The Savanna and Rangelands Monitoring and Evaluation Reporting Framework (SMERF)

Research advisory forum / 2018

Prof Jeremy Russell-Smith / DCBR - CDU Dr Andrew Edwards / DCBR - CDU Patrice Weber / DCBR - CDU

Research Institute for Environment and Livelihoods Charles Darwin University

Business Cooperative Research Centres Programme

Outline

- The Savannas and Rangelands
- Savanna Burning
- Monitoring and Evaluation Reporting
- Current Reporting
- North Australia Fire Information
- The calculation of Metrics
- Ecological indicators
- Case Study: Queensland Parks & Wildlife

Savannas & Rangelands

75% of the continent2 % of the population

Savannas Burn

It's been a BIG Problem!!

- 3% of Australia's Greenhouse Gas Emissions
- 97% of the annual area burnt

Co-benefits

- Social
- Cultural
- Economic
- Environmental

Savanna Burning

Setting a Gold Standard

\$40 million p.a. from the Carbon economy (compared to \$6M = tourism and \$21M = pastoral)

North Australia Fire Information

Current M&E Reporting and NAFI mapping

Fire Metrics

- Annual fire mapping layers
- Geographical Information Systems

Metric

Total Area Burnt

Area Burnt by Late Dry Season (Wild) Fires

Fire Frequency

Frequency of Late Dry Season (Wild) Fires

Area of Longer Unburnt Vegetation

Minimum Inter-Fire Interval

Patchiness

Area/Perimeter Ratio

Metric	Description	Objective
Total Area Burnt	A calculation of the proportion of the project area affected by	The fire affected proportion of the project area should decrease.
	fire.	
Area Burnt by late Dry Season	The proportion of the project area affected by late dry season	The dry season (~April to October) is characterised by little or no rain. Wildfires dominate
(Wild) Fires	fire.	in the latter half of the dry season (typically post-July) ^[37] , causing massive destruction to
		biodiversity in most but not all habitats. The area affected by wild fires should decrease.
Fire Frequency	The calculation of the proportion of the number of times an	The higher the proportion of high fire frequency the worse the effect on biodiversity.
	area has been burnt in a period.	Mean fire frequency should decrease.
Frequency of Late Dry Season	The calculation of the proportion of the number of late dry	The higher the proportion of higher frequencies of late dry season (wild) fires the worse
(Wild) Fires	season fires in an area over a period.	the effect on biodiversity. Mean LDS fire frequency should decrease.
Area of longer unburnt	An overlay of the previous years of burnt area mapping, back	Fire frequency in the tropical savannas has been high in past decades. Improved fire
vegetation	through time, to calculate the area and age of previously burnt	management should mean an increase in the area of longer unburnt vegetation (> 3
	areas.	years, > 5 years, etc) in most habitats.
Minimum inter-fire interval	An intersection of the fire layers to determine the minimum	If the interval between fires in an area < the minimum interval required for obligate
	time (years) between fires.	seeder plant species to grow from seed, mature and set seed then one can expect local
		extinctions.
Patchiness	Various metrics have been calculated that describe the	These mean index value should increase under improved fire management. The
	landscape pyro-diversity:	heterogeneity indices are averaged over five year periods to indicate the longer-term
	1. Heterogeneity indices ^[38] ;	trend. The mean burnt to unburnt patch distance index should improve indicating fire
	2. Mean distance from burnt to unburnt patches ^[39] .	patch sizes are decreasing.
Area/Perimeter Ratio	The ratio of the average perimeter / average area burnt per	The ratio is relative, indicating an improvement in patch size and shape, that is, longer
	patch	narrower patches relate to more strategic fires as compared to large patches of wildfire.

Landscape unit	Model of functional group/species	Fire metrics
Savanna woodlands	Sapling density (All species)	Fire frequency
	Sapling density (Non-Eucalypts)	Frequency of low severity fires
	Sapling density (Callitris intratropica)	Time since burnt severely
	Adult stem density (Callitris intratropica)	Frequency of severe and very severe fires
Savanna and Heathland	Number of shrub taxa (obligate seeders)	Minimum inter-fire interval
	Number of long maturing (> 3 yrs) shrub taxa (obligate seeders)	Frequency of early dry season fires
	Shrub density (resprouters)	Frequency of severe and very severe fires

Fire metrics as Indicators of ecological change

Derived from empirical data - generally, regionally specific

Comparison to 2000-13 baseline:

Total area burnt 2014-16 = FAIR (< 10% improvement) Total area burnt 2017 = POOR (< 10% increase) Area burnt late 2014-2016 = GOOD (> 10% improvement) Area burnt late 2017 = VERY GOOD (> 25% improvement)

Example

Area Burnt

National Park	Area (km ²)
Rinyirru NP	5,439
Boodjamulla NP	3,753
Wuthathi NP	373
Jardine-heathlands NP	3,422

Queensland Parks & Wildlife

Case Study

End users' needs for NAFI (Bushfires NT)

- Hotspots, fire scars and fire history
 critical for daily operational use
- Been in use for 17 years
 with low tech users in mind
- NAFI's future uncertain
 - NT Gov. leading Business Case for stable funding
- Fire management has improved
 - there's now greater scrutiny from within the industry and the public
- Reporting functions in NAFI are currently limited
 e.g. We would like to measure the effectiveness of prescribed burning at reducing risk
- We need to be able to future proof
 - such as to be able to measure emerging risks: gamba grass and climate change, etc

