Extreme weather: improved data products on bushfires, thunderstorms, tropical cyclones and east coast lows

Andrew Dowdy¹, Harvey Ye¹, Kevin Tory¹, David Jones¹, Alex Evans¹, Sally Lavender², Marcus Thatcher², Tony Rafter², Stacey Osbrough², Kevin Walsh³, Leone Cavicchia³, Jason Evans⁴, Jennifer Catto⁵

Bureau of Meteorology¹, CSIRO², University of Melbourne³, UNSW⁴, Monash University⁵

AFAC 2017 - Research Forum
Overview

Natural disasters are commonly associated with extreme weather (particularly in Australia).

Significant knowledge gaps exist regarding some weather extremes.

The National Environmental Science Programme (NESP) has funded a project to research **TCs, east coast lows (ECLs), thunderstorms and bushfires**.
Project summary

Project is focused on Disaster Risk Reduction, through providing research products designed to meet user needs:

• Improved knowledge on bushfires, TCs, ECLs, thunderstorms and associated extremes (rainfall, wind, hail, lightning).

• New datasets and tools on extreme weather, in current and future climates.
Bushfire research questions

• What factors control fire weather variability over various time scales?

• Can we improve the prediction of these factors?

• What practical tools can build resilience to extreme fires?
Database produced: based on a long time period of gridded observations

- Daily FFDI (from 1950), KBDI (from 1911), with others intended (FWI, SDI, GFDI, C-Haines).
- Based on AWAP (0.05 degree grid), with NCEP reanalysis winds (bias corrected to BoM fire weather forecast winds).
- Broad-scale (temporal and spatial) guidance, complementary to other data.
- Automatic daily updates.

Designed for use with existing tools in BoM services
Fire weather extremes

How often do extremes occur at a given location?

- Some locations have FFDI > 100 more than once a decade.
- Some fire prone regions have relatively low values for extremes.
Long-term changes in extremes, based on days per season above 90th percentile FFDI.

Partial derivatives:

- **temperature** is primary cause of FFDI increase

\[
\left(\frac{\partial \text{FFDI}}{\partial T} \right)_{RH, DF} = 0.0338 \text{FFDI}
\]

\[
\frac{\partial \text{FFDI}}{\partial v} = 0.0234 \text{FFDI}
\]

\[
\left(\frac{\partial \text{FFDI}}{\partial RH} \right)_{T} = -0.0345 \text{FFDI}
\]

\[
\left(\frac{\partial \text{FFDI}}{\partial DF} \right)_{T} = 0.987 \frac{\text{FFDI}}{DF}
\]
Influence of ENSO

The El Niño/Southern Oscillation (ENSO) influences fire weather in Australia.

Significant correlations shown here between NINO3.4 index and FFDI at each grid point:

• more dangerous conditions during El Niño,
• however, depends on season and region.
Motivation: Drivers such as ENSO, as well as fuel moisture, provide predictive skill weeks to months ahead.

Proof of concept developed:

- FFDI grids throughout Australia based on ACCESS-S (11 member ensemble, Nov. 1 start dates, 1990-2012).
- Accurate predictions found at lead times from 1 week out to 4 months (based on above/below median FFDI).
- Intended to attract support for developing real-time capabilities.
ACCESS-S hindcasts of FFDI (black symbols) shown for one ensemble member during summer:

- Strong relationship to NINO3.4, and to AWAP-based FFDI dataset (orange symbols).

Accuracy of predictions are higher based on ensemble mean:

- 70-75% correct for southern or northern Australia in summer.
Modelling of future extremes

Currently examining daily FFDI from GCMs and downscaling (WRF and CCAM).

- Assessed against observations-based FFDI dataset for current climate.
- Next step is examining extremes in future climate simulations.

Model assessment tool: Mean number of days per month that the AWAP-based FFDI is above 90th percentile (1950-2016).
Thunderstorms

- Currently examining thunderstorms and associated extremes: rainfall, winds, lightning (dry and wet), hail.

- Using station data, remote sensing (radar, satellite, lightning networks), reanalyses, GCMs and fine-scale downscaling.

- Developing improved knowledge and tools for current and future climate on thunderstorm hazards.
New lightning climatology

Database of cloud-to-ground lightning

- Time period over twice as long as previous best climatology.

- Range of applications (bushfire ignition, power distributors, insurance groups, emergency management).
Pyrogenic lightning

Black Saturday lightning (blue) and satellite hotspots (red), with the location of a pyrogenic lightning ignition (purple circle).

Real-time guidance potential:

- First lightning stroke generated five hours after fire ignition (provides evidence of strong updrafts and deep convection)
- Atmosphere/fire feedback, including fire ignition from pyrogenic lightning: 100 km range
- Synoptic/mesoscale conditions are important for pyroCb (e.g. Beechworth fire ~midnight)

Ref.: Dowdy et al., 2017: Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. J GR-A.
Multi-hazards

Concurrent storms:

- Thunderstorms based on lightning observations (WWLLN).
- Cyclones based on closed contours of MSLP for ERA-Interim reanalysis, supplemented with IBTrACS.
- Fronts based on a thermal front parameter for ERA-Interim reanalysis.
- Extreme weather (precipitation, wind speed, wave height, …) based on 99th percentile threshold at individual ERA-Interim gridpoints, from 2005-2015.

East Coast Lows

Some recent results:

• Fewer ECLs due to global warming (based on GCMs and downscaling)

• ECLs found to be dominant cause of large waves in eastern Australia (from buoy obs), rather than TCs or remote swell.

• However, storms that do occur could become stronger and rising seas could increase impacts.

Current research focus:

• Better understanding of energetics, including hybrid characteristics, and associated hazards.

ECL energetics

- Different ECL events can have different characteristics.
- Aim to classify ECLs based on formation and intensification mechanisms.
- Focus on storm structure (Hart phase space) and energetics (Lorenz parameters).
- Method tested on Pasha Bulker (June 2007) and Duck (March 2001) events.
Tropical cyclones

- Currently examining TCs based on observations, reanalyses, GCMs and fine-resolution downscaling.

- Developing improved knowledge and tools for current and future climate on TCs and associated hazards (extreme rain and wind).

- Examining influence of modes of variability (e.g. ENSO, MJO), decadal variability, climate change, and tropical expansion.
Long-term changes in TCs

Difficult to determine whether past changes have exceeded natural variability:

• limited period of high quality data
• temporal variability in TC activity

Can some of this variability be accounted for, resulting in an improved ability to examine changes?
25% of TC variability can be related to NINO3.4, and 17% can be related to SOI. This variability, V, is represented here as:

$$V_{\text{NIN}} = -2.15 \times \text{NINO3.4} - 0.1$$

$$V_{\text{SOI}} = 0.13 \times \text{SOI} + 0.1$$

Data:
- July-Sep. averages of SOI and NINO3.4
- TC occurrence (from BoM) in Australian region (90-160E), < 995 hPa (to avoid weak systems), 1982/83 to 2012/13.
Downward trend

After accounting for ENSO, trend significance increases from a confidence level of 87% to

- 93% based on NINO3.4
- 98% based on SOI

Stability of TC/ENSO relationship

- NINO3.4 accounts for 49% of TC variability in the first half of the study period, but only 9% in the second half.

- SOI accounts for 36% of TC variability in the first half of the study period, but only 9% in the second half.
Pacific Decadal Oscillation

Mostly positive in 1st half of study period (upper panel) and negative in 2nd half (lower panel):

- More TCs in 1st half of study period, however, TC\#s show little relationship to PDO, suggesting downward trend not likely due to PDO.

- Only $\sim\frac{1}{2}$ PDO cycle, so little confidence in modulating effect on ENSO/TC relationship (e.g., stronger ENSO influence in +ve PDO).
Tropical expansion

TC latitude (IBTrACS) vs. boundary of tropics (based on tropopause height: May-Oct in NH, Nov-Apr in SH) 1979-2009.

Poleward migration of the location of tropical cyclone maximum intensity is plausibly linked to tropical expansion [Kossin et al., 2014: Nature]
Tropical expansion

TC latitude (IBTrACS) vs. boundary of tropics (based on tropopause height: May-Oct in NH, Nov-Apr in SH) 1979-2009.
Tropical expansion

TC latitude (IBTrACS) vs. boundary of tropics (based on tropopause height: May-Oct in NH, Nov-Apr in SH) 1979-2009.

Australian region, $r = 0.35$
NESP project on extremes, has similar amounts of activity on

TCs, Thunderstorms, Bushfires, East Coast Lows

Please contact me for further details, including for linking this research with services.

Dr Andrew J. Dowdy
Bureau of Meteorology
p: +613 9669 4722
e: andrew.dowdy@bom.gov.au