Dear Commission,

The Bushfire and Natural Hazards Cooperative Research Centre (CRC) welcomes the opportunity to provide a brief submission into the South Australian 2019-2020 Bushfire Review as this is a critical aspect of risk reduction for the South Australian community.

The Bushfire and Natural Hazards CRC believes that any discussion on bushfire prevention and fire season preparedness must engage all parties, public and private, across all land tenures, to work towards mitigation of the fire hazard using a range of tools and activities.

This includes, but is not limited to:
• Reducing the level of bushfire risk through planned burning for given levels of investment and resourcing.
• Educating communities to make better decisions about their behaviour before, during and after fires.
• Understanding the impact of climate change and weather variability on different ecosystems and fire’s role in those landscapes.
• Planning for more appropriate land uses in high fire risk areas, including rebuilding in ways that mitigate future fire impacts.
• Recruiting and retaining volunteer and career firefighters in order cope with longer fire seasons.

The Bushfire and Natural Hazards CRC¹ and its predecessor the Bushfire CRC² have accumulated more than a decade of research into the bushfire hazards faced by Australian communities.

The following attached documents include:
• Terms of Reference - specific responses on Prevention and Preparation.
• Terms of Reference – further terms addressed in CRC research Impacts and Outcomes
• Bushfire Seasonal Outlook – August 2019 and December 2019

Details on the full CRC research program can be found here: www.bnhcrc.com.au/research

The Bushfire and Natural Hazards CRC has a membership base that includes the State of South Australia, co-ordinated through SAFECOM, and including the Country Fire Service, State Emergency Service, and the Metropolitan Fire Service. In addition, it includes South Australia based universities; the University of Adelaide, the Torrens Institute (Flinders University), and the Appleton Institute (part of the University of Central Queensland).

² www.bushfirecrc.com
If the Bushfire and Natural Hazards CRC can be of any further help to the Commission, please do not hesitate to contact me.

Yours sincerely,

Dr Richard Thornton
CEO
Bushfire and Natural Hazards CRC
Terms of reference – South Australian 2019-2020 Bushfire Review

The Bushfire and Natural Hazards CRC wishes to make specific comments on the following Terms of Reference:

Prevention

1. Reducing bushfire ignitions through hazard reduction
2. Community preparation and resilience

Preparation

3. Developing policies and standards to reduce bushfire risk

Fire seasons in Australia

Fire seasons are becoming longer and extreme fire weather is becoming more common, but that is not the whole story in Australia. The management of natural hazards, including bushfire, is a highly complex issue involving all layers of government, the private sector, and the community.

Hazards, such as bushfire, exist because they are a natural part of the environment and the phenomenon harms something we value: our lives, houses, livelihood, amenities or environmental or ecological values. There has been a long historical transfer of responsibility for the protection against such hazards to the government and its agencies on the premise that it is better to have properly trained and resourced organisations to respond and protect us. However, as pointed out by the Victorian 2009 Bushfires Royal Commission, that transfer of responsibility has probably gone too far. Individuals are no longer taking sufficient responsibility for their own risk management. It is analogous to the community not installing locks on houses because we have a police force to address the risk of burglary.

Governments over many years have allowed this risk transfer to continue through incentives that favour people not taking responsibility. In fact, the World Bank noted in a World Development Report\(^1\) that it is not just a local problem. One of the main reasons why ‘DRR [Disaster Risk Reduction] savings are not always enacted is because political capital is rarely gained from cost-effective DRR measures': voters reward politicians for delivering disaster relief funding but not for investing in disaster preparedness. That presents a fundamental challenge to the implementation of the 2014 Productivity Commission’s inquiry\(^2\) into disaster funding arrangements, which in its report advocated a substantial shift of focus from funding relief and recovery to funding mitigation.

It is clear from Bushfire and Natural Hazards CRC research, conducted after major fire events, that while the population recognises it is living in a risky environment, many people do not perceive that as a risk to them personally. Information about household preparedness, and warnings about leaving early, are mostly unheeded. This presents a challenge for authorities responsible for fire season

preparations, as it results in a large percentage of people waiting to see what will happen, and in many cases sees them leave at the last minute.

Hazard Reduction

It has been long understood that fuel reduction will decrease fire intensity, flame height and the forward rate of spread. One of the most efficient methods of reducing fuel over large areas is through the use of controlled fire under prescribed conditions – that is, through prescribed burning or planned/preventative burning.

However, there are other methods of fuel reduction other than just burning, including selected thinning and mechanical removal. Although these may be more labour intensive and therefore more expensive, they may be more appropriately applied in areas where the use of fire is not practicable, such as close to housing or other infrastructure, where arguably it is more effective in reducing the risk.

Importantly, fire is applied to various ecosystems for other reasons than just as preventative burning for fuel reduction. This may include the preservation of ecosystem values such as biodiversity, water yield and quality, soil preservation and other objectives.

As noted in the publication *Fire Management Environmental Assessment and Management Procedure*:

> The primary objective for a prescribed burn is usually one of the following:
>
> - To reduce fuel hazard immediately adjacent assets
> - To create strategic fuel reduced zones across the landscape to impede the spread of large bushfires
> - To provide landscape protection (e.g. to prevent fragmented reserve(s) from burning in its/their entirety in a single bushfire event)
> - To manage for ecological outcomes (e.g. regeneration of species, maintain specific habitat for fauna, assist to control pest species)
> - To conduct research into fire behaviour or ecological responses to fire.

With the recent focus on risk assessment and with the endorsement of the National Emergency Risk Assessment Guidelines (NERAG) by the Australian and NZ Emergency Management Committee, and then by the Ministerial Council of Law, Crime and Community Safety, it is sensible to link the level of planned burning to the level of risk reduction of individual communities rather than just an arbitrary area-burnt target that is not linked to prioritised objectives. Without such an objective-based measures there is no answer to the question on the right amount of land to treat.

It is important that whatever targets are put in place that these are based on the best available evidence and scientific research. They should be measurable, achievable and articulated in such a way that the community understand their residual risk.

3 Department of Environment, Water and Natural Resources, South Australia (November 2014)
Any target must recognise that no hazard reduction target will reduce the risk to zero, and that trade-offs are required. It is also important that the community understands that the effectiveness of hazard reduction is strongly dependent on the weather conditions that prevail on the day they are impacted by fire. On extreme days (like Black Saturday and at certain times during the 2019-20 season) the effectiveness of most prescribed burning on stopping runs of large fires will be minimal because medium and long-range spotting will see these large areas overrun.

However, research has shown that the fuel levels around properties and communities can make a significant difference to the intensity of the fire as it impacts private and public assets.

The 2009 Victorian Bushfires Royal Commission had a focus on the role that fuel levels on public land played on the events of Black Saturday. It was almost entirely silent on the role of fuels on private land, despite the fact that most deaths and damage to private assets resulted from the fires traveling over private land immediately before impact. This has also been the case in many subsequent fires, including fires over the 2019-2020 season.

It is a falsehood to assume that by setting targets only for public land the risk to people and property can be solved. The idea that people should not consider the fuel levels on their own property and risk that it poses to themselves and others is inconsistent with the arguments and scientific evidence about the important role of fuels within 100 metres of properties. The idea that residents can ignore this because the government is treating the public land is dangerous and inconsistent with the arguments relating to shared responsibility outlined in the Royal Commission report and enshrined in the National Strategy for Disaster Resilience.

Bushfires do not respect tenure boundaries and nor should a risk-based consideration of community protection. It is important that planned burning activities recognise the multiple players in land-management, and that the government alone should not be solely responsible for the risk treatments.

This does then raise the issue of how private landowners undertake extensive fuel reduction measures. Barriers remain, including perceptions of not being allowed to remove vegetation, because of council by-laws, and perceptions of community backlash against clearing. There is also challenges regarding risk management of prescribed burning on private blocks, and importantly the cost of undertaking such works, which arguably benefit the owner but also the community more broadly.

Community preparation

There is much work in Australia and elsewhere that is noting the increased frequency of higher fire danger days. Across Australia fire seasons are starting earlier and finishing later. This is creating ongoing issues for fire preparations and resource allocation across the country and internationally, as many resources are shared according to traditional timings of fire seasons.

An essential element in fire season resource preparation and allocation for all Australian states and territories is the annual Bushfire and Natural Hazards CRC’s Seasonal Bushfire Outlook. The 2019/20 Outlook noted that much of the Southern and Eastern Australia had seen a decade of below average rainfall. The CRC issued the Outlook in August 2019 (https://www.bnhcrc.com.au/hazardnotes/63) and in December 2019 (https://www.bnhcrc.com.au/hazardnotes/68) showing the increased risk across much of south-east Australia. Significantly this increased risk area included parts of South

4 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222328
Australia, in particular Kangaroo Island. The assessment for South Australia stated in some detail the need for fire season resource allocation to be based on the ongoing research and monitoring of climate and weather variability:

August 2019
Parts of the Lower Eyre Peninsula have received good rainfall, resulting in a bumper cropping season and higher than normal grass fuel growth. Due to the increased fuel load, these areas have above normal fire potential. Kangaroo Island also has above normal fire potential, with a combination of drier than average, and wetter than average conditions (depending on the vegetation type) across the island. These conditions may result in above average fuel loads in parts, and drier than average vegetation in others, especially in areas of forested and scrub vegetation.

... There are currently no forecasts indicating any potential for above average rainfall during spring and summer, which may prolong the fire season across parts of South Australia. Significant bushfires have occurred in similar conditions, and even areas of normal fire potential can expect to experience dangerous bushfires as per a normal South Australian fire season.

December 2019
The current three-month outlook for January to March 2020 indicates that South Australia is highly likely to experience above average day and night time temperatures, and there is little chance of above average rainfall during this period. This would indicate that the current dry conditions, which have supported major fires, are likely to continue throughout summer.

Based on the current climate outlook, and observed fire behaviour, parts of the Lower Eyre Peninsula and Kangaroo Island continue to have above normal fire potential. Forecast and observed conditions have also demonstrated the rest of South Australia maintains the potential for significant bushfires, including in the populated areas of the Mount Lofty Ranges.
IMPACTS and OUTCOMES

15 years of the Bushfire CRC and the Bushfire and Natural Hazards CRC

Warnings that save lives

The CRC has conducted multi-disciplinary research to improve the timeliness and effectiveness of community warnings that have resulted in reductions in the loss of life and property in floods and bushfires.

Australian lives are being saved by CRC research that is shaping warnings and public information campaigns to prepare and protect communities threatened by flood, fire, heatwave and other natural hazards.

The insights from CRC researchers at the Queensland University of Technology are equipping emergency service agencies around Australia with better-targeted long-term public safety campaigns as well as evidence-based warning messages delivered to at-risk populations in the face of imminent natural hazard threats. The goal of the project was to save lives and empower communities to act to ensure their safety, by improving community warning messages.

The research underpinned the National Emergency Management Handbook on Public Information and Warnings and the companion guide Warning Message Construction: Choosing Your Words, both published by the Australian Institute for Disaster Resilience. The publications drew directly on the research to give guidance on the key considerations for writing effective warning messages, including structures and language styles for specific audiences, such as high-risk groups and non-English speaking communities.

Emergency service agencies have drawn from the project and have collaborated at the national level to determine a style and structure for official public messages now used in routine bushfire incidents. Queensland Premier Annastacia Palaszczuk credited the warnings research, combined with CRC fire mapping tools, with saving lives and the township of Gracemere in the November 2018 fires.

Better fire danger ratings

The CRC has conducted research into fire behavior that has improved the national fire danger ratings system, resulting in better warnings for the community.

A new National Fire Danger Ratings System is drawing from a range of CRC projects in fire behaviour, fire ecology, weather and climate, predictive services, and communications and warnings. Based on this research, the new system will improve community awareness of risk exposure, provide greater scientific accuracy behind decisions, advice and warnings and give communities greater confidence in the information being provided.

Fire prediction

The CRC-developed fire spread modeling system provides better real-time information on the likely path of bushfires, enabling better operational decisions to be made.

Phoenix RapidFire, developed through CRC research, is the main fire modelling and prediction software in Australia that predicts the movement of a bushfire across different types of topography
and vegetation, taking account of fire history, roads and other structures, and weather (temperature and wind) conditions.

Fire managers use this software to estimate the potential impact of bushfires and determine which communities need to be warned and where resources need to be deployed. Queensland Premier Annastacia Palaszczuk credited this research-based fire mapping tool, combined with CRC warnings research, with saving lives and the township of Gracemere in the November 2018 fires.

A seasonal view of bushfire

The unique research and partner networks of the CRC has enabled it to coordinate the production of a national seasonal bushfire outlook, which serves as a trigger for communities around the country to prepare for the coming season.

Strategic decisions on resources, prescribed fire management and community warnings have for the past 16 years been underpinned by the CRC’s Seasonal Bushfire Outlook. Information from the Outlook is used by ABC Emergency to coordinate its national ABC Radio seasonal awareness and training program for its journalists.

Governments and fire authorities nationally are using the Outlook for planning purposes in the lead-up to their bushfire seasons, including refining their public messages that communicate bushfire risk and highlight areas with the highest potential for fire.

The CRC leads the preparation of the Outlook in close consultation with the Bureau of Meteorology, AFAC, and emergency service agencies in each state and territory. The Outlooks cover the Northern and Southern fire seasons and are published annually around June, September and November. In 2020, at the request of CRC partner agencies, the Outlook will shift to a quarterly release to better reflect the year-round nature of fire management and operations across Australia.

Mental health of first responders

The CRC worked with Beyond Blue to undertake a world-first study to better understand the mental health issues of emergency services workers.

A national research project into the mental health and wellbeing of police and emergency service personnel in a collaboration between the CRC and Beyond Blue with the University of Western Australia provided insights into the impacts of workplace culture. This research, the most comprehensive study of its type in Australia, is being used by the sector to review current mental health support strategies and to identify opportunities to modify existing or introduce new support programs.

Firefighter safety

The CRC’s early work validated the many safety systems that are now standard in firefighting vehicles, saving firefighter lives should they get caught in a fire.

Early research in the Bushfire CRC has led to the wide adoption of vehicle sprinkler protection systems that protect fire crews in burnover situations. Other research has established standards for rest and hydration, and for heat and smoke protection, while acknowledging that the nature of firefighting involves strenuous shifts under hot and smoky conditions.
Volunteers

The CRC undertook research that has helped to ensure that the emergency services have sufficient capacity to fight bushfires and flood, though better understanding of the volunteer workforce.

Issues of recruitment, retention, diversity, and wellbeing among fire and emergency service volunteers have been identified in CRC studies since 2003 and backed with strategies to attract and support volunteer workforces. Research has resulted in agencies reviewing the way they manage volunteers with enhanced training and leadership skills, more support for volunteers and their families, and recruitment campaigns that target a younger and more diverse demographic.

Emergency planning for animals

The CRC’s groundbreaking research into the behaviour of people with animals has led to better public guidelines on how to plan for disasters.

Australian’s attachment to their pets heavily influences their decisions during an emergency, with findings from CRC research now adopted by fire and emergency services to support household planning for disasters.

The project identified best practice approaches to animal emergency management. This has given emergency management agencies the insights for better targeted public hazard preparation campaigns, and the data to make better decisions on planning and targeting of response and recovery resources.

Disaster risk education for kids

The CRC’s work in understanding how children can be involved in their own natural hazards education, and how they can educate their families, has become a standard part of school curriculum in many schools.

Educating children and youth about disaster risk reduction and resilience is now front and centre around Australia, based on CRC research that identified the valuable role children play in the safety of their households and communities. This research began with a CRC PhD project that developed an interactive eBook to help parents discuss bushfire preparation and safety with their children. The research has since been expanded to support state fire agency children’s education campaigns, as well as curriculum materials designed for primary and early secondary school.

House and vehicle safety

Early work of the CRC into how houses are lost in bushfire, has resulted in changes to the building standards for new properties.

Research drawing from both field and laboratory-based testing is providing fire agencies and communities with guidance on design and materials for house construction, pre-hazard season preparation of properties, and sheltering in vehicles during bushfires.

Decisions under fire

The multi-disciplinary research of the CRC undertaken in the aftermath of disasters with the communities has enabled better understanding of community decision making, ensuring that public safety messaging is more targeted and effective.
Public bushfire safety campaigns across Australia have been shaped by a decade of CRC research that identified the reasons why people under a direct threat of fire make their choice to either leave, stay and defend, or wait and see what develops.

Based on the evidence of the 2009 Victorian Bushfires Royal Commission and household interviews following those fires and other major fires across Australia, researchers were tasked to identify the principal drivers of resident’s actions under threat of bushfire. The critical influences on their actions were found to be the priorities that shaped their intentions in the lead-up to the fire season. These included the safety of their families, protection of their homes and assets, and their own perceptions of their risk under particular fire scenarios.

Safer houses in high winds

Research work partially undertaken by the CRC has resulted in a Queensland Government grant program to retrofit properties against cyclones for vulnerable communities in northern Australia.

The award-winning Queensland Government Household Resilience Program, backed by research from the CRC, is increasing the resilience of homeowners in tropical cyclones. Owners of properties upgraded through this program are now seeing reductions in their insurance premiums.

The Cyclone Testing Station at James Cook University, worked with the Queensland Government to create the program, which provides Queensland homeowners with a grant for the upgrade of the roof structure, protection of windows and strengthening of doors – the key areas identified by the research as being at the highest risk of damage during strong cyclonic winds.

Collective strength

The CRC has built an extensive network of practitioners and academic researchers across Australia and internationally that collectively has improved community safety in the face of increasing disaster risk.

The strength of the CRC lays in its collective nature. As a cooperative research centre, the CRC is a collection of people and individual organisations, that bring a range of values to the whole. The CRC operates as a hub in the broad emergency and hazards sector, creating a pool of resources and insights at the local, national and international level. The CRC creates a bridge that link disparate and diverse groups together in a network focused on innovation.

With more than 250 researchers and 250 agency staff in Australia and internationally directly involved in the research projects - with many more indirectly involved - the collective strength is an efficient and effective way to advance the science of natural hazards. The CRC provides a research capacity that is not feasible at the individual state or territory or agency level, nor with any one university or research organisation.

A forum for independent knowledge

The CRC is seen as the go-to organisation by government, the agencies, the media and the community for authoritative and independent advice and commentary on all matters in natural hazards.
The CRC has created a space for discussion, learning and development of natural hazards science and disaster resilience through well-attended conferences and other research-based forums, plus regular academic and community focused publications.

The CRC is regularly called upon for independent advice on fires and other hazards by government and agency partners. The 2009 Victorian Bushfires Royal Commission relied upon the CRC for access to credible research findings and respected researchers and noted this contribution in its final report. Since then, the CRC and its researchers have regularly been called upon for independent advice and research on major issues including hazard reduction burning and fire season preparation, and for post-fire field research into fire behaviour and community safety.

2020+ - Upcoming Impacts and Outcomes

Resilience Index

The CRC has developed a national Disaster Resilience Index that will be used by governments to identify community strengths and weaknesses, to enable better targeted interventions to increase community resilience. (to be released in 2020)

The Australian National Disaster Resilience Index has been developed with governments and emergency service organisations across Australia and New Zealand. The Index, to be released widely in 2020, provides a tool for policymakers to understand at a national level how resilience varies in different regions of Australia, providing a means to track change over time and to allocate resources that are relevant and targeted.

Fire fuels

The CRC has developed a unique tool to enable practitioners to more accurately and more efficiently evaluate fuel levels in forests. (to be released in 2021)

Fuels3D is a program designed by researchers for fire and land managers in the field to quickly, accurately and consistently capture important information on fuel hazard and burn severity. This benefits the whole of organisations by reducing both staff hours in the field and individual biases in estimating bushfire risk.

Flammability

The CRC has developed remote sensing technology to map the flammability of Australia’s forests and grasslands. This will be combined with the CRC project increasing the accuracy of soil moisture prediction to better inform agencies of the fire risk. (To be released 2020)

The Australian Flammability Monitoring System - trialed by the NSW Rural Fire Service in the 2019-2020 bushfires - is a support for fire risk management and response activities such as hazard reduction burning and pre-positioning firefighting resources and, in the long term, the new National Fire Danger Rating System. The web-based tool is useful for fire and land managers and other industries such as the insurance and agricultural sectors and electricity and water suppliers. Communities across land management and agriculture can assess how dry their properties are for a range of potential activities, including preparation for fire season.
“What if” investments

The CRC has developed a unique system to test planning decisions made today against future changes in climate demographics and disaster risk and ensure that we are not creating new risks for the future through poor decisions today (currently in trial in many jurisdictions).

State governments and agencies are able to evaluate potential investment decisions in disaster mitigation that consider a range of future scenarios. This CRC project is being advanced through a national training program in Victoria, South Australia, Tasmania and Western Australia involving bushfire, flooding, coastal inundation, earthquake and heatwave, with both the Western Australian and Tasmanian governments further investing into the development of a model to show natural hazard risk exposure for their states.

Understanding natural hazard impacts

The CRC and Geoscience Australia have developed the Australian Exposure Information for fire and emergency service agencies to understand what specific assets, businesses, services and people are at risk during an emergency.

The CRC has worked with Geoscience Australia to harness the national data in the National Exposure Information System (NEXIS) and make it available to emergency services, governments and other interested groups to assist in planning and situational awareness of the assets, services, infrastructure, businesses and population exposed to emergencies within any defined region.
AUSTRALIAN SEASONAL BUSHFIRE OUTLOOK: AUGUST 2019

OVERVIEW

The 2019/20 fire season has the potential to be an active season across Australia, following on from a very warm and dry start to the year. Due to these conditions, the east coast of Queensland, New South Wales, Victoria and Tasmania, as well as parts of southern Western Australia and South Australia, face above normal fire potential.

This August 2019 Australian Seasonal Bushfire Outlook covers all states and territories. It provides information to assist fire authorities in making strategic decisions such as resource planning and prescribed fire management to reduce the negative impacts of bushfire.

Bushfire potential depends on many factors. The volume, location and timing of rainfall are critically important when estimating vegetation (fuel) volumes and growth. The climate outlook for the next few months is also a crucial factor. Of particular interest are the future tendencies of Pacific sea surface temperature associated with the El Niño-Southern Oscillation, as well as the Indian Ocean Dipole, major climate drivers over Australia. Other less quantifiable factors, such as the distribution and readiness of firefighting resources, are also considered.

The Australian Seasonal Bushfire Outlook: August 2019 is developed by the Bushfire and Natural Hazards CRC, AFAC, the Bureau of Meteorology, Queensland Fire and Emergency Services, the New South Wales Rural Fire Service, ACT Emergency Services Agency, ACT Parks and Conservation Service, Country Fire Authority, Department of Environment, Land, Water and Planning Victoria, Tasmanian Fire Service, Country Fire Service, Department of Fire and Emergency Services and Department of Biodiversity, Conservation and Attractions Western Australia, and Bushfires NT.

RECENT CONDITIONS

Seasonal fire conditions are a function of fuel amount and state, and seasonal weather conditions. The year to date has been unusually warm and dry for large parts Australia. For January to July, rainfall has been below to very much below average over much of Australia (Figure 2, page 2). It has been the fifth-driest start to the year on record, and the driest since 1970. This is especially the case over the southern half of the country, which has experienced the driest January to July on record (January to July 1902 is the second driest). Areas of above average rainfall are largely confined to central Queensland, extending to the coast.

Some areas, such as New South Wales into south eastern Queensland, are into their third year of dry conditions. It will take a number of months of above average rainfall to remove the deficiencies which are in place, meaning that general landscape dryness is likely to persist for many areas.

The warming trend means that above average temperatures now tend to occur in most years, and 2019 has followed this pattern. Across Australia, temperatures for January to July have been very much warmer than average (2nd warmest for this period on record, 1.46°C above the 1961–1990 average), with daytime temperatures the warmest on record (1.85°C above the 1961-1990 average, see Figure 3, page 2). Summer 2018/19 was exceptionally warm (2.14°C above average, over 0.8°C greater than the previous warmest summer on record). These high temperatures add to the impact of reduced rainfall, and increase evaporation, further drying the landscape and vegetation.

As might be expected given the broad climatic factors, an early start to the fire season has been declared in many areas across eastern Australia. The dry landscape means that any warm and windy conditions are likely to see elevated fire risk. Countering the climate signal, poor growth of grass and annual plants means that vegetation loads are reduced in drought affected areas.

Fire season severity is increasing across southern Australia as measured by annual (July to June) indices of the Forest Fire
are favoured. The outlook for minimum temperatures (not shown) suggests above average temperatures are favoured across northern and western parts of Australia, with probabilities above 80 per cent in western parts of the Northern Territory and northern Western Australia. Historical accuracy for spring maximum temperatures is moderate to high for most of Australia, except parts of northern South Australia. Minimum temperature accuracy is patchy, but generally moderate across much of eastern Australia including Tasmania, and the tropical north. Other influences include Tasman Sea pressure patterns, which are favouring a reduction in onshore flow for parts of the east coast of Australia, and are likely contributing to the warmer and drier conditions forecast across NSW and southern Queensland.

The outlook for spring rainfall (Figure 4, page 3) shows a drier than average spring is likely for much of mainland Australia, especially for inland parts of southern Australia, and for large areas of northern Australia. Large areas of northern Australia are also likely to see a late northern rainfall onset, which may extend the fire season in the north. The likelihood of drier conditions is stronger in October compared with September. September is likely to be drier across northern Australia and small scattered areas of southern Australia, while October is likely to be drier across most of the mainland. Historical outlook accuracy for spring is moderate to high for most of the country, but low along the Northern Territory/Western Australia border, and the west coast of Western Australia.

The outlook for spring maximum temperatures favours above average daytime temperatures for nearly all of Australia. Probabilities are particularly high across much of northern Australia, where they widely exceed 80 per cent. Probabilities in the south are typically in the range of 50 to 80 per cent (Figure 5, page 3), implying that above average daytime temperatures are favoured. The outlook for minimum temperatures (not shown) suggests above average temperatures are favoured across northern and western parts of Australia, with probabilities above 80 per cent in western parts of the Northern Territory and northern Western Australia. Historical accuracy for spring maximum temperatures is moderate to high for most of Australia, except parts of northern South Australia. Minimum temperature accuracy is patchy, but generally moderate across much of eastern Australia including Tasmania, and the tropical north. Moderate to low accuracy is seen across western Western Australia and South Australia, with low accuracy in central Western Australia, the central Northern Territory and parts of western Queensland.

REGIONAL SUMMARIES

QUEENSLAND

2018/19 was a record fire season in Queensland, with November/December 2018 seeing unprecedented bushfires along the central to north coast. Following on from this, December 2018 saw record rainfall on the North Tropical Coast, as well as the Herbert and Lower Burdekin forecast districts. February and March 2019 also saw record and very much above average rainfall over northern parts of the state. Conversely for the 12 months to 31 July 2019, rainfall has been very much below average in south eastern parts of the state.

The lack of rain has resulted in the root zone soil moisture being below average – in
the lowest one per cent on record for areas around Rockhampton and south to the New South Wales border. The rainfall and temperature outlooks make it very likely that this current soil moisture deficit will persist for the coming months, significantly increasing the available fuel in forested areas in south eastern Queensland.

Inland Queensland has been drought affected since 2013, and as a result there has been very little grass fuel available. However, the rainfall received this year will very likely see a return to average fuel loads in inland parts.

Since 1990, there has been a trend for Queensland fire seasons to start earlier and persist longer. This was the case last fire season, which saw record forest fire danger indices in August 2018 and February and March 2019. August 2019 has seen this trend continue, with Severe Fire Danger and successive days of Very High Fire Danger.

NEW SOUTH WALES

Weather conditions have been exceptionally dry across NSW leading into the 2019/20 fire season. Much of central and northern NSW has experienced very much below average rainfall during the last three months, with a small percentage of areas experiencing driest on record conditions.

Long-term rainfall deficiencies, record-low for some areas in the north of the state, have severely impacted on water resources. With limited water availability, fire agencies in NSW are having to plan for firefighting tactics that minimise the use of water.

At the beginning of August, the NSW Department of Primary Industries mapped nearly all of NSW into one of three drought categories, with approximately 55 per cent of the state drought affected, 23 per cent experiencing drought, and 17 per cent experiencing intense drought.

Widespread significant soil moisture deficit has resulted in an early start to the fire danger period for many local government areas in NSW. Windy conditions in August have again resulted in many significant bushfires in forested areas north of the Hunter Valley.

With the short to medium-range climate outlooks favouring warmer and drier than average conditions across much of the state, there is significant concern for the potential of an above normal fire season in forested areas on and east of the Great Dividing Range.

Reports of grassland fuel conditions west of the Divide indicate that whilst grassy vegetation is cured, it is below average in quantity or load. With the chances of above median rainfall west of the Divide below 50 per cent to well below 50 per cent in the next three months, the balance of this situation has resulted in an assessment of normal fire potential for these areas. It should be noted that while grass load is reduced and therefore the potential intensity of grass fires may be reduced, highly cured grass creates the potential for grass fire to spread rapidly.

ACT

The ACT has received less than average rainfall over the last two years, leading to a persistent and high level of drought. The lowland forests are dry, while highland forests are relatively moist. This indicates that fuel flammability in the lowland forests could remain high, creating risks early in the fire season. The dry conditions and grazing by farm stock and wildlife have led to lower levels of grass growth, resulting in reduced grass fire risk. The outlook indicates a potential for the highland forests to dry out, however this could be delayed by the occurrence of summer rain. Heatwaves and dust storms may make bushfire detection and suppression more challenging at times during the season.

The overall bushfire risk for the ACT is above normal. Community members should continue to prepare for the fire season by taking actions to reduce the bushfire risks around and within their property, and to review their bushfire survival plans.

VICTORIA

Potential for above normal bushfire activity continues across the coastal and foothill forests of East Gippsland, extending into West Gippsland and the Great Dividing Range. These areas are now experiencing their third consecutive year of significant rainfall deficit, with severe levels of underlying dryness persisting in soils
and heavy forest fuels, along with higher abundance of dead fuel components and higher flammability of live vegetation.

Across the rest of Victoria, mostly normal bushfire activity is expected, however there is likely to be increased growth rates in pasture and croplands in the west due to winter rain. There is uncertainty around the effect of the Indian Ocean Dipole and warm/dry outlook, with some risk that ash forests in the central highlands and Otways may dry out at faster rates and become more flammable than normal during summer.

TASMANIA

For the early part of Tasmania's fire season, most of the state has normal fire potential. The western half of the state is wet, but the east is drier than normal, especially between the Forestier Peninsula and Scamander. This eastern dry area has above normal fire potential. Without significant rain in the coming months, this area will expand. As in recent years, increased fire activity is likely in this dry strip before December and will require considerable response efforts. Eastern peat soils will be susceptible to fire and will burn to depth, with traditionally wet or damp gullies already dry.

The fire season in the remainder of the state will commence more normally, in late spring or early summer, and provide good conditions for planned burning.

SOUTH AUSTRALIA

Average to below average rainfall has occurred across South Australia, with some areas experiencing persistent dry conditions since the start of 2018. In areas of ongoing dry conditions, grass fuel growth is either average, to well below average, which creates the likelihood of normal fire potential in these areas. This level of fire potential also continues in central and southern parts of South Australia, where average rainfall has occurred.

The Bureau of Meteorology's El Niño watch is currently neutral and the Indian Ocean Dipole is forecast to be positive. Similar forecasts have resulted in drier and warmer than average conditions in the lead up to, and throughout, South Australia's fire season. The dry spring forecast may result in an earlier start to the fire season in parts of South Australia.

The Mount Lofty Ranges have recorded almost average rainfall, which has reset the Soil Dryness Index to zero. However, late winter rainfall may promote increased vegetation growth before summer, and could increase the available bushfire fuels during the fire season. Forecast conditions maintain the potential for bushfire across the populated areas of the Mount Lofty Ranges.

Parts of the Lower Eyre Peninsula have received good rainfall, resulting in a bumper cropping season and higher than normal grass used, these areas have above normal fire potential. Kangaroo Island also has above normal fire potential, with a combination of drier than average, and wetter than average conditions (depending on the vegetation type) across the island. These conditions may result in above average fuel loads in parts, and drier than average vegetation in others, especially in areas of forested and scrub vegetation.

The prolonged dry conditions across much of South Australia is also likely to create increased occurrences of raised dust during the windy conditions that often accompany high fire risk days. The dust may affect the operational capabilities of aerial firefighting assets and limit their effectiveness. Fire managers will carefully monitor this issue during the fire season, noting that without rainfall, dust suppression is impossible on the scale required.

There are currently no forecasts indicating any potential for above average rainfall during spring and summer, which may prolong the fire season across parts of South Australia. Significant bushfires have occurred in similar conditions, and even areas of normal fire potential can expect to experience dangerous bushfires as per a normal South Australian fire season.

WESTERN AUSTRALIA

Rainfall deficiencies have persisted across most of the south west of Western Australia, with this area experiencing its driest start to the year, followed by the seventh-driest autumn on record. In addition, drier and warmer than average conditions are forecast through to October, which will increase soil moisture deficits and stress in woody vegetation. These conditions have resulted in above normal fire potential for parts of the Swan Coastal Plain, Avon Wheatbelt, Jarrah Forest, Warren, Esperance Plains and Mallee regions. In parts of the Nullarbor, higher than normal fuel loads will contribute to above normal potential.

Above normal fire potential is also expected for coastal areas of the Pilbara which experienced heavy rainfall in association with Severe Tropical Cyclone Veronica in March 2019. This rainfall promoted good growth of soft grass and spinifex, as well as delaying curing compared to the rest of the region. As conditions dry out, greater continuity and loading of grassy fuels will increase the fire potential in parts of the Pilbara affected by Veronica.

NORTHERN TERRITORY

The late and weak monsoon activity for the 2018/19 wet season has led to dry conditions, with the Top End experiencing the driest wet season since 1992. Similarly, large areas of central Australia have received below average rainfall over the last 12 months.

This has led to reduced growth of vegetation, but despite this, the Northern Territory is expecting normal bushfire potential to continue for the remainder of the fire season, due to a shift in the timing of fire management activities. In the Top End, both mitigation activities and bushfires occurred two months earlier than normal, with large, long duration, early season fires that would normally be pulled up by temporary watercourses taking place. With a late onset to the 2019/20 wet season expected, dry conditions are likely to be extended.

Hazard Notes are prepared from available research at the time of publication to encourage discussion and debate. The contents of Hazard Notes do not necessarily represent the views, policies, practises or positions of any of the individual agencies or organisations who are stakeholders of the Bushfire and Natural Hazards CRC.

All material in this document, except as identified below, is licensed under the Creative Commons Attribution-Non-Commercial 4.0 International Licence. Material not licensed under the Creative Commons licence:
- Bushfire and Natural Hazards CRC logo
- All photographs.
All rights are reserved in content not licenced under the Creative Commons licence. Permission must be sought from the copyright owner to use this material.

The Bushfire and Natural Hazards CRC is a national research centre funded by the Australian Government Cooperative Research Centre Program. It was formed in 2013 for an eight-year program to undertake end-user focused research for Australia and New Zealand.
The 2019/20 fire season is well underway with multiple large bushfires occurring since the release of the previous Outlook in August. Queensland and New South Wales in particular have experienced severe fires, but all states have had challenging fire conditions. Catastrophic fire danger ratings have been issued in NSW, Western Australia, South Australia and Victoria, and there has been loss of human lives and animals, and damage to property and the environment.

2019 has seen the second warmest January to November period on record for Australia, 0.01°C behind 2013, coupled with the second-driest on record for the same period. Looking forward into the Outlook period, it is these conditions that lead to the continued above normal fire potential across most states and territories into 2020. A long and challenging fire season is expected, and all states and the ACT are warning of increased fire danger as the fire season progresses.

This December 2019 Australian Seasonal Bushfire Outlook covers all states and territories through summer 2019/20. It provides information to assist fire authorities in making strategic decisions such as resource planning and prescribed fire management to reduce the negative impacts of bushfire.

Bushfire potential depends on many factors. The volume, location and timing of rainfall are critically important when estimating vegetation (fuel) volumes and growth. The climate outlook for the next few months is also a crucial factor.

The Australian Seasonal Bushfire Outlook: December 2019 is developed by the Bushfire and Natural Hazards CRC, AFAC, the Bureau of Meteorology, Queensland Fire and Emergency Services, the New South Wales Rural Fire Service, ACT Emergency Services Agency, ACT Parks and Conservation Service, Country Fire Authority, Department of Environment, Land, Water and Planning Victoria, Tasmania Fire Service, Country Fire Service, Department of Fire and Emergency Services and Department of Biodiversity, Conservation and Attractions Western Australia, and Bushfires NT.

Seasonal fire conditions are a function of fuel amount and state, and seasonal weather conditions. The year to date has been unusually warm and dry for large parts of Australia (Figures 2 and 3, page 2), with many records set.

For January to November, rainfall has been below to very much below average over much of Australia. It has been the second-driest January to November on record for Australia (rainfall records begin in 1900), and the driest since the peak of the Federation Drought in 1902. It has been especially dry over the southern half of Australia (south of the Northern Territory/South Australia border), which had the driest January to November period on record. At a state level, rainfall deficiencies affect large areas, especially south eastern Queensland through eastern New South Wales, the ACT, South Australia, eastern Tasmania, south western WA, north western Australia and parts of eastern Victoria on a range of timescales. Areas of above average rainfall are largely confined to central Queensland, extending to the coast where heavy rainfall occurred early in the year.

Some areas, such as NSW extending into south eastern Queensland, are into their third year of dry conditions. It will take a prolonged period of above average rainfall to remove the deficiencies which are in place, meaning that general landscape dryness is likely to persist for many areas for some months. The combination of severe dry conditions over the long and short-term, coupled with high temperatures and record low humidity have contributed to the dangerous start to the southern fire season.

The warming trend means that above average temperatures now tend to occur in most years, and 2019 has followed this pattern. Temperatures in Australia for January to November have been the second warmest on record (1.37 °C above the 1961–1990 average, behind 1.38 °C for the same period).
Climate, reflecting reduced and/or less reliable rainfall across long fetches of land, this air becomes dry and hot with reduced rainfall. While both climate drivers are likely to decay by mid-summer, their legacy will take some time to fade. The positive Indian Ocean Dipole and the dry conditions experienced in winter and spring are known to be associated with a more severe fire season for south east Australia in the subsequent summer.

The rainfall outlook for January to March (Figure 4, page 3) suggests that rainfall is likely to be above average in western areas, while eastern Australia generally sees odds which are close to 50:50. The decay of the Indian Ocean Dipole means that probability swings are less strong than earlier in the season for eastern areas, suggesting that some relief in dry conditions is possible in the coming months.

Historical outlook accuracy for January to March is moderate across western and southern mainland Australia, as well as the northern NT and northern Queensland. Elsewhere, accuracy is low to very low.

The outlook for January to March maximum temperature outlook (Figure 5, page 3) favours above average daytime temperatures for nearly all of Australia, exceeding 80 per cent across much of the eastern half of the country. The outlook for minimum temperatures (not shown) also strongly favours above average temperatures across much of Australia, excluding the south east. Historical accuracy for January to March maximum temperatures is moderate to high across most of Australia, but low surrounding the Great Australian Bight, and to the south of the Gulf of Carpentaria. Minimum temperature accuracy is moderate to high for most of Australia, except the central NT and central to western parts of Queensland, where accuracy is low to very low.

Updates to climate forecasts, including forecasts of monthly, fortnightly and weekly
outlooks and the outlook for the Indian Ocean Dipole and the El Niño-Southern Oscillation will continue to be published at www.bom.gov.au/climate/ahead

REGIONAL SUMMARIES

QUEENSLAND
Following a record fire season in Queensland in 2018/2019, the 2019/2020 fire season started in late August. Since then Queensland has seen several intense pulses of fire weather affecting an already chronically dry and hotter landscape, mainly in the south east - from Rockhampton to the NSW border and extending inland to around St George.

As this season has progressed, the drought has intensified in many areas, particularly in the south east, with the Main/Border Ranges area, and the area bounded by Warwick, Toowoomba and the Lockyer Valley standing out. These areas are showing the lowest one per cent on record for the monthly relative root zone soil moisture deficit for November. The long-term, and recently more intense, drought has seen significant additional surface fuels (vegetation) added in forest areas due to stressed trees dropping significant amounts of branches and leaves over winter and spring. As a result, these areas are seeing fires continuing to carry more widely and with more intensity than usual, even when humidity increases overnight.

Normally wet and fire-resistant rainforest and wet forests are becoming available and with this phenomenon now extending into parts of West Gippsland, Great Dividing Range, and into the central Goldfields. This activity continues across the coastal and foothill forests of East Gippsland, extending into parts of West Gippsland, Great Dividing Range, and into the central Goldfields. This is due to the above average temperatures and continuation of drying trends observed in these regions over the last three months.

NEW SOUTH WALES
The start to this fire season has been unprecedented for New South Wales, with large fires occurring across the state. Since July, more than 8,000 bush and grass fires have occurred, burning over 2.8 million hectares. Six human lives have been lost, more than 700 homes destroyed and more than 1,600 other buildings. Resources have been drawn from around NSW, other states and overseas.

The overall bushfire risk for the ACT is above normal. Community members should continue to prepare for fire by taking actions to reduce the bushfire risks around and within their property and to review their bushfire survival plans.

VICTORIA
The potential for above normal bushfire activity continues across the coastal and foothill forests of East Gippsland, extending into parts of West Gippsland, Great Dividing Range, and into the central Goldfields. This is due to the above average temperatures and continuation of drying trends observed in these regions over the last three months,
coupled with three years of significant rainfall deficit across much of East Gippsland and across the Divide. During spring, cold fronts generated rainfall in southern Victoria, however much of inland Victoria received insufficient rainfall. In these inland areas soil moisture is lower compared to the long-term average. This is likely to cause moisture stress on live vegetation thereby increasing the quantity of dead fuel components and result in higher flammability in live vegetation. Wet forests (such as the Central Highlands and Otway Ranges) are generally close to average conditions for this time of year.

Across the rest of Victoria, mostly normal conditions are expected. In the west of the state, grassland fuel conditions indicate that curing is average for this time of year, and that there is average to above average quantities of grass and crop loads. When grasses and crops are close to or fully cured, there is potential in the coming months for fire behaviour that can rapidly escalate under elevated fire weather conditions.

TASMANIA

Tasmania experienced an early start to the fire season with serious fires in the north and south of the state in October. While there was easing in the fire weather during November, by the end of the month a very strong continuous westerly airstream coincided with a number of ignitions in the north and east, resulting in a continuing campaign fire west of Swansea in the Eastern Tiers. The weather conditions were very unusual and effective fire suppression was impossible during the conditions experienced.

The area of above normal fire potential in eastern Tasmania continues to expand, while the west of Tasmania is receiving good rains which are replenishing water tables and the moisture in organic soils. The area of above normal fire potential includes the far north east, the Fingal and Royal George valleys and the Midlands, the east coast from St Helens to Tasman Island and the lower Derwent Valley. The remainder of the state has normal fire potential, noting the dominance of fuels in the west for which soil moisture is less important than in forests.

SOUTH AUSTRALIA

Minimal rainfall, and predominately warmer than average temperatures have persisted across South Australia through spring. As a result, the fire danger season was brought forward, with most areas commencing two weeks early.

The early start to the fire danger season has coincided with a number of total fire bans, and several significant fires have occurred. The Eyre Peninsula experienced Catastrophic fire danger conditions twice in November alone.

On 20 November Catastrophic fire danger was predicted for seven of the 15 weather districts across the state. A total fire ban was declared statewide, with Catastrophic fire danger recorded simultaneously across half the state. Temperature records were broken and 45 new bush and grass fires occurred. Eleven homes were lost on the Yorke Peninsula.

The current three month outlook for January to March 2020 indicates that South Australia is highly likely to experience above average day and night time temperatures, and there is little chance of above average rainfall during this period. This would indicate that the current dry conditions, which have supported major fires, are likely to continue throughout summer.

Based on the current climate outlook, and observed fire behaviour, parts of the Lower Eyre Peninsula and Kangaroo Island continue to have above normal fire potential. Forecast and observed conditions have also demonstrated the rest of South Australia maintains the potential for significant bushfires, including in the populated areas of the Mount Lofty Ranges.

The prolonged dry conditions are also likely to create increased occurrences of raised dust during the windy conditions that often accompany high fire risk days. The dust may affect the operational capabilities of aerial firefighting assets and limit their effectiveness. Fire managers will carefully monitor this issue, noting that without rainfall, dust suppression is impossible on the scale required.

The fire danger season may be prolonged across parts of South Australia. Significant bushfires have occurred in similar conditions, and even areas of normal fire potential can expect to experience dangerous bushfires as per a normal South Australian fire season.

WESTERN AUSTRALIA

With the positive Indian Ocean Dipole delaying the onset of the monsoon, high temperatures and dry lightning in the northern part of Western Australia have resulted in heightened bushfire risk for the Kimberley until rain arrives. Above normal fire potential continues for parts of the south west, south coast, Nullarbor and Pilbara.

NORTHERN TERRITORY

The Top End’s bushfire season started two months earlier in 2019 due to the preceding poor wet season. Large, long duration fires occurring from early in the season that typically would have pulled up in temporary watercourses.

The bushfire risk remains across the Top End in areas of the Gregory and Carpentaria Regions, with localised and patchy rainfall occurring in coastal areas. This risk will continue until the effects of the monsoon occur inland.

In central Australia, below average rainfall over the last 12 months has led to reduced growth of vegetation. Due to these dry conditions, mitigation programs conducted by pastoral enterprises has reduced as the need for retention of standing vegetation increases for cattle production. Despite this, the Northern Territory is expecting normal bushfire potential to continue for the remainder of the central Australian fire season. However, significant bushfires have occurred in similar conditions, and even areas of normal fire potential can expect to experience dangerous bushfires. This will be particularly relevant in areas that surround unmanaged land with remanent vegetation growth, particularly remote communities and outstations.

The Bushfire and Natural Hazards CRC is a national research centre funded by the Australian Government Cooperative Research Centre Program. It was formed in 2013 for an eight-year program to undertake end-user focused research for Australia and New Zealand.

Hazard Notes are prepared from available research at the time of publication to encourage discussion and debate. The contents of Hazard Notes do not necessarily represent the views, policies, practises or positions of any of the individual agencies or organisations who are stakeholders of the Bushfire and Natural Hazards CRC.

All material in this document, except as identified below, is licensed under the Creative Commons Attribution-Non-Commercial 4.0 International Licence. Material not licensed under the Creative Commons licence:

- Bushfire and Natural Hazards CRC logo
- All photographs
- All rights are reserved in content not licenced under the Creative Commons licence. Permission must be sought from the copyright owner to use this material.

www.bnhcrc.com.au