

FIRE COALESCENCE AND MASS SPOT FIRE DYNAMICS Experimentation, modelling and simulation

Jason Sharples¹, James Hilton², Andrew Sullivan³

- 1. Computational Science Initiative, School of Physical, Environmental and Mathematical Sciences, UNSW Canberra
- 2. CSIRO Data 61
- 3. CSIRO Land and Water

Business Cooperative Research Centres Programme

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

GEOMETRIC MODELS WITH PYROGENIC POTENTIAL

Simulation of a wind-driven line ignition with different pyroconvective strengths

Plus strong potential for a physically based model for slope effect on fire spread...!

w/ XFireNZ, Missoula Fire Lab.

GEOMETRIC MODELS WITH PYROGENIC POTENTIAL

Separated V fire experiment and simulated fire propagation.

UNDERSTANDING ARC FIRES

Position

UNDERSTANDING ARC FIRES

Position

EFFECT OF SPOT FIRE DENSITY ON PEAK FIRE POWER

EFFECT OF SPOT FIRE DENSITY ON PEAK FIRE POWER

EFFECT OF TERMINAL VELOCITY DYNAMICS ON LONG-RANGE EMBER DISPERSAL

UTILISATION PLANS

The immediate avenue for utilisation of this research will be scoping enhanced frameworks for firefighter and Fire Behaviour Analyst training.

PEER-REVIEWED PUBLICATIONS

- 1. Sullivan, A.L., Swedosh, W., Hurley, R.J., Sharples, J.J., Hilton, J.E. (2017) Investigation of the effects of interactions of intersecting oblique fire lines, with and without wind. In preparation.
- 2. Hilton, J.E., Sullivan, A.L., Swedosh, W., Sharples, J.J., Thomas, C.M. (2017) Incorporating convective feedback in wildfire simulations using pyrogenic potential. *Environmental Modelling and Software*, Under review.
- 3. Thomas, C.M., Sharples, J.J., Evans, J.P. (2017) Modelling the dynamic behaviour of junction fires with a coupled atmosphere–fire model. *International Journal of Wildland Fire*, 26(4), 331-344.
- 4. Hilton, J.E., Miller, C., Sharples, J.J., Sullivan, A.L. (2017) Curvature effects in the dynamic propagation of wildfires. *International Journal of Wildland Fire*, 25(12), 1238-1251.
- 5. Sharples, J.J., Hilton, J.E. (2017) Modelling the dynamic behaviour of small scale junction fires using curvature flows. *Proceedings of the 22nd International Congress on Modelling and Simulation*.
- 6. Hilton, J.E., Sharples, J.J., Sullivan, A.L., Swedosh, W. (2017) Spot fire coalescence with dynamic feedback. *Proceedings of the 22nd International Congress on Modelling and Simulation*.
- 7. Thomas, C.M., Sharples, J.J., Evans, J.P. (2017) Modelling firebrand transport: comparison of two methodologies. *Proceedings of the 22nd International Congress on Modelling and Simulation*.
- 8. Thomas, C.M., Sharples, J.J., Evans, J.P. (2017) Rate of spread and fireline curvature in a coupled atmosphere– fire model. *Proceedings of the 22nd International Congress on Modelling and Simulation*.
- 9. Roberts, M.E., Sharples, J.J., Rawlinson, A.A. (2017) Incorporating ember attack in bushfire risk assessment: a case study of the Ginninderry region. *Proceedings of the 22nd International Congress on Modelling and Simulation*.
- 10. Thomas, C.M., Sharples, J.J., Evans, J.P. (2015) Pyroconvective interaction of two merged fire lines: curvature effects and dynamic fire spread. *Proceedings of the 21st International Congress on Modelling and Simulation*.

