The use of

informed priors places a restriction on the search space and the way it is sampled.

Assumptions about rainfall errors can aid in the determination of informed priors.

Consequently, it is expected that by developing methods for which informed priors

can be used in the rainfall estimation process, a more efficient and effective rainfall

estimation process could be developed.

An analysis of rainfall estimates obtained using likelihood functions that do not in-

volve the specification of a multiplicative error structure for rainfall will provide

methods for which further knowledge regarding the structure of rainfall errors can

be obtained. Developing a likelihood function that involves soil moisture will re-

strict the possible rainfall time series and model parameters that can be estimated.

This will allow for a greater understanding of rainfall and model structural uncer-

tainty.

It is expected that performing this analysis on a variety of models, SM data sets, and

catchments with different sizes and climate will provide further validation of the ro-

bustness of the techniques developed. Lastly, streamlining of the rainfall estimation

and constraint process will create a user friendly approach that promotes further
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research.
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