FIRE SPREAD PREDICTION ACROSS FUEL TYPES
BY PHYSICS-BASED MODELLING
Research Advisory Forum

Khalid Moinuddin¹, Duncan Sutherland¹,², Nazmul Khan¹, Andrew Ooi³, Jimmy Philip³

1. CESARE, Victoria University, Melbourne
2. PEMS, UNSW Canberra
3. Mechanical Engineering, University of Melbourne, Parkville
PROGRESS REPORT

1) Grassfires simulation
 a) Published online Int. J. Wildland Fire

2) Simulation of flow through vertically heterogeneous canopies
 a) Presented at AFAC 2018

3) Validation of a firebrand transport model
 a) Published in Fire Safety Journal 2017
 b) Further progress subject of breakout session

4) Initialise wind fields for physics-based simulations
 a) To be presented at AFMC 2018

5) Assess ability for surface-to-crown fire transition
 a) A paper submitted to Mathematics & Computers in Simulation

6) Investigate aspects of confined plumes
GRASSFIRE RATE OF SPREAD (ROS) – VALIDATION C064
CHENEY ET AL (1993)
GRASSFIRE ROS VS WIND SPEED – COMPARISON WITH EMPIRICAL MODEL
GRASSFIRE ROS–EFFECT OF GRASSHEIGHT

Dashed: Boundary layer mode; Solid: Plume mode

Plume dominated fire

\[\gamma = 0.2946x^{0.801} \]

\[R^2 = 0.9457 \]
GRASSFIRE- EFFECT OF SLOPE

RoS doubles for every ten degrees of slope is not supported

- More upslope cases will be simulated; Same number of downslope cases
- Currently modelling heat load on a house from an approaching fire (AS3959)
- Patchy grass – soon to start
EXTENSION OF GRASSFIRE

Cruz et al (2018) the effect of fuel load (weight) and moisture content
- for Fuel load, primarily bulk density variation, not grass height variation
- Different ignition protocol

\[
R = \begin{cases}
(0.054 + 0.269 U_{10})\Phi(M)\Phi(C)\Phi(W), & U_{10} \leq 5 \text{ km h}^{-1} \\
(1.4 + 0.838(U_{10} - 5)^{0.844})\Phi(M)\Phi(C)\Phi(W), & U_{10} > 5 \text{ km h}^{-1}
\end{cases}
\]

Natural

\[
M_C = \frac{97.7 + 4.06H}{T + 6} - 0.00854H + \frac{3000}{C} - 30
\]

Our extension work:
- Fuel load
- Humidity (proxy for moisture)
- Ignition protocol
EXTENSION OF GRASSFIRE

\[MC = \frac{97.7 + 4.06H}{T+6} - 0.00854H + \frac{3000}{C} - 30 \]

<table>
<thead>
<tr>
<th>(U_{10}) (m/s)</th>
<th>Grass height (m)</th>
<th>Bulk density</th>
<th>Moisture(%) ((H))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.14</td>
<td>3-4 for each grass height</td>
<td>3.55 (10)</td>
</tr>
<tr>
<td>6.5</td>
<td>0.175</td>
<td></td>
<td>4.5 (20)</td>
</tr>
<tr>
<td>7.5</td>
<td>0.21</td>
<td></td>
<td>6.3 (40)</td>
</tr>
<tr>
<td>8.5</td>
<td>0.315</td>
<td></td>
<td>7.5 (50)</td>
</tr>
<tr>
<td>10.5</td>
<td>0.475</td>
<td></td>
<td>10 (75)</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td>12.4 (100)</td>
</tr>
</tbody>
</table>

Use of non-dimensional parameter to determine number of simulations

Main aim to understand boundary layer / plume mode threshold, sub aim correlations
WIND REDUCTION FACTOR

Works done and in progress

- One shaped LAD (does not vary horizontally), variation of canopy length (first only wind flow, then with surface fire)
- LAD varies horizontally
- Various vertical shaped LAD

Utilization
- Recruiting Research Assistant for apps development for Fire Behaviour Analysts
Leaf area index (LAI) and Fraction of photosynthetically active radiation (fPAR) - MODIS, MOD15A2(c5) mosaic

LAI defines the number of equivalent layers of leaves relative to a unit of ground area, while fPAR measures the proportion of available radiation in the photosynthetically active wavelengths that is absorbed by a canopy.

KEYWORDS: MODIS, LPDAAC, vegetation

DATA LICENCE & ACCESS RIGHTS: CC-BY 3.0

SPATIAL COVERAGE & RESOLUTION: 1000 m resolution; Australia

TEMPORAL COVERAGE & RESOLUTION: 8 day composite; 2000 to ongoing

PRODUCTION STATUS: Updated as available from USGS

FIREBRAND DRAGON
BURNING PARTICLE LANDING SIMULATION
FIREBRAND DISTRIBUTION MODELLING

Non-burning particle

Burning particle

Cuboid particles - Reynolds No $\sim 10^5$
LARGE SCALE FIREBRAND SPOTTING

Diagram showing a large-scale firebrand spotting model with a three-dimensional box indicating dimensions X (m), Y (m), and Z (m). The box includes a section labeled 'Canopy.' A diagram of a forest fire with wind direction indicated and firebrands dispersed under the canopy.
SPOTTING FIREBRAND - DIFFERENT SHAPE

Disk shape: 32mm x 32mm x 2mm

Cylindrical shape: Dia=3mm, L=18mm
EXTENSION OF FIREBRAND MODELLING

1) Statistical model for operational models, such as SPARK
2) Inclusion of firebrand risk assessment in AS3959
FUTURE DIRECTIONS/ BENEFITS

• Better understanding of different mode of grassfire and better RoS correlations
 • dependence on fuel load, humidity, ignition protocol, slope, patchyness

• Assessment of heat and firebrand loading on structures & appraisal of AS3959

• Development of statistical models for firebrand landing for operational models, such as SPARK

• Better operational wind reduction factor and sub-canopy wind model – utilization

• Potential risk modelling
 • Estimation of fire breaks, prescribed burning planning etc
QUESTIONS?
WIND FLOW THROUGH VERTICALLY HETEROGENEOUS CANOPIES

Different values of A, B, μ, and σ^2

$$\text{LAD} = A \exp \left(-\frac{(z - \mu)^2}{\sigma^2} \right) + B$$

sub-canopy u-velocity model of Inoue (1963) was improved by including a new parameter
WIND FLOW THROUGH VERTICALLY HETEROGENEOUS CANOPIES

Results

Mean u-velocity profiles

Mean u-velocity profiles normalised by the canopy top value. In (a) \(\sigma^2=0.325 \) is held constant and \(\mu=0.00 \) (red), 0.233 (green), 0.467 (blue), and 0.700 (black). In (b) \(\mu=0.70 \) is constant and \(\sigma^2=0.325 \) (black – the same curve as in (a)), 0.233 (blue), 0.142 (green), and 0.050 (red).
Improved sub canopy modelling

Modelled and simulated sub-canopy u –velocity profiles. (a and b) contain the modelled profiles using the simulated β (triangle symbols) and the observed β (circle symbol) of Harman and Finnigan [2007] and a constant mixing length based on LAI. The modelled profiles in (c and d) use the simulated β and $dLAI$.