AIM

This review aims to compare and document the international research on driving into floodwater; identify risk factors; document theoretical models used to explain people’s risky behaviours; and identify intervention strategies utilised or proposed.

METHOD

The review utilised a systematic literature review methodology. This is different to a standard literature review as it employs rigorous methods to identify, appraise and synthesise the data. A systematic review enables a complete review of all available literature and is able to be replicated by others. A systematic review protocol was prepared and registered in PROSPERO. The protocol states the objectives, questions, inclusion and exclusion criteria, and intensive search strategies. Search terms included ‘flood’, ‘risk’, ‘drowning’, ‘driving’ and ‘vehicles’, and articles published before 31 August 2017 were included. A total of 968 titles, 430 abstracts and 52 full texts were reviewed. Of these, 24 peer-reviewed articles met the selection criteria.

RISK FACTORS IDENTIFIED

Risk factors identified in the 24 studies were classified into seven categories:

Reasons for driving into floodwater:
- Continuing intended travel, traveling home, commuting to or from work or an appointment, visiting, evacuating, to rescue someone, to recover something.

Demographic factors:
- Gender: Majority of the fatalities are males.
- Age: Those <29, although two studies identified higher ages. USA, 20-69 (Kellar and Schmidlin 2012). Greece, 40-69 (Diakakis and Deligiannakis, 2013).

Situational factors:
- Road type and characteristics: the absence of barricades, absence of lighting, dipping road grade, lack of curb and guttering, and the inability of motorists to easily turn around (Gissing et al., 2017).
- Catchment: small upstream (increased rate of rise) (Gissing et al., 2017).
- Type of vehicle: increasing numbers of 4WD and SUV.
- Road familiarity and distance to travel: familiarity may embolden, majority of fatalities occurred within 20 km of the individual’s home (Haynes et al., 2017), however one study also identified that those on a long journey were most likely to incorrectly judge levels of risk (Ruin et al., 2007).

Environmental factors:
- Time of day: most fatalities occurred at night, dawn or dusk when visibility is poor (Haynes et al., 2017).
- Seasons: in Australia, a seasonal trend is identified associated with the wet season and summer storms (Haynes et al., 2017).

Flood risk indicators:
- The influence of road signs, height or water depth indicators, barricades, and warning and education campaigns have not been well evaluated (Haynes et al., 2017).

Social factors:
- Avoiding isolation and being stranded, behaviour of other drivers; and security of others being present if rescue was needed (Pearson and Hamilton, 2014).
- Influence of others: pressure from other drivers; encouragement by passengers. In an Australian study drivers were alone in the vehicle in 58% of cases, the remaining 42% of drivers drove into floodwaters with passengers in the vehicle (Peden et al., 2017).

Individual factors:
- Personal beliefs, past experience, self-efficacy, confidence, risk perceptions and drug/alcohol use
THEORETICAL MODELS USED

The only model used to explain risky driving behaviours in the context of flooded waterways is the Theory of Planned Behaviour (TPB) (Pearson & Hamilton, 2014; Hamilton et al., 2016). The original TPB model by Ajzen (1991) considers:

- Attitude: overall positive/negative evaluations of performing the behaviour
- Subjective Norm: perceived social pressure from important others
- Perceived Behavioural Control: perceived amount of control over performance

To these, a measure of ‘willingness’ to drive into floodwater from the prototype willingness model (PWM), perceptions of risk from the Health Belief Model (HBM), and past behaviour have been added (Pearson & Hamilton, 2014; Hamilton et al., 2016).

INTERVENTION STRATEGIES UTILISED OR PROPOSED

Based on this systematic review, we propose an integrated systems approach (Figure 1) to address the seven risk factors. Three major intervention strategies are used together:

- Educational initiatives for awareness building;
- Structural developments through advanced technology and equipment for improving decision accuracy; and
- Law and regulation activities.

Monitoring and evaluation of the three strategies should occur at five levels: individuals (public, workers, employees); communities and local government (e.g. local authorities, council, community groups and clubs); organisations (e.g. corporates, insurance companies, financial institutions); state (e.g. police, state emergency services, hospitals); and national (e.g. government ministries, policy makers, implementers, and planners).
REFERENCES AND FURTHER READING


KEY PAPERS PUBLISHED SINCE THE REVIEW:


This study designed and evaluated a video infographic that highlights the dangers of driving through floodwaters. The study identified that the infographic was effective in reducing positive attitudes and social pressure to drive into floodwaters immediately after watching the video.


This study utilised the theory of planned behaviour to explore drivers’ experiences and beliefs with respect to driving through floodwater. Gender (females), attitude, subjective norm, and perceived behavioural control were identified as the most important factors in terms of making a decision not to drive through floodwater.

FLOOD RISK COMMUNICATION

This research is funded by the Bushfire and Natural Hazards CRC and is led by Dr Mel Taylor and Dr Katharine Haynes. This project will develop an understanding of the motivations, beliefs, decision making processes and information needs of at-risk groups for flood fatalities, specifically those who drive or recreate in floodwater.

For more information, please see: www.bnhcrc.com.au/research/floodriskcomms

CONTACT DETAILS

Macquarie University NSW 2109 Australia
Mel Taylor: mel.taylor@mq.edu.au
Katharine Haynes: katharine.haynes@mq.edu.au

ABN 90 962 801 237
CRICOS Provider 00002J