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INTRODUCTION 
Wildfire removes the surface vegetation, releases ash, increases erosion and runoff, and therefore effects the hydrological cycle of a forested
water catchment. It is important to understand changes in water quality in fire‐impacted catchments and how they recover post‐fire. Two
approaches were used to detect the long‐term effect of fire on water quality using an empirical approach consisting of linear mixed models
(LMM) and a mechanistic model, the Soil and Water Analysis Tool (SWAT). Ten years of pre‐fire and ten years of post‐fire data were available
for modelling. The focus was discharge, total suspended sediments (TSS), total N (TN) and total P (TP). LMMs are a regression method that
accounts for the auto‐correlation in residuals commonly found in time series data. The SWAT model is one of the most widely used models
for predicting the long‐term impact of land use change on catchment flow and water quality using spatially distributed catchment data (land
use, slope and soil type) and climate data. However, compared to mechanistic model, it require more specific data and longer processing
time. EMPIRICAL MODEL:

Seven linear mixed model were built for three of control catchments (C1, C2
and C3, Figure 1) and four burnt catchments (B0 – B3, Figure 1) For the 10
year pre‐fire period and the 10 year post‐fire period. A fire dummy variable
(0 for pre‐fire, 1 for post‐fire) was created together with other event related

variables and flow to predict TSS, TN and TP. The LMM method calculates
the fire effect on water quality and the significance of other discharge
related predictors. This predicts a long‐term average estimate of the effect
of fire on water quality. Differences between the results in the burnt and

unburnt catchments were used to distinguish between the natural effects of
weather and the effect of fire.

Result
• All LMMs found discharge to be a significant predictor for predicting

water quality.
• Models for predicting TSS were generally found to include event‐related

predictors.
• The back transformed coefficient of the “fire” dummy variables in each

model provided the predicted fire effect for each catchment in the 10
years post‐fire period (Table 1).
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CONCLUSION:
• Fire has short‐ and long‐term effects on forested catchment water quality.
• Both models showed a significant change in water quality in burnt catchments. This indicated an effect of fire

on water quality
• SWAT models indicated a change in the ability of the model to predict flow for burnt catchments during the

post‐fire period. This might indicate a change in catchment hydrogical cycle due to fire.
• Catchment B3 showed no significant effect of fire on TSS, however, the SWAT model showed the most

significant flow change in catchment B3 during post‐fire period. This might explained the the significant
change in flow which biased the effect of fire in the LMM.

NEXT STEPS:

• Modify SWAT by changing land use and soil carbon content to simulate the effect of fire fire effect
• Build different scenarios in SWAT to examine the effect of fire location and climate change.

TSS TN TP

C3 1.46 X X

C1 X X X

C2 X 0.37 0.1

B2 1.84 2.88 2.45

B3 X 0.7 1.13

B1 3.32 1.35 X

B0 1.32 X X

Average 

control

1.23 1 1

Average 

burned

1.87 1.48 1.40

Net change 0.64 0.48 0.40

Table 1 LMM coefficients 

MECHANISTIC MODEL:
Due to data availability, five catchment were modelled, two for control ( C1 and C2) three for burnt (B0,B2 and B3)
using climate data (solar radiation, temperature and wind) and spatial data (DEM, land use and soil type) to predict
the change in water quality and quantity. Post‐fire flow and water quality data are used to validate the model. A
change in model performance between pre‐ and post‐fire indicate a fire effect.
Result
• All models showed good predictions for flow and TSS during the calibration period (Table 2).
• During calibration period, C1 shows a relatively lower Nash‐Sutcliffe Efficiency, This may be due to:

1) Poor climate data: rain gauge locate 25 km away from monitoring point.
2) Bias in the water quality data: more samples were taken during the rising limb during the

calibration period than validation period. This might result in the model over‐predicting TSS
especially for events with less than one day duration.

• Both control catchments had a lower NSE for the validation period. This might indicate poor model performance
during periods of low rainfall. However, control catchments still showed a much higher NSE for TSS prediction
especially for C2.

• B3 was the most severely burnt catchment, showed the worst NSE result during post‐fire period.

Catchment Calibration Validation

Flow TSS Flow TSS

C1 0.75 0.13 0.23 ‐0.05

C2 0.72 0.83 0.57 0.57

B2 0.64 0.57 0.19 0.04

B3 0.76 0.41 ‐1.17 ‐0.01

B0 0.57 0.78 0.26 ‐0.05

Average C 0.735 0.48 0.40 0.26

Average B 0.65 0.59 ‐0.24 ‐0.0066

Table 2 Nash‐Sutcliffe Efficiency values for 
calibrated and validated models.

“Investigating the impact of bushfires on
ecosystem processes and natural resources is
one of the research priorities for NPWS.
Exploring the differences between empirical
versus mechanistic models help to clarify
which tools are better suited for modelling
fire effects on water quality of catchments;
ultimately improving decision making
processes and minimizing the impacts of
hazard reduction and suppression activities.”

‐‐ Felipe Aires
NSW National Parks and Wildlife Service 


