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Abstract 

Accurate and fine-scale landscape dryness estimation is critical for the management and 

timely warning of disasters like landscape fires, floods, heatwaves, landslips. It has 

application in environmental management, agriculture and other types of farming like 

livestock, and silviculture as well. In a fire danger context, the estimated landscape 

dryness is calculated for assessing the fuel availability. Though new techniques like 

remote sensing and land surface modelling provide accurate soil moisture information, 

it is at a relatively coarser scale than that is required for the above mentioned 

applications. A common practice to overcome such a problem is to employ downscaling 

methods to increase the spatial scale of the product. The downscaling approach can be 

broadly subdivided into deterministic and stochastic. The present study provide a brief 

review on some of these downscaling methods that are used to derive finer scale 

information from remote sensing or land surface model outputs. We also highlight some 

of the studies which has used the above methods for soil moisture applications. The 

discussion presented here is not intended to be complete and reflect authors’ interest. 

But we still hope that it helps to highlight some of the most commonly used downscaling 

approaches that are well known to the hydrological community. 

 

1. Introduction 

Accurate estimation of soil moisture is of  great  importance  for  many applications like 

drought monitoring (Han et al., 2014), weather and climate prediction (Dharssi et al., 

2011; Seneviratne  et  al.,  2010), irrigation water management (Bastiaanssen et al., 

2000), ecological modelling (Nemani et al., 2009), vegetation productivity estimation 

(Reichstein et al., 2003), fire danger rating (Vinodkumar et al., 2015), flood forecasting 

(Camici et al., 2011) etc. However, quantifying the spatial and temporal distribution of 

soil moisture is still challenging due to its large variability (Njoku et al., 2003; Loew, 

2008). This high variability of soil moisture in space and time is driven by a number of 

parameters, such as vegetation, soil type, topography, and meteorology. The importance 
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of each of these parameters decreases or increases depending on scale (Grayson et al., 

1997; Pan et al., 2001). 

Typically, space resolutions are much poorer than time resolutions in hydrology (Blöschl 

& Sivapalan, 1995). The complex scale dependency of soil water content makes it both 

difficult to measure and forecast. Even in-situ measurements can hardly capture the 

high variability in soil moisture over short distances (Western et al., 1999). The main 

limitation of ground based soil moisture observations is that the effective area 

represented by these measurements is very small (Western et al., 2002). Since soil 

moisture exhibits high spatial variability, this will lead to large errors of representativity 

(Famiglietti et al., 2008); and in order to map extended spatial scales, a very large 

number of sensors are required. This however,  is  neither  economically  nor  logistically  

practical due to the high cost involved with their procurement, installation and 

management.  

Land surface modelling has become a great tool in continually estimating soil moisture 

at large scales, where mapping with the use of in-situ observations become non-feasible. 

However, these land surface models (LSMs) are limited by their simplification in 

representing land-surface processes. For instance, most of the LSMs are in a single 

column framework and assume no lateral flows between neighbouring columns. This 

limits their capability to use in fine-scale hydrological applications, where lateral flows 

become relevant. Further, the resolution and accuracy of these models are restricted by 

the availability of quality meteorological forcing data. More often than not, it means that 

the LSM outputs are obtained at a resolution of few kilometres.  

Soil moisture retrieved from microwave sensor on board various satellites have been 

also used for large-scale watershed catchment and hydrological studies (Wagner et al., 

2007). These sensors are either passive (i.e., use naturally emitted radiation), or active 

(emit and receive own signal). The soil moisture estimates from the current passive 

sensors have a nominal resolution of ~40km. An inverse relationship exists between 

wavelength and antenna size. This imposes a technological limitation in deploying large 

antenna in space, which is required to attain higher spatial resolution. Consequently, soil 

moisture estimated from the passive microwave remote sensing technique cannot meet 

the requirement of many applications. The active sensors can provide a higher spatial 

resolution observation than those obtained from a passive instrument (~1km compared 

to ∼40 km from passive sensors). However, radar data are more strongly affected by 

local roughness, microscale topography, and vegetation than a radiometer, meaning that 

the accurate retrieval of the dataset is quite difficult (Lakshmi, 2013). 

In short, the remote sensing and modelling platforms, due to their design or other 

limitations, are generally incapable of delivering finer scale hydrological details. For 

applications like the monitoring of soil moisture on an agricultural paddock scale over a 
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region/state, or fire danger assessment over a national park, these coarser resolution 

products may not provide much value. A common practice to overcome such a problem 

is to employ methods to change the scale of a product. A common way to transfer 

information from one scale to another is to apply either the upscaling or downscaling 

methods. Upscaling describes the transition of information from a smaller scale to a 

higher scale whereas downscaling is defined as disaggregation of spatial information 

from coarser to finer scales (Becker, 1999). The focus of the present study is to provide a 

brief review on the downscaling methods that can be useful to provide finer scale 

information from remote sensing or LSM outputs. This paper is organized as follows. 

Section 2 outlines a brief overview of downscaling in general. Section 3 describes the 

downscaling in soil moisture space and section 4 contain the concluding remarks. 

2. Downscaling: A general overview 

The fundamental question that downscaling address is, what are the values, the 

probability distribution, or the functional relationship of variables at a smaller scale, 

given the same for a larger scale? Usually, it is assumed that the large scale value is an 

average of those at small scale (Bierkens et al., 2000). This falls under the deterministic 

framework. However, the average value of the property at larger scale is not always 

known exactly, which calls for a stochastic framework where the uncertainty about 

average property value at large scale is described by means of a probability distribution 

or probability density function. These functions can be readily developed, adding to its 

appeal. The downscaling problem can thus be fundamentally distinguished into three; 

(1) deterministic, (2) conditional stochastic and (3) unconditional stochastic (Bierkens 

et al., 2000).  

In the deterministic approach, average value at larger scale is known exactly. A single 

function is sought to determine the spatial variation at smaller scale, such that the 

average value of this function for larger scale equates the known average. The 

conditional stochastic problem also assumes that an exact average value is known. But 

unlike the deterministic approach, a set of equally probable functions describing the 

variation at finer scale is chosen, such that the average of each individual function at 

larger scale is equal to the known average. The family of equally probable functions are 

called the “ensemble”, or alternatively a “stochastic function” (Bierkens et al., 2000). The 

advantage of choosing a family of functions is that the uncertainty about true variations 

in the property at finer scale is readily explained. The downscaling problem is called 

“conditional” stochastic because the larger scale average of each realisation must be 

equal to the known average. In unconditional stochastic problem, the average value at 

larger scale is not known exactly (Bierkens et al., 2000). Instead, only the probability 

distribution function (PDF) of the average is known. The problem involves finding a set 

of equally probable stochastic functions that describe the temporal or spatial variation 
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at finer scale. Unlike in conditional stochastic approach, here we do not require each 

realisation to have the same average. It is only required for the larger scale averages of 

all realisations together to have same PDF. 

The deterministic or stochastic functions for distribution at finer scale is described 

through different type of functions: empirical, mechanistic or using auxiliary 

information. The selection of these is based either on the availability of auxiliary 

information or on the availability of a mechanistic model, that will be used to explain 

some of the unknown temporal or spatial variation of the property at finer scale. 

Following Bierkens et al. (2000), Figure 1 shows a decision tree that can be constructed 

from these questions. 

 

Figure 1. Decision tree for different classes of downscaling method (Bierkens et al., 2000). 

3. Downscaling of soil moisture 

Disaggregating state variables like soil moisture in hydrology may be required for 

estimating the spatial pattern of the water balance as needed for many forms of land 

management. Downscaling methods in soil hydrology generally adopt the two step 

processes of disaggregation and singling out (Figure 2; Blöschl & Sivapalan, 1995). The 

disaggregation procedure derives the detailed pattern within a domain, given the 

average value of that domain. Typically, space resolutions are much poorer than time 

resolutions in hydrology (Blöschl & Sivapalan, 1995) for most of the applications. Hence 

a lot of studies have focussed on spatial disaggregation of large scale, coarser resolution 

soil moisture products which usually are a large-scale ‘average’ values. This can be the 

pixel soil moisture based on satellite data, an estimate from a large-scale atmospheric or 
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land surface model or an estimate derived from a catchment water balance. The singling 

out step simply finds the location of the disaggregated pattern that corresponds to the 

point of interest, and usually is trivial (Wu et al., 2006). 

 

 

Figure 2. Two-Step Scaling Procedure (Courtesy: Blöschl & Sivapalan, 1995) 

The soil moisture downscaling or disaggregation methods in the deterministic 

framework include techniques such as those merging remotely sensed data with terrain 

indices [Temimi et al. , 2010] or meteorological data [Merlin et al., 2006], and algorithms 

based on hydrologic models [Pellenq et al., 2003]. The statistically based approaches 

range from methods based on the scale invariance and multi-fractal properties [Kumar, 

1999; Hu et al., 1998; Kim and Barros, 2002] or the use of empirical orthogonal function 

analysis [Perry and Niemann, 2007]. The disaggregation schemes in soil hydrology are 

often based on stochastic approaches discussed in section 2. These schemes generally 

correlate the quantity of interest to an auxiliary variable or covariate (e.g., topography, 

land-use), whose spatial distribution can more readily be measured. The spatial 

distribution of the quantity is then inferred from the spatial distribution of the covariate 

(Wu et al., 2006). In short, the downscaling of soil moisture can be performed by using 

simplified statistical descriptions that aim at representing the most important controls 

of soil moisture. These methods can either exploit the spatial statistics of soil moisture 

or make use of auxiliary information. The auxiliary information can be in the form of 

moisture index (Blöschl, 2005; Western et al., 2004) or other physical parameters that 

are at a finer scale (Blöschl et al, 2009). 
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3.1. Spatial statistics approach 

Spatial statistics approaches like interpolation methods are typically much less data 

intensive in their application and hence were widely used in studies of upscaling and 

downscaling hydrological fields. In this approach, values are estimated between sparse 

points using spatial relationship to the neighbouring points. Studies have shown that the 

spatial correlations of soil moisture at small catchments are stationary and the 

correlation length ranges from a few metres to hundreds of meters (Mohanty et al, 

2000; Western& Blöschl, 1999). In-situ soil moisture data collected over large areas in 

different parts of the world suggest that spatial variation could be represented as a 

stationary field with a correlation length of about 500 km (Entin et al., 2000). Over short 

scales, variation in soil moisture is more likely related to differences in soils and 

vegetation, while larger scale soil moisture variability is determined mainly by climate. 

Numerous methods of upscaling and downscaling that are based on the spatial statistics 

are discussed in literature (Blöschl et al, 2009). These methods involve a wide spectrum 

of geostatistical methods that calculates spatial patterns from point data or catchment 

average soil moisture (e.g. Deutsch and Journel, 1992). Some of these geostatistical 

methods like the conditional simulation methods are based on the assumption that soil 

moisture is a Gaussian random field. Various studies have suggested that the spatial 

distribution function of soil moisture can be approximated by a normal distribution (e.g. 

Mohanty et al., 2000; Nyberg, 1996). However, it is also found that the shape of the 

distribution does change with climate. Based on numerous studies (Western et al., 

2003), variance of the soil moisture spatial distribution tends to depend on mean 

catchment moisture. In particular, the variance increases from near zero at wilting point 

to a peak at moderate moisture levels and then decreases to near zero as the mean soil 

moisture approaches saturation. 

3.2. Auxiliary information based approach 

3.2.1. Auxiliary information from various indices 

The index approach is a widely used method in hydrological downscaling as it is highly 

efficient and less demanding numerically, and only requires a limited number of input 

data. This is particularly appealing in an operational context. The index approaches 

generally use finer scale landscape characteristics to impose spatial organisation on the 

given soil moisture data. The methods fundamentally rely on an index which is 

formulated based on the available landscape characteristics and our understanding of 

water movement in the landscape (Moore et al., 1991). For example, in regions where 

sub-surface flow dominate the lateral redistribution of soil moisture, indices reflecting 

upslope area, slope, or convergence could be related to the soil moisture. One of the 

most commonly used indices in soil moisture scaling is the topographic wetness index 

(TWI) of Beven and Kirkby (1979). TWI is a function of both the slope and the upstream 
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contributing area orthogonal to the flow direction. Computation of the upstream 

contributing area is based on flow direction algorithms. There are generally two main 

types of flow direction algorithms that are used, namely, Single Flow Direction and 

Multiple Flow Direction algorithms. The Single Flow Direction algorithm assumes that 

all water from a pixel should flow into the neighbouring pixel with lowest elevation. 

Multiple Flow Direction assumes that flow from the current position could drain into 

more than one downslope neighbouring pixel. 

Western et al. (1999) studied the predictability of various indices against in-situ soil 

moisture data collected from a small catchment in south-east Australia. A correlation 

analysis found that the specific upslope area is the best univariate spatial predictor of 

soil moisture for wet conditions and the potential radiation index is the best during dry 

periods. The wettest soils were collected in the gullies that have large specific 

contributing areas. It is also observed that the explanatory power of the indices drop 

rapidly as the catchment dry out. Western et al (1999) also noted that the predictive 

ability of these indices varies substantially with climate zones and also depends on 

whether their main assumptions are satisfied. All of these indices can be used as an 

auxiliary variable along with the geostatistical methods for the purpose of downscaling. 

The geostatistical methods used for downscaling include external drift kriging, co-

kriging and geo-regression (e.g. Blöschl and Grayson, 2000). For example, Green and 

Erskine (2004) compared a geostatistical analysis with linear geo-regression using 

terrain indices to derive fine scale soil water content maps. 

3.2.2. Auxiliary information from remotes sensing 

3.2.2.1. Auxiliary information from Optical or thermal infrared sensors 

Remote sensing can provide complementary or direct information of soil moisture 

patterns at spatial resolutions in the order of few meters to several kilometres 

(Lakshmi, 2013). Optical or thermal infrared (TIR) and microwave sensors are often 

used for soil moisture downscaling studies. Active research is being undertaken by 

different groups to develop techniques that use both microwave and optical/TIR remote 

sensing data to estimate soil moisture at different spatial resolutions. A wide range of 

approaches, from regression methods to physics based models, are adopted to estimate 

soil moisture (Kim and Hogue, 2012; Sahoo et al., 2013; Fang and Lakshmi, 2014). 

The soil moisture estimation from the optical sensors is done using an empirical 

relationship between vegetation index and observed surface reflectance (Gao et al., 

2013). The common method used by thermal infrared remote sensing to estimate soil 

moisture is to construct a functional relationship between soil moisture and thermal 

inertia (Qin et al., 2013; Verstraeten et al., 2006). Some studies have explored the 

relationship between land surface temperature (TS) and vegetation index to estimate 

soil moisture. It is observed that TS exhibits different sensitivity to soil moisture 
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variations over bare soil and vegetated areas (Peng et al, 2016). This results in the 

scatter plots resembles a triangular or trapezoidal feature space (Figure 3), which is 

more physically meaningful (Peng et al., 2016). Based on this feature space, several 

indices such as the vegetation temperature condition index (Wan et al., 2004) and 

temperature vegetation dryness index (Sandholt et al., 2002) have been developed to 

assess the soil moisture conditions (Karnieli et al., 2010; Peng et al., 2013). Recently, 

Peng et al. (2016) demonstrated that the spatial resolution of microwave soil moisture 

can be improved by using vegetation temperature condition index as the exclusive 

downscaling factor. 

 

Figure 3. Conceptual diagram of the triangular/trapezoidal feature space that is constructed by 

land surface temperature and vegetation index (Courtesy: Pen et al., 2016). 

Chauhan et al. (2003) evaluated an approach for the estimation of soil moisture at high 

resolution using satellite microwave and optical/infrared (IR) data. The approach links 

the microwave-derived low-resolution soil moisture to the scene optical/IR parameters, 

such as Normalized Difference Vegetation Index (NDVI), surface albedo, and TS. The 

linking is based on the ‘universal triangle’ approach of relating land surface parameters 

to soil moisture through a regression model. The linkage model in conjunction with the 

above mentioned land surface parameters are then used to disaggregate microwave soil 

moisture into high-resolution soil moisture. Following the work of Chauhan et al. 

(2003), a number of studies have tried to improve the regression models by including 



9 

other inputs such as brightness temperature and surface emissivity (Piles et al., 2011; 

Piles et al., 2014; Sobrino et al., 2012). 

The work done by Piles et al. (2011) also used a method based on “universal triangle” 

concept to retrieve high resolution soil moisture from Soil Moisture and Ocean Salinity  

(SMOS) mission using NDVI and TS data from Moderate Resolution Imaging Spectro-

radiometer (MODIS) over south-eastern Australia. In this method, the SMOS brightness 

temperature (TB) is added to the regression model that describes the relationship 

between soil moisture, MODIS NDVI, and MODIS TS. The authors argued that the use of 

TB in the linking model is necessary to capture soil moisture (sm) variability at high 

resolution. This relationship is expressed as: 

𝑠𝑚 = ∑ ∑ ∑ 𝑎𝑖𝑗
𝑛
𝑘=0 𝑁𝐷𝑉𝐼𝑖𝑇𝑆

𝑗𝑇𝐵
𝑘𝑛

𝑗=0
𝑛
𝑖=0  (1) 

where n should be chosen so as to give a reasonable representation of the data. 

The linking model between SMOS observations, MODIS derived NDVI & TS is given by: 

𝑠𝑚 = 𝑎000 + 𝑎001𝑇𝐵𝑁 + 𝑎010𝑇𝑁 + 𝑎100𝐹𝑟 + 𝑎002𝑇𝐵𝑁
2 + 𝑎020𝑇𝑁

2 +

𝑎200𝐹𝑟
2 + 𝑎011𝑇𝑁𝑇𝐵𝑁 + 𝑎101𝐹𝑟𝑇𝐵𝑁 + 𝑎110𝐹𝑟𝑇𝑁 (2), 

where TN is the normalized MODIS surface radiant temperature and Fr is the fractional 

vegetation cover based on MODIS NDVI and TBN is the normalized SMOS brightness 

temperatures.  

 

Figure 4. Downscaling results obtained by Piles et al. (2011) by applying the “universe triangle” 

based algorithm to a SMOS image over the Murrumbidgee catchment in south eastern Australia. 

(a) SMOS soil moisture [m3/m3] at 40 km resolution grid. Downscaled SMOS soil moisture maps 

at (d) 10 km, and (e) 1 km. (f) SMOS TB image [K] at 40 km resolution, (g) 1 km MODIS/AQUA Ts 

[K] 1 km MODIS/TERRA NDVI. White areas indicate missing values post retrievals. Courtesy: 

Piles et al. (2011). 
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The linking model in (2) thus calculates the regression coefficients aijk  at each grid point 

which are specific of the day and scene being analysed. Piles et al (2011) compared the 

downscaled soil moisture products with in-situ soil moisture measurements and found 

that the root mean squared errors remained somewhat similar to the coarser resolution 

product. Further, the soil moisture sensitivity was preserved for the 10 km downscaled 

product and moderately decreased for the product at 1 km resolution. Figure 4 shows 

the results obtained by Piles et al. (2011) on the application of the algorithm to an SMOS 

image over the Murrumbidgee catchment, gathered on January 19, 2010. 

Gillies and Carlson (1995) also used the “universal triangle” concept to estimate 

regional patterns of surface soil moisture availability from a Soil Vegetation Atmosphere 

Transfer (SVAT) model using NDVI and TS. Merlin et al. (2010) explored the relationship 

between fractional vegetation cover and soil evaporative efficiency over a catchment in 

South-eastern Australia using MODIS data. Prior to this study, Merlin et al. (2008) had 

developed a simple method to downscale soil moisture by using two soil moisture 

indices: evaporative fraction (EF) and the actual EF. A method based on sequential 

model which used MODIS as well as Advanced Scanning Thermal Emission and 

Reflection Radiometer (ASTER) data was also proposed for downscaling soil moisture 

[Merlin et al., 2012a, Merlin et al., 2012b] . 

Though the downscaling algorithms that use auxiliary information from optical sensors 

provide a good high resolution soil moisture estimates, there are several limitations that 

still exist. The optical sensors are often influenced by cloud cover, limiting the methods 

using them from being an all-weather algorithm for downscaling. Also, the 

representative depth of the auxiliary information and the targeted product may differ. 

For example, Piles et al. (2011) noted that the thermal regime of SMOS (measurement 

depth ~0–5 cm) soil moisture product and MODIS VIS/IR skin temperature 

(measurement depth ~0–1 mm) are likely to be quite different. The skin temperature is 

subject to more rapid fluctuations compared to temperature from a  deeper soil profile 

that most of the remotes sensing and model represent. Thus the use of IR skin 

temperature in the downscaling algorithm may lead to misrepresentation of spatial and 

temporal variability of underlying soil temperature with a specific depth. Another 

limitation of this method is that the acquisition time of the optical and IR auxiliary 

information doesn’t necessarily match to that of targeted soil moisture product, and soil 

moisture status may change within these two acquisition times depending upon soil 

type, terrain, vegetation and meteorological conditions. The triangle method also 

imposes some constraints that could limit the accuracy of the estimated soil moisture. 

The identification of triangular shape requires a flat surface and a large number of pixels 

over an area with a wide range of soil wetness and fractional vegetation cover. This 

means that a perfect triangle can only be achieved by collecting a timely record of data 

over the region under study, or by selecting a particular scene with a wide range of Ts 
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and NDVI. Also, the determination of warm  edge  and  the  vegetation  limits  of  bare  

soil and full cover requires some subjectivity (Carlson, 2007). 

3.2.2.2. Auxiliary information from microwave only 

Wagner et al. (2008), using ENVISAT Advanced Synthetic Aperture Radar (ASAR)  

backscatter data, found that time-invariant relationships can be used for connecting soil 

moisture and radar backscatter measurements across different spatial scales. The 

authors, demonstrated that the backscatter scaling parameter can be expressed as a 

function of soil moisture properties, vegetation and topography. An important 

application of the method is that it can be used for downscaling coarse resolution soil 

moisture data retrieved from active (ASCAT) and passive (SMOS, AMSR-E) instruments. 

Several studies have also discussed methods that use higher resolution active sensors to 

downscale coarse resolution passive microwave soil moisture retrievals (Narayan et al., 

2006, Narayan et al., 2008, Das et al., 2011). Piles et al. (2009), in preparation for the 

Soil Moisture Active Passive (SMAP; Entekhabi et al., 2010) mission, conducted an 

observation system simulation experiment (OSSE) where they mimicked the SMAP 

radiometer and radar. The OSSE experiment was driven by high-resolution parameters 

generated from a distributed land surface model. They applied a change detection 

algorithm to combine the relatively noisy 3 km resolution radar backscatter coefficients 

and the more accurate 40 km radiometer brightness temperature into an optimal 10-km 

product (figure 5). They found that the change detection algorithm perform better than 

the direct inversion of the radiometer brightness temperatures and improve the root 

mean square error by 2% of volumetric soil moisture content. It is worth noting that the 

malfunctioning of the radar in SMAP post launch has limited its capability to achieve the 

goal to retrieve soil moisture information at planned 9 km resolution. 

 

Figure 5. The comparison of synthetic ground-truth soil moisture with lower resolution (40 

km) radiometer and the higher resolution (10 km) soil moisture estimates obtained from the 

active-passive method. The active and passive soil moisture retrievals are synthetically 

produced from an OSSE. Courtesy: Piles et al. (2009). 

One of the most exciting developments in current soil moisture monitoring capability is 

the European Space Agency’s Sentinel satellite mission which is a constellation of two 

polar-orbiting C-band radar satellites for operational Synthetic Aperture Radar (SAR) 
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applications. The goal is to map the global land mass once every twelve days in  

Interferometric Wide Swath (IWS) mode. Near Real Time products from Sentinel 

satellites are available within 3 hours of acquisition. One of the features of Sentinel 

mission is that the soil moisture can be retrieved at a spatial resolution of about 5 x 20 

m². This can be of great implication when it comes to soil moisture downscaling, as this 

high resolution dataset can be used to deduce finer resolution products from coarser 

remote sensing or land surface modelling products. Such resolution enables local and 

regional studies, and an improved understanding on soil moisture heterogeneity at 

these scales. A multiple sensor approach where Sentinel data are combined with the 

radiometers will allow us to capture the soil moisture spatial variability across the 

scales (Figure 6; de Jeu, 2015), where the micro-scale variability is captured by the 

Sentinel satellites and the macro-scale variability by the current breed of radiometers 

and/or land surface models. 

Figure 6. Diagram depicting the scales measured by different sensors and soil moisture spatial 

variability captured. Courtesy: de Jeu (2015). 

The downscaling algorithms based on the synergy between passive (radiometer) and 

active (radar) microwave observations is arguably the most promising approach 

currently available. Microwave observations are less attenuated by the atmosphere and 

can penetrate through clouds, making them all weather capable. Also, microwave 

observation are becoming increasingly available from satellites at global scale. Another 

important aspect of the microwave observations are that they are less reliant on 

ancillary information such as meteorological observations (Wu, 2014). However, regions 

of densely vegetated areas and high topography can reduce the capability of active 
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microwave signal to sense accurate soil water content. This could result in a lack of 

estimates in such regions. Further the penetration depth of the microwave products are 

confined to the upper few centimetres. For some application, this may not be adequate. 

Summary & Conclusion 

The present review deals with the spatial disaggregation of coarse resolution soil 

moisture datasets. A lot of applications, like fire danger rating, require soil moisture 

estimates at high resolution (<= 1km) over large regions. Remote sensing and water 

balance modelling are the two widely used techniques for estimating soil moisture at 

such broad spatial scales. However, spatial resolution of the product they offer are not 

finer enough for several applications. Hence studies explored the use of downscaling 

techniques to derive soil moisture at finer resolution. The downscaling approach can be 

broadly subdivided into (i) deterministic and (ii) stochastic. Majority of the soil 

moisture downscaling work use the stochastic framework, where a statistical method is 

combined with an auxiliary information to estimate soil moisture at finer scale. This 

auxiliary information is supposed to have a functional relationship with soil moisture 

dynamics.  

One of the most common and early framework used in this regard is the use of 

landscape indices, especially terrain indices, to downscale the coarser resolution soil 

moisture data. Recent advancements in optical remote sensing has allowed researchers 

to use different remote sensing products, that deem to have an effect on soil moisture 

variability, as ancillary information. A method based on “universal triangle” concept is 

used by a number of studies where a relationship between soil moisture and different 

land surface parameters like NDVI, TS or surface albedo derived from optical remote 

sensing sensors are established. Out of the different land surface parameters, NDVI and 

TS are the most widely used ones. Theoretical and experimental studies have 

demonstrated the relationship between soil moisture, NDVI and Ts for a given region 

under specific climatic conditions and land surface types. Though this method is by 

large used to downscale microwave remote sensing retrievals of soil moisture, studies 

have used it effectively to disaggregate model soil moisture as well.  

Rapid progress is made in microwave remote sensing to deliver high resolution soil 

moisture estimates using a combination of active (radar) and passive (radiometer) soil 

moisture retrievals. The high resolution radar data is used to disaggregate coarse 

resolution radiometer observations to produce a soil moisture product at resolutions of 

finer resolution. One of the advantage of the microwave observations are that they are 

less affected by the clouds. Given  the  limitations  of optical techniques  with respect to 

cloud cover, atmospheric attenuation and vegetation cover, the combined use of 

microwave sensors has the best potential to produce reliable high resolution global soil 
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moisture products. However, this approach is still in its early developmental phase and 

the fact that they are theoretically proven to be a very effective approach opens up a 

wide range of exciting possibilities for development.  

Most of the downscaling techniques that use statistical approaches combined with 

ancillary information are applied to soil moisture estimates from remote sensing. There 

is a lack of literature on the applicability of such techniques to model soil moisture, 

especially that from land surface models. Since model soil profiles are much deeper than 

that from satellites, it raise an interesting question on whether these techniques can be 

applied to downscale deep model soil moisture estimates. Despite the considerable 

progress made in soil moisture downscaling over the years, it is hence reasonable to 

assume that a clear guidance to which methods are most promising for a given 

application doesn’t exist still. Grayson and Western (1998) suggested that concepts of 

time stability can be used to identify certain parts of the landscape which consistently 

exhibit mean behaviour irrespective of the overall wetness. Blöschl et al. (2009) 

proposed that a combination of the index approach and the time stability assumption 

based on the spatial statistics seems to be a useful strategy for soil moisture 

downscaling. However, a detailed evaluation on the validity of these techniques on 

either model or remote sensing soil moisture is absent in the literature. Even a detailed 

evaluation and comparison of  different downscaling approaches applied to satellite 

based soil moisture products are lacking. One of the reason for this could be that, many 

of these works in optical, IR and microwave remote sensing are fairly recent. Future 

studies should evaluate the potential of some of these algorithms to downscale soil 

moisture from land surface models and remote sensing platforms. 
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