

INCLUDING INTANGIBLE VALUES IN NATURAL HAZARD DECISION MAKING

The Economics of Natural Hazards

Abbie Rogers, Fiona Gibson, Jacob Hawkins, Veronique Florec, Atakelty Hailu & David Pannell Centre for Environmental Economics & Policy, The University of Western Australia, WA

Business Cooperative Research Centres Programme

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

ECONOMICS OF NATURAL HAZARDS

1) Objective of mitigation: protect the values affected by natural hazards

2) How do we determine which management options offer the best value for money?

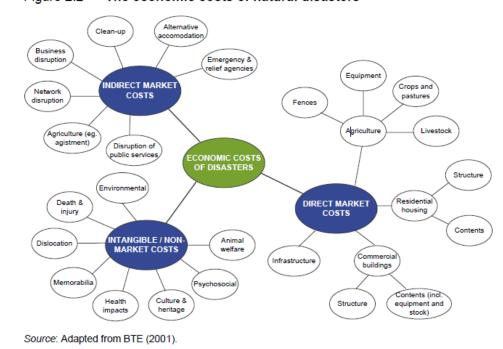
a) Limited budgets

b) Prioritise investments between different locations and different hazards

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

PRIORITISING NATURAL HAZARD MITIGATION

1) Need better information about the environmental and social values affected


2) Need to weigh up all of the economic, environmental and social costs in an integrated economic assessment

→ Benefit-cost analyses

© BUSHFIRE AND NATURAL HAZAR

BENEFITS AND COSTS OF MITIGATION

- Tangible, market costs and benefits
 Well documented
- 2) Intangible, nonmarket costs and benefits
 - Less so

HOW DO WE MEASURE THE INTANGIBLE?

1) Quantified in financial equivalent terms

2) Non-market valuation:

Source: Adapted from BTE (2001).

A set of economic methodologies able to estimate monetary figures for non-market costs and benefits

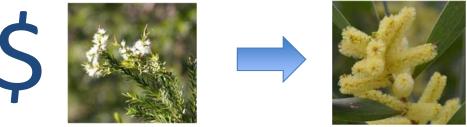
Data collected by analysing related markets, or through surveys

Identifies "willingness to pay" for a change in provision of a public good or service

 \rightarrow \$ values can be used in benefit-cost analyses

ORIGINAL STUDIES ARE IDEAL, BUT...

1) Natural hazards can impact a large area


2) Multiple non-market values are affected

- 3) To measure them all with non-market valuation
 - a) requires extensive research;
 - b) original studies are expensive and time consuming...

AN ALTERNATIVE: BENEFIT TRANSFER

 Benefit transfer uses \$ values estimated from original studies and applies them to similar policy contexts

2) Can be complicated:

- a) Decision contexts are rarely the same
- b) There are not many original studies measuring willingness to pay for values affected by natural hazards
- c) Leads to uncertainty in the transferred values

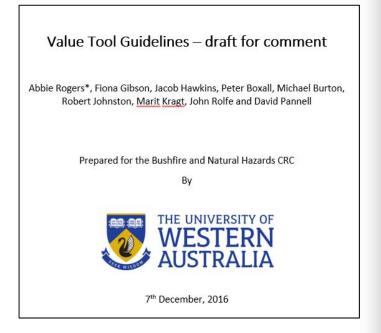
3) Uncertain information is better than no information

VALUE TOOL FOR NATURAL HAZARDS

A database of existing non-market values that can be used for benefit transfer

				-		-					_	
FUDY IDENTIFICATION AND RELEVANCE				VILLINGNE			VILLINGNESS TO PA	INGNESS TO PAY				
Actes MCP for num ber for V unique W7P	Citation	Həzərd typ əpplicable	Yalue type applic e	Brief summary of study objective(s)	Study conducted in #****context of a ************************************	study quality #==por, 2=average, 4	Benefits transfer annicability * xery, 2=in ookvatry,	Recommendations (Applicability for benefit transfer in natural hazar context)	Definition of marginal change (This is what is being measured - e.g. luTP to avoid being located hasard risk cone)	Hazard typ	Specific val type measur	WTP estimate
1	Ambrey and Fleming 2011	Fire, Flood, Storm, Earthquake, Tsunami	Amenity	Examination of scenic amenity on life satisfaction in SE Queensland	No	1	2	Useful for BT in Australia; be aware of generalised context - not NH specific	WTP for one-unit improvement in scenic amenity on a 10-point scale by household	Not specified	Scenic amenity	\$14,251.46 per household per year
2	Ambrey and Fleming 2011	Fire, Flood, Storm, Earthquake, Tsunami	Amenity	Examination of scenic amenity on life satisfaction in SE Queensland	No	1	2	Useful for BT in Australia; be aware of generalised context - not NH specific	WTP for one-unit improvement in scenic amenity on a 10-point scale by household	Not specified	Scenic amenity	\$5,700 per person per year
3	Bin, et al. 2008	Flood, Storm	Amenity	Measurement of the value of scenic amenity and flood risk on property value	Yes	2	2	Useful for NH BT, especially flood context; be aware of/adjust for population differences	WTP to increase view by one degree	Flood, Storm	Scenic amenity	\$335.31 pe property purchase
4	Bin, et al. 2008	Flood	Safety	Measurement of the value of scenic amenity and flood risk on property value	Yes	2	2	Useful for NH BT, especially flood context; be aware of/adjust for population differences	WTP to avoid location in Special Flood Hazard Area	Flood	Flood risk	-\$36,081.73 per propert purchase
5	Bin, et al. 2008	Flood, Storm	Amenity	Measurement of the value of scenic amenity and flood risk on property value	Yes	2	2	Useful for NH BT, especially flood context; be aware of/adjust for population differences	WTP to increase view by one degree	Flood, Storm	Scenic amenity	\$651.16 per property purchase
6	Bin, et al. 2008	Flood	Safety	Measurement of the value of scenic amenity and flood risk on property value	Yes	2	2	Useful for NH BT, especially flood context; be aware of/adjust for population differences	WTP to avoid location in Special Flood Hazard Area	Flood	Flood risk	-\$37,454.88 per propert purchase
7	Hesseln 2004	Fire	Recreation	Examination of fire's impacts on the aesthetic values with regard to user demand and value for recreation	Yes	3	2	Useful for NH BT, especially fire context; be aware of/adjust for population differences	Consumer surplus per day for hiking demand associated with the impacts of fire recovery	Fire	Recreation value	\$37 per trip

NON-MARKET VALUES AFFECTED BY NATURAL HAZARDS


Health values	Environmental values	Social values
 Physical health Mental health 	 Ecosystems Water quality 	 Recreation Amenity Safety Cultural heritage Social disruption Memorabilia Animal welfare

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

USING THE VALUE TOOL DATABASE

1) Define the policy context

- a) hazard/mitigation action, values affected, who is affected
- 2) Define the bounds of the benefit transfer Guidelines
 - a) Critical to understand the breadth of the existing non-market value literature on the relevant value types

3) Consult the database

CASE STUDY: BROWNHILL AND KESWICK CREEKS CATCHMENT

1) High flood risk catchment in Adelaide

2) Mitigation options include creek capacity upgrades, bypasses and detention dams

3) Our other project – benefit cost analysis of the different mitigation options, including nonmarket values

Chalak et al. (2017) Economic analysis of flood mitigation options for the Brown Hill and Keswick creeks catchment, Adelaide. Report prepared for the BNHCRC.

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

DEFINE THE POLICY CONTEXT

1) What is the natural hazard type?▶ Flooding

2) Which non-market values are affected by the hazard type or its mitigation?

NON-MARKET VALUES AFFECTED IN THE CATCHMENT

Health values	 Physical health: mortality Mental health: stress, anxiety
Environmental values	• negligible
Social values	 Amenity: amenity related park recreation Cultural heritage: Stone Pine trees Social disruption: Electricity outage Road traffic annoyance Road traffic delays Inability to return home

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

DEFINE THE POLICY CONTEXT CONT'

- 1) What is the natural hazard type?
 - ➢ Flooding
- 2) Which non-market values are affected by the hazard type or its mitigation?
 - We'll focus on social disruption electricity outage
- 3) How are those values affected, in terms of the physical changes likely to occur?
 - Mitigation works will reduce # of households experiencing 12hr outage

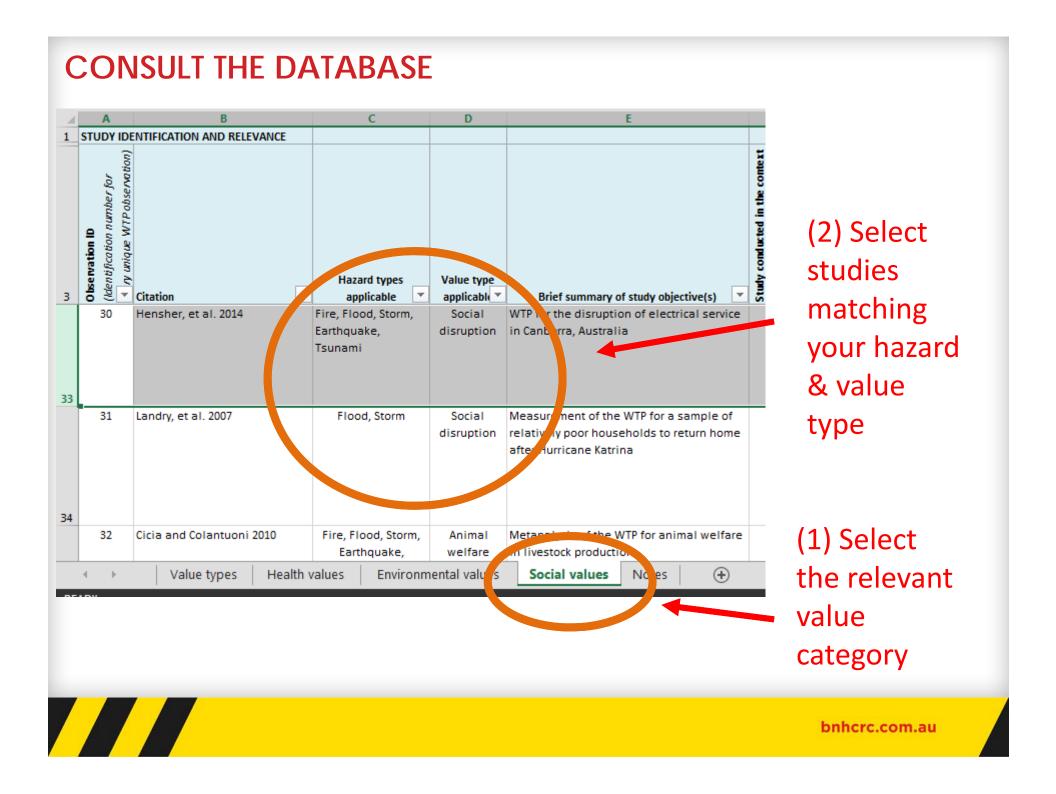
DEFINE THE POLICY CONTEXT CONT'

- 1) What is the natural hazard type?
 - ➢ Flooding
- 2) Which non-market values are affected by the hazard type or its mitigation?
 - Social disruption electricity outage
- 3) How are those values affected, in terms of the physical changes likely to occur?
 - Mitigation works will reduce # of households experiencing 12hr outage
- 4) What is the scale of the proposed change?
 ▶ 100yr ARI flood = 1,172 households affected
 ▶ Full mitigation works = 6 households affected

DEFINE THE POLICY CONTEXT CONT'

- 1) What is the natural hazard type?
 - Flooding
- 2) Which non-market values are affected by the hazard type or its mitigation?
 - Social disruption electricity outage
- 3) How are those values affected, in terms of the physical changes likely to occur?
 - Mitigation works will reduce # of households experiencing 12hr outage
- 4) What is the scale of the proposed change?
 - 100yr flood = 1172 households with 12hr outage
 - Full mitigation works = 6 households with 12hr outage
- 5) What are the socio-economic characteristics of the affected population?
 - Greater Adelaide area population

CONSULT THE GUIDELINES


1) Social disruption:

"There are very few cases where non-market valuation studies have estimated the value of avoiding social disruption. These are either not in the context of natural hazards, or are not Australian studies."

2) Benefit transfer:

Recommend an 'adjusted unit value transfer'

CONSULT THE DATABASE

1	А	В	J	K	L	AB	AC
L	STUDY ID	ENTIFICATION AND RELEVANCE	WILLINGNESS TO PAY			SAMPLE CHARACTERISTICS	
3	0 bise evation ID 0 (Identification number for ▲ In unious WTP observation)		Definition of marginal change (This is what is being measured - e.g. WTP to avoid 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 hazard risk zone) WTP for a residential customer to avoid an 12- hour electricity outage per event	Hazard types identified 💌 Out specified	Specific value type measured Social disruption	Country/region studied Canberra, Australian Capital Territory	Country of source studie Australia
3	31	Landry, et al. 2007	WTP to return home following evacuation due to Hurrican Katrina	Flood, Storm	Social disruption	Houston, Texas	USA
ł	27	Cicia and Colontumi 2010	WTD for a label that	lot coorified	Animal welfare	Nervey Spein IS	Locations studied in

(3) Refine study selection:

- How well does the marginal change correspond to your policy context?
- How well do the sample characteristics match?

CONSULT THE DATABASE

Α	В		J	K	L	M	Р
STUDY ID	ENTIFICATION AND RELEVANCE	WILLINGNE	ESS TO PAY				
Observation ID © (Identification number for I'r unique WTP observation)		(This is measure avoid be haza	on of marginal change what is being vd - e.g. WTP to ing located in a rd risk zone)	Hazard types identified	Specific value type measured	MTP estimate \$65.57 per	WTP estimate (2016 \$AU) ▲
		customer	to avoid an 12- ricity outage per			customer	

(4) Find the willingness to pay estimate in 2016 AUS\$

CONDUCTING THE BENEFIT TRANSFER ADJUSTING THE UNIT VALUE TRANSFER

1) Willingness to pay to avoid 12hr electricity outage

= \$90.57 per household per event, for ACT residents

- 2) Our decision affects Greater Adelaide residents
 → income adjustment
 - = \$90.57 x 78.48%
 - = \$71.08 per household per event, for Greater Adelaide

CONDUCTING THE BENEFIT TRANSFER AGGREGATION

1) Willingness to pay = \$71.08/household

Scenario	Households affected	Willingess to pay to avoid 12hr outage
Current scenario: 100yr ARI flood	1172	\$83,304
Full mitigation works	6	\$427

The non-market benefits of the mitigation works for avoiding a 12hr electricity outage are \$82,877

A VALUE TOOL FOR NATURAL HAZARDS

1) Accessible database of \$ estimates for nonmarket values

2) Guidelines on conducting simple benefit transfers

3) Easier to account for *all* costs and benefits that affect natural hazard decision making

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

NEXT STEPS

1) Finalising the database & guidelines

2) Online presence

- a) Website housing the Value Tool
- b) Explanatory videos on how to use it
- 3) Training workshops (e.g. ANHMC)

4) Updating and finding a custodian

JOIN THE UWA TEAM AT OUR BREAKOUT SESSION TOMORROW: 11.15AM ROOM 1

David Pannell

Abbie Rogers

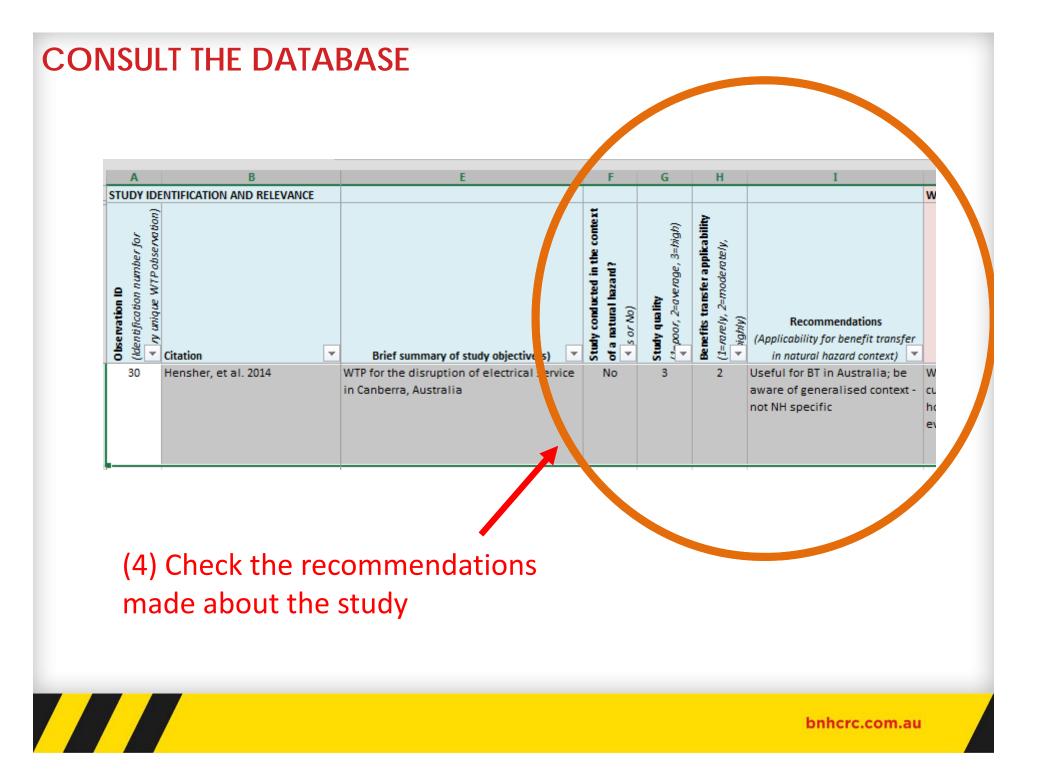
Fiona Gibson

Atakelty Hailu

Veronique Florec

Jacob Hawkins

abbie.rogers@uwa.edu.au


© BUSHFIRE AND NATURAL HAZARDS CRC 2017

TRADE-OFF: INCOMPLETE OR UNCERTAIN INFORMATION

- Better to include information with uncertainty than to ignore it completely (Pannell & Gibson 2016):
 - a) Investigated variables used in decision metrics for environmental project prioritisation
 - b) Environmental outcomes were better with uncertain information compared to incomplete information

→ Values from benefit transfer are worth including in benefitcost analyses

Pannell, D.J. and Gibson, F.L. 2016. Environmental cost of using poor decision metrics to prioritize environmental projects. *Conservation Biology*, 30(2): 382-391.

