

Darwin Centre for Bushfire Research

Research Institute for Environment and Livelihoods

Charles Darwin University

Savanna Monitoring & Evaluation Reporting Framework

A suite of reporting tools:

- some automated;
 - some flexible.

Savanna Monitoring & Evaluation Reporting Framework

Based on the work of other Savanna Burning projects.

- Kakadu National Park, NT
- Kimberley Land Council, WA
- West Arnhem Fire Management Agreement, NT
 - Parks & Wildlife, WA

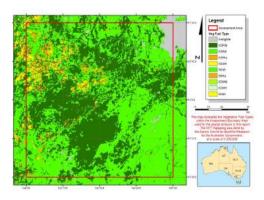
Savanna Monitoring & Evaluation Reporting Framework

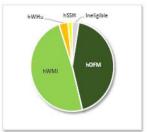
Based on a long series of consultations with stakeholders.

CHARLES DARWIN UNIVERSITY

Basic Metrics

Metric	Description	Objective
Total Area Burnt	A calculation of the proportion of the project	The fire affected proportion of the project area should
	area affected by fire.	decrease.
Area Burnt by	The proportion of the project area affected	The dry season (~April to October) is characterised by little or
late Dry Season	by late dry season fire.	no rain. Wildfires dominate in the latter half of the dry season
(Wild) Fires		(typically post-July), causing massive destruction to
		biodiversity in most but not all habitats. The area affected by
	T	wild fires should decrease.
Fire Frequency	The calculation of the proportion of the	The higher the proportion of high fire frequency the worse the
	number of times an area has been burnt in a	effect on biodiversity.
Francisco of	period.	Mean fire frequency should decrease.
Frequency of Late Dry Season	The calculation of the proportion of the number of late dry season fires in an area	The higher the proportion of higher frequencies of late dry season (wild) fires the worse the effect on biodiversity. Mean
(Wild) Fires	over a period.	LDS fire frequency should decrease.
Area of longer	An overlay of the previous years of burnt	Fire frequency in the tropical savannas has been high in past
unburnt	area mapping, back through time, to	decades. Improved fire management should mean an increase
vegetation	calculate the area and age of previously	in the area of longer unburnt vegetation (> 3 years, > 5 years,
	burnt areas.	etc) in most habitats.
Minimum inter-	An intersection of the fire layers to	If the interval between fires in an area ≤ the minimum interval
fire interval	determine the minimum time (years)	required for obligate seeder plant species to grow from seed,
	between fires.	mature and set seed then one can expect local extinctions.
Vegetation	Various metrics have been calculated that	These mean index value should increase under improved fire
patchiness	describe the landscape pyro-diversity:	management. The heterogeneity indices are averaged over five
	1. Heterogeneity indices;	year periods to indicate the longer-term trend. The mean
	2. Mean distance from burnt to unburnt	burnt to unburnt patch distance index should improve
	patches.	indicating fire patch sizes are decreasing.


North Australian Fire Information


Standard Annual Report: 2017

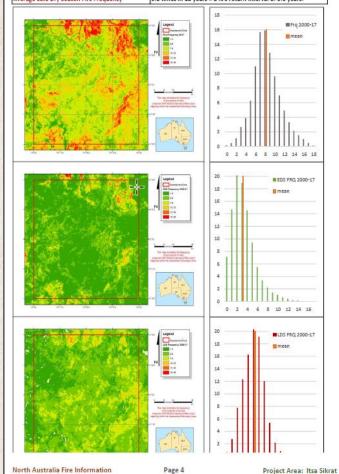
This report uses the North Australia Fire Information (NAFI) Burnt Area mapping to make spatial calculations based on the boundary or vegetation map illustrated below. NAFI Burnt Area mapping is derived from MODIS satellite imagery. The imagery used has 250 m pixels, this is the minimum mapping unit for these analyses.

The Assessment Area: Itsasikrat = 1,000,000 ha

Area of Vegetation Fuel Types Open forest, mixed grass understorey Lowland woodland, mixed grass understorey 487,725 ha (49%) Upland woodland, hummock grass understorey 34,506 ha (3%) Shrubland, hummock grass understorey 71,163 ha (2%) Other vegetation (grasslands, floodplains, Melaleuca dominated communities) 25,900 ha (3%)

North Australia Fire Information Page 1 Project Area: Itsa Sikrat

North Australian Fire Information **Burnt Area Analysis** 20.3% EDS 18.7% LDS 1.6% Total Burnt Area % Burnt Area 2017 10 11 12 13 14 July August September October November Area (ha) Season Area (ha) 96 May 6.031 0.6 EDS 187,056 18.7 46,325 4.6 LDS 15,944 1.6 134,700 13.5 LDS August 2,806 0.3 1% September 4,588 0.5 October 844 0.1 19% 7,706 0.8 November Unburnt North Australia Fire Information Page 2 Project Area: Itsa Sikrat

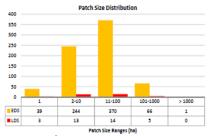


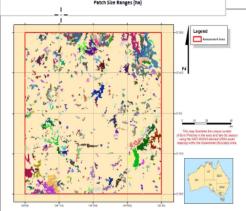
North Australian Fire Information

Fire Frequency Analysis

Fire frequency is a calculation at a point in time of the number of times that a point in the landscape has previously been burnt. This is calculated for whole fire years, early dry season only, and late dry season only.

Average Fire Frequency	8.3 times in 18 years = a fire return interval of 2.2 years.			
Average Early Dry Season Fire Frequency	3.3 times in 18 years = a fire return interval of 5.4 years.			
Average Late Dry Season Fire Frequency	5 0 times in 18 years = a fire return interval of 3.6 years			




North Australian Fire Information

Burnt Patch Analysi

In the Burnt Patch Analysis, the number of individual burnt patches is counted and the average and median patch size is calculated, for the whole year, the early dry season and the late dry season.

Number of Burnt Patches	755	EDS	720	LDS	35
Average Patch Size	269 ha	EDS	260 ha	LDS	456 ha
Median Patch Size	94 ha	EDS	94 ha	LDS	69 ha
Number of Patches > 1,000 ha	1	EDS	1	LDS	0

Area/Perimeter Analysis

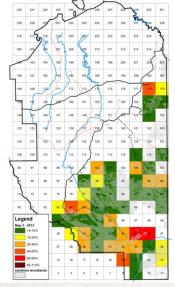
In the Area/Perimeter Analysis, the average area/perimeter ratio of individual burnt patches is calculated, for the whole year, the early dry season and the late dry season. The ratio demonstrates the difference in fire shape overall, such that a low ratio indicates longer linear burnt areas such as for fire breaks, whereas a high ratio indicates bigger rounder fires such as in the case of most wildfires.

Area/Perimeter Ratio	EDS	15	LDS 43	
----------------------	-----	----	--------	--

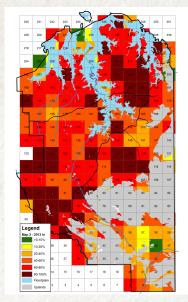
North Australia Fire Information

Page 3

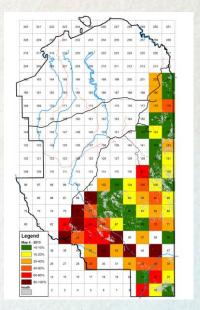
Project Area: Itsa Sikrat



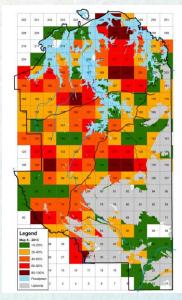
Modelled Metrics


Significant spatial models pertaining to fire metrics in savanna landscape units

Landscape unit	Functional groups/species	Fire metrics
Savanna woodlands	Sapling density (All species) Sapling density (Non-Eucalypts) Sapling density (Callitris intratropica) Adult stem density (Callitris intratropica)	Fire frequency Frequency of low severity fires Time since burnt severely Frequency of severe and very severe fires
Savanna and Heathland	Number of shrub taxa (obligate seeders) Number of long maturing (> 3 yrs) shrub taxa (obligate seeders) Shrub density (resprouters)	Minimum inter-fire interval Frequency of early dry season fires Frequency of severe and very severe fires




ANLARR in the stone country


Savanna saplings in the Lowlands

The number of obligate seeder taxa in the stone country

Long maturing obligate seeders in the stone country

Re-sprouting shrub density in the Lowlands

Time frame

Summary

Task	Description	Start	End	Deliverables	Budget
Undertake workshops with	DCBR have undertaken many workshops and meetings	Completed		A list of	Covered by current
stakeholders	with fire management staff in north Australia over the			appropriate	CRC project
	past 18 months, through their CRC research program.			metrics	
Develop a sample report for	Through the CRC research program, DCBR have been	July 2017	On-	Samples	Covered by Current
inspection by the agencies and continue to develop sample reports that key			going		CRC project
and other fire managers	agency personnel are assisting to fine tune.				
Software development for	CDU software engineer to develop web front end and	April 2018	12	On-line reporting	\$50k
web-enablement	programming for spatial calculations		months	system	
On-going management of	SMERF, like the other tools in the NAFI suite will need	On-going		NAFI Suite	Incorporated by CDU
SMERF	to be archived, managed, served and supported.			(including SMERF)	through NAFI funding
					from Commonwealth
					and agency partners.

⊕Detail: Software Development to web-enable the automated reporting

Task	Description	Start	End	Deliverables	Budget
Develop	A freeware python software environment	20Jun18	20Aug18	1. Report A (v1): Simple single year report using basic metrics;	\$12.5k
version 1.	will be explored to migrate the current			2. Report B (v1): Simple multi-year comparison using basic metrics;	
	Infonet system across to SMERF and			3. Report back from interviews with users.	
	develop the first two simple reports				
Develop	Feedback from interviews with users will	21Aug18	200ct18	1. Re-release of Reports A & B (v2) incorporating user feedback;	\$12.5k
version 2.	be used to refine Reports A & B.			2. Report C: multi-year analytical report with built-in user selection;	
	Report C development will commence.			3. Report back from interviews with users.	
Develop	Feedback from interviews with users will	210ct18	20Dec18	1. Re-release of Report C (v2) incorporating user feedback;	\$12.5k
version 3.	be used to refine Report C.			2. Report D: Report C with "thresholds" applied from the literature;	
	Report D development will commence.			3. Report back from interviews with users.	
Develop	Feedback from interviews will be used to	21Dec18	20Feb19	1. Re-release of Report D (v2);	\$12.5k
final	refine Report D.			2. Final release of on-line public version.	
version	Develop support manual.			3. User manual.	

Detail: On-going management of SMERF

Task	Description	Start	End	Deliverables	Budget
Merge SMERF	The SMERF toolset will need to be	1March19	29Mar19	An integrated suite of tools available to end-users to undertake	NAFI
into NAFI	integrated into the suite of NAFI tools.			monitoring and evaluation on-line through NAFI	