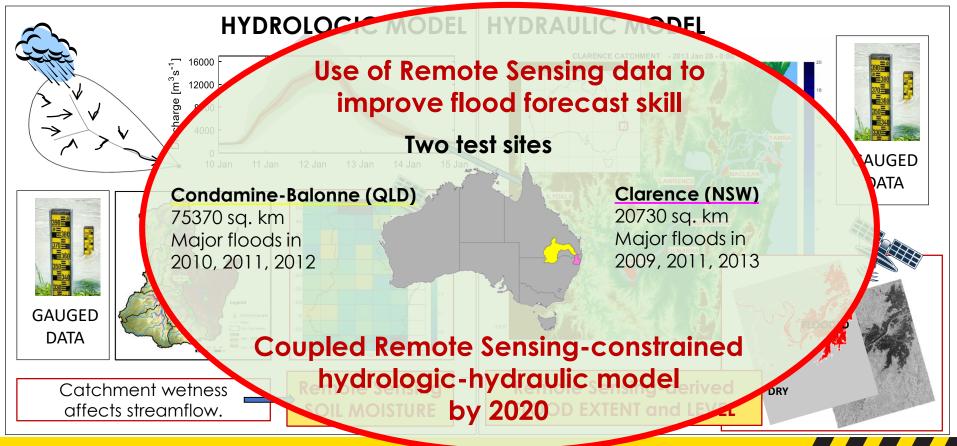


Improving flood forecast skill using Remote Sensing data

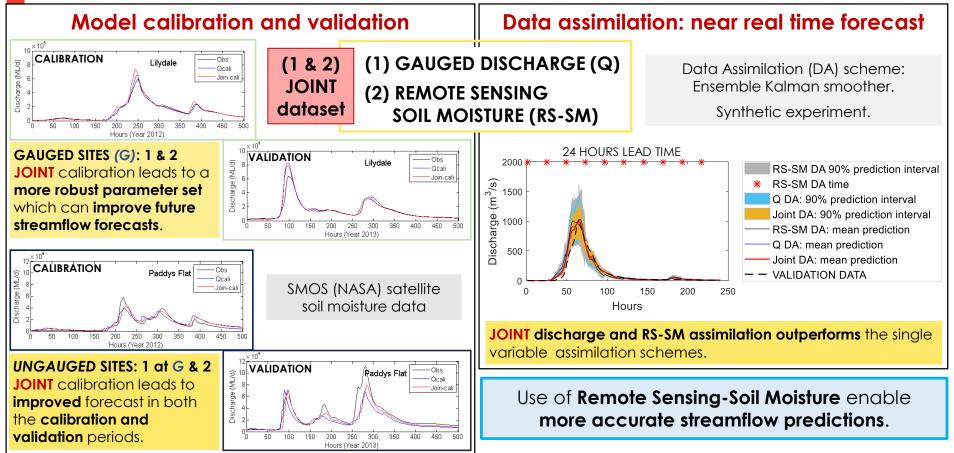
Research advisory forum / 2018

A.Prof. Valentijn Pauwels/ Monash University Prof. Jeffrey Walker/ Monash University Dr. Yuan Li/ Monash University Dr. Ashley Wright / Monash University Dr. Stefania Grimaldi / Monash University

Clarence river, 2013 February 2nd (NSW SES)

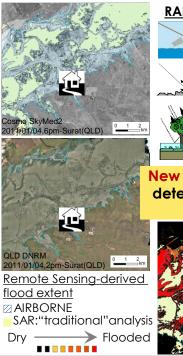


Business **Cooperative Research** Centres Programme



Rationale

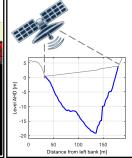
Accurate flood forecasts are essential for land, water, and emergency management.


Research findings: hydrologic model

Research findings: hydraulic model

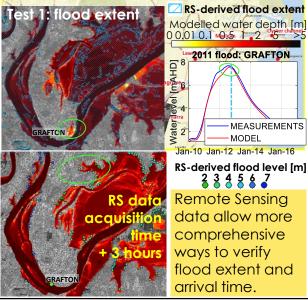
Remote Sensing data analysis

Synthetic Aperture Radar (SAR) are **active** systems that emit **microwave pulses** → **all time, all weather** (≠ optical data)


Model implementation

Information on **river bathymetry** is pivotal for floodplain inundation modelling.

1. Field measurements



2. Numerical experiment: a width varying rectangular shape is recommended.

Data parsimonious implementation method: Remote Sensing-derived river width combined with a few measurements of river depth at strategic locations.

Model verification

Use of **Remote Sensing-derived** river width, flood extent, and level enables **more accurate modelling of floodplain inundation dynamics**.

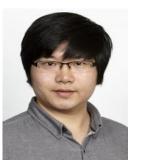
Algorithm for accurate flood detection.

Utilisation – technical details

	RESEARCH OUTCOMES	PRIMARY END-USER and HOW THIS RESEARCH OUTCOME COMPLEMENTS THE CURRENT CAPABILITIES	
In a nutshell	Detailed description		
IMPROVED STREAMFLOW MODELLING	Use of Remote Sensing Soil Moisture for calibration, validation, and real time constraint of hydrologic models.	Australian Bureau of Meteorology The Remote Sensing constrained hydrologic modelling capabilities will enhance the reliability and accuracy of probabilistic streamflow forecasts. The Remote Sensing constrained hydraulic model will provide the assessment of flood extent and enable more detailed information on the impact of floods. – Soori Sooriyakumaran, Chris Leahy	
IMPROVED INUNDATION EXTENT MODELLING	Use of Remote Sensing-derived river width , flood extent and level for implementation, calibration, and validation of hydraulic models .		
IMPROVED FLOOD FORECAST SKILL	Coupled hydrologic-hydraulic modelling chain constrained using Remote Sensing data.		
ALL WEATHER, ALL TIME FLOOD DETECTION	New algorithm for the detection of flooded vegetation using single SAR data.	Geoscience Australia Current flood extent detection capabilities are based on optical data (e.g. Water Observations from Space). Thanks to the use of SAR data, this research will enable flood detection under clouds, at night time, and under vegetation. – Norman Mueller, Fang Yuan.	

Utilisation potential

RESEARCH OUTCOME		A potential wider	Recommended research
In a nutshell	Spatial scale of application	community of users	developments
IMPROVED STREAMFLOW MODELLING	✓ Two test sites:	 State Emergency Services. 	Assimilation of Remote Sensing-derived flood extent/level for near real time constraint of hydraulic models.
IMPROVED INUNDATION EXTENT MODELLING	✓ ROADMAP for the use of Remote	✤ Councils.	≻ Flood risk assessment.
IMPROVED FLOOD FORECAST SKILL	Sensing data to improve flood forecast skill. → Potential application at the continental scale.	 Consulting companies. 	Analysis of flooding impacts on infrastructures (e.g. bridges, levees).
ALL WEATHER, ALL TIME FLOOD DETECTION	 ✓ Tested on a number of SAR images acquired by different sensors. → Potential application to future image acquisitions from new sensors (e.g. NOVASAR) 	 Irrigation and water management companies. 	 Coupling with tidal models. Integration within environmental and water management plans (e.g. wetlands conservation and irrigation plans).


RESEARCH TEAM

Valentijn.Pauwels@monash.edu

Jeff.Walker@monash.edu Yuar

Yuan.Li2@monash.edu

Ashley.Wright@monash.edu

Stefania.Grimaldi@monash.edu

Thanks for your kind attention!

Bureau of Meteorology

END USERS

