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Figure 4. Time series of the Fremantle sea-level record for August 2014 showing the filtering procedure used to isolate the
meteotsunamis with periods of less than 6 h: (a) the observedwater-level time series; (b) the tidal component time series from
the harmonic analysis; (c) the residual time series: observed record(a) – tidal component(b); (d) low-pass-filtered time series;
and (e) time series with periods of less than 6 h to identify tsunami waves (both seismic and meteo): series(c) – series(d).

(figure 3). The water-level time-series records were subjected to several filtering methods to
isolate the meteotsunami signal (see figure 4, which shows the results obtained from Fremantle
in January 2013):

(a) The observed water-level record (figure 4a) was subjected to harmonic analysis using the
T-Tide Matlab toolbox [76] to remove the tidal components (figure 4b) from the sea-level
records, resulting in the residual time series shown in figure 4c.

(b) The residual time series (figure 4c) was subjected to a low-pass filter to remove the periods
less than 36 h, resulting in a time series that included the storm surge and weather band
frequencies (figure 4d).

(c) The storm surge and weather band frequencies (figure 4d) were subtracted from
the residual time series (figure 4c) to provide a time series that contained periods
approximately less than 6 h, which included seiches and tsunami waves (both seismic
and meteo).

The water-level time series were subjected to Fourier analysis to identify the dominant
frequencies in the records and their variation with time through the construction of time–
frequency plots. Here, time series of 4096 points at 1 min sampling intervals were used to estimate
power spectra using the Welch method [77] using the fast Fourier transform method. Subsequent
spectra were calculated using a 75% overlap.

4. Results

(a) Proudman resonance
Many of the previous studies (§2a) have indicated that Proudman resonance is one of the main
mechanisms for the generation of meteotsunamis. An idealized one-dimensional example of
Proudman resonance and its sensitivity to different combinations of the speed of moving pressure
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Figure 5. Snapshots of distribution of the water levels along a narrow, long channel. The channel is 400 km long and the
snapshots are at 55 min intervals. Panels (a–d) represent water levels at 50 min intervals.
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Figure 6. Variation in the resonance factor (ε = |ηmax/ηs|) for different water depths along a narrow long channel.

disturbance (U) and the shallow water wave speed (c) were investigated using a depth-averaged
numerical model of a long narrow canal with a flat bottom (§3a, figure 5). The time series of
the distribution of wave heights along the channel for the conditions close to when Proudman
resonance is expected to occur indicated a progressive increase in the wave height as the pressure
disturbance moved along the channel with time (figure 5). Changing the water depth (which
in turn is related to the shallow water wave speed, c) indicated that the maximum response
factor occurred when the water depth was approximately 40 m, i.e. when U = c (figure 6). In
the propagation of the pressure disturbance along the canal, initially the maximum wave height
was similar to the stationary case (inverted barometric factor) of approximately 0.04 m (ε = 1),
which increased to approximately 0.08 m (ε = 2) approximately 3 h later towards the end of the
channel (figure 5). Thus, Proudman resonance in this situation resulted in the doubling of the
wave heights along the channel. Previous studies have indicated that ε < 5 due to frictional
and topographic effects [35,47,61], and these simulations agree with those findings. However,
Whitmore & White [12] reported values of the resonance factor ε ∼ 100 in a similar experiment,
but with a shorter wavelength of the pressure jump (12 km compared with 50 km used here). This
demonstrated that the resonance factor depends on the wavelength of the pressure disturbance.
Vilibić [61] highlighted the importance of the wavelength of the pressure disturbance, particularly
in narrow shelves, as shorter wavelength disturbances were more efficient in transferring the
energy to the sea.

(b) Wave shoaling
In a region where the depth changes are uniform, wave shoaling based on linear wave theory is
usually deemed to be governed by Green’s law (η ∝ h−0.25

o , where ho is the deep water depth; see
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Figure 7. Time series of the predicted water levels generated by a pressure jumpmoving from north to south with orientation
west to east. Panels (a–f ) represent snapshots at hourly intervals.

also [78]). To examine the wave shoaling behaviour for meteotsunamis in southwestern Australia,
a depth-averaged unstructured grid model with actual bathymetry was applied. The forcing was
limited to a 4 hPa pressure jump moving with different speeds and directions. The variation
of the water level, with time, for the case where the pressure jump is travelling from north to
south highlighted the role of topography and wave refraction in this particular region (figure 7).
Initially, the water-level changes (0.10 m; ε = 2.5) are limited to deeper water only (figure 7b). As
the pressure jump progresses southward, the waves to the north are aligned parallel to the shore
due to refraction, while to the south, in deeper water, the increase in water level is oriented east–
west, aligned with the pressure jump forcing. The maximum water levels are now 0.20 m (ε = 5),
with the highest values along the continental shelf break (figure 7c). When the pressure forcing has
ceased (the pressure jump moved out of the model domain), the meteotsunami is present also on
the shelf, in the central region of the domain (between latitudes 31.5◦ S and 32.5◦ S), while between
latitudes 32.5◦ S and 33.5◦ S the meteotsunami is along the shelf break (figure 7d). The maximum
water levels are now more than 0.4 m (ε > 10). Subsequent time steps indicate the propagation of
the meteotsunami onshore to Bunbury (figure 7f ).

The variation in the maximum wave height as the meteotsunami propagates from deep water
across the continental slope and onto the continental shelf highlights the importance of the wave
shoaling (figure 8). In deep water, the maximum wave heights were 0.12 m (ε = 3) and increased
slightly towards the shore with the shoaling process being most effective from approximately
2000 m water depth. Here, the wave heights increased more than threefold from 0.27 to 1.03 m (ε =
6.8–25.6), a significant increase in the wave height from deep to shallow water (figure 8). These
results are analogous to those reported by Hibiya & Kajiura [47] to explain the meteotsunamis
(‘abiki’) in Nagasaki Bay, Japan. Here, the initial waves were generated by a moving pressure
jump of 3 hPa across the east China shelf and were amplified (ε = 4) through Proudman resonance
over the initial 300 km, in water depths of 50–150 m. The amplification continued across the shelf
slope, due to shoaling, for a resonance factor ε > 40 at the harbour entrance and was estimated to
be ε ∼ 190 in the regions that were damaged [8,47].
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Figure 8. Variation in the resonance factor (ε = |ηmax/ηs|) as the simulated meteotsunami wave propagates from deep
water to nearshore. The location of the transect is shown in figure 3a.

Several model runs were undertaken (with actual bathymetry) with the different magnitudes,
propagation speeds and directions and the predicted maximum wave heights were extracted for
Bunbury (figure 1). The model results indicated that all three parameters (magnitude, speed and
direction) influence the maximum wave height predicted at Bunbury (figure 9). For a particular
propagation direction, larger maximum wave heights were generated by a higher pressure
jump with travelling speeds between 20 and 32 ms−1 (figure 9a). Propagation speeds of less
than 20 ms−1 resulted in lower wave heights for the same magnitude of the pressure jump.
The maximum wave heights were generated when the air pressure disturbance was travelling
from direction 310◦–340◦ (from NNW) at speeds between 20 and 24 ms−1 (figure 9b); however,
higher and lower propagation speeds produced smaller wave heights. Previous studies [79,80]
also highlighted the influence of the direction of the pressure disturbance propagation on the
maximum wave heights. This was attributed to the distance travelled over the shelf, which
influenced wave amplification towards the coast, through Proudman resonance and ‘fetch’ (see
equation (2.5)).

(c) Meteotsunamis in southwest Australia, 2014
The annual sea-level record for Hillarys in 2014 exhibits typical sea-level characteristics as
reported in the literature (figure 10a): there is a fortnightly cycle of tropic and equatorial tides
with storm surge and continental shelf wave signals superimposed. The mean sea level is a
maximum during the austral winter due to oceanic processes [54]. The maximum water level
was 1.82 m during the passage of the cold front in mid-June (figure 10a). The sea-level record
from Hillarys, with a sampling interval of 1 min, was subject to the sequence of filtering as
described in §3b to extract the time series with periods less than 6 h (figure 10b) and time–
frequency analysis (figure 10c). Using the threshold criterion suggested by Monserrat et al. [8]
to classify a meteotsunami as a wave amplitude which exceeds 4 ∗ σ , in 2014, there were more
than 30 events recorded in the time series with the majority in terms of magnitude and number
occurring during the winter months. The maximum recorded wave height was 0.4 m on 5 October.
The event on 17 August (see §4d) had a maximum wave height of 0.35 m (see also figure 11). The
occurrence of a higher number of events during the winter months is mainly due to the passage
of mid-latitude depressions and associated frontal systems. The time–frequency analysis reveals
the different frequencies in the record and their changes with time. The tidal frequencies and their
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heights due to a moving pressure jump, moving from north to south with different magnitude and speed and (b) Maximum
predicted wave heights due to a 3 hPa moving pressure jump with different magnitudes and directions.

fortnightly modulation are clearly present at the 24 h (diurnal) and 12 h (semi-diurnal) frequencies
(figure 10c). Other frequencies at 2.7 h and 15 min are due to local seiches. The spectral energy at
the 2.7 h oscillation is present almost all the time and has been attributed to the continental shelf
seiche (see §2c and equation (2.8)) with the continental shelf width being approximately 50 km.
The 15 min oscillation is due to the presence of a limestone reef system offshore of Hillarys Marina,
where the tide gauge is located. Here, the mean water depth of approximately 16 m results in
a period of approximately 15 min using equation (2.8). A similar period of oscillation (13 min)
was reported by Thotagamuwage & Pattiaratchi [81] at Two Rocks (figure 1). A feature of these
two oscillations (and perhaps another minor one at approx. 1 h) is that there is energy at both
of these frequencies almost continuously throughout the year. These represent the background
oscillations in the filtered time-series record which fall into the category of less than 4 ∗ σ and
thus are not classified as a meteotsunami (figure 10b). However, there are periods when the
energy is enhanced, coinciding with the meteotsunamis: it appears that, during the passage of
a frontal system, the whole spectrum is energized, as shown in the higher energy bands across
all frequencies, which correspond to the meteotsunami events (cf. figure 10b,c). This increase in
energy across all the frequencies and that enhances the existing frequencies was reported for
meteotsunamis at other locations along western Australia [14] and for seismic tsunamis along
western Australia and Sri Lanka [74].

(d) Meteotsunami on 17 August 2014
At 2203 h on Sunday 17 August 2014, car carrier Grand Pioneer and the container ship
AAL Fremantle were moored in Fremantle Port at berths 11 and 12 (figure 3c), respectively. A
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bollard that was holding all three of the AAL Fremantle’s stern lines and two from the car carrier
Grand Pioneer ripped off the wharf, causing both ships to swing away from berth. AAL Fremantle,
freed from its stern lines, swung around and collided with the railway bridge (figure 3c), which
was badly damaged and closed for two weeks, severely disrupting one of the major commuter
railway lines in Perth, Australia. Initially, the incident was attributed to strong winds associated
with a passage of a front, but further analysis revealed that the ship’s moorings were broken
by strong currents within the harbour which could be attributed to a meteotsunami. At the
time of the incident, widespread thunderstorms were experienced in the region. Data from a
local meteorological station at Rottnest Island and coastal water-level data from four locations
were examined to determine the cause of the strong currents inside the harbour. Time series
of atmospheric pressure indicated a gradual decrease, with two pressure jumps evident in the
record (figure 11b). The first pressure jump of amplitude 2.1 hPa occurred over a period of 83 min
(between 20.20 and 21.43) and was associated with a pulse of wind to a maximum speed of
17 ms−1; the second pressure jump was more severe, with a 2.4 hPa change over 14 min (between
21.43 and 21.57) with wind speeds up to 23 ms−1 and gusts up to 30 ms−1. Tide gauge records
all indicted the presence of higher water-level fluctuations coinciding with the passage of the
pressure jump. The higher water-level fluctuations were first observed at the northern-most
station, Two Rocks, which is located 70 km away from Fremantle (figure 3b), and progressed
southwards, in the direction of the pressure jump. The rainfall radar also indicated progression
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given in figure 3.

of the rain bands from north to south. The maximum wave heights at Hillarys and Fremantle (at
both Inner and Boat Harbours, figure 3c) were observed 8 and 20 min later than those observed at
Two Rocks, respectively (figure 11c). As the wave progressed in the harbour, very strong currents
greater than 1.0 ms−1 (depth-mean) were measured to the north of the entrance breakwater
(figure 3c), travelling in a southwesterly direction prior to entering the harbour. As the wave
progressed inside the harbour, the constriction at the location of the bridge enhanced the currents
at berths 11 and 12 (figure 3c) and resulted in the moorings being broken. The location of a shallow
shoal, the Wangara shoal, immediately downstream of the railway bridge was thought to prevent
ships impacting on the bridge. However, the water levels were higher due to the meteotsunami
and thus the AAL Fremantle was able to pass over the shoal, although there was insufficient water
after the impact with the bridge and a different route was used to relocate the ship at the berth.

Examining the sea-level time series for 2014, the event on August 2014 was not the largest event
recorded during the year (figure 10b). It is also interesting that another event on 10 September,
although not very large, resulted in the breaking of mooring lines within the port without any
further damage.
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5. Discussion and conclusion
Meteotsunamis are generated by meteorological events, particularly moving pressure
disturbances due to squalls, thunderstorms, frontal passages and atmospheric gravity waves.
Relatively small initial sea-level perturbations, of the order of a few centimetres, can increase
significantly through multi-resonant phenomena to create destructive events through the
superposition of different factors. Results from numerical modelling and field measurements
from southwest Australia, presented in this study and by others, have demonstrated that
meteotsunamis are initiated mainly through Proudman or Greenspan resonance. However, the
main influence that leads to amplification of the initial disturbance is due to wave shoaling and
topographic resonance.

The discovery and documentation of meteotsunamis in recent years have benefitted from
developments in measurement and analysis techniques. Historical water-level records (usually
analogue readings) were sampled at 1 h intervals to obtain the tidal, storm surge and long-
term characteristics. This sampling interval was not optimum for identification of meteotsunami
waves. If there was a report of an ‘unusual’ water-level event, it could not be analysed in detail
even if there was a tide gauge in close proximity due to the sampling resolution. As the archived
data are also at 1 h sampling intervals, it is not possible to re-visit historic events. Since the 2004
Indian Ocean mega-tsunami, the establishment of the tsunami warning systems has significantly
increased the number of tide gauges globally (http://www.ioc-sealevelmonitoring.org/) as well
as standardizing the sampling interval to 1 min, which allows for detailed analysis of the sea-
level time-series records. The addition of alternative techniques such as high-frequency radar
[82] to traditional tide gauges is also a new development. Quality control procedures for sea-
level measurements, primarily designed to measure tides and long-term changes, flagged that
any value greater than 3 ∗ σ (where σ is calculated from the residual time series) is to be defined
as spurious and removed from the record. This criterion is lower than the 4 ∗ σ proposed by
Monserrat et al. [8] to define a meteotsunami, and therefore it is possible that some meteotsunami
events may not be present in the historical digitized datasets, although archived analogue records
may contain records of meteotsunami events.

Since the 2004 Indian Ocean tsunami, there have been vast developments in the prediction
of wave heights and inundation potential arising from seismic tsunamis and include modelling
platforms such as ComMIT [83]. Here, the wave heights resulting from a seismic tsunami
of a particular magnitude are predicted using information on the earthquake characteristics
which generate the tsunami. By contrast, prediction of meteotsunamis is in the early stages and
is dependent on the availability of high spatial and temporal resolution atmospheric models
to be able to predict the exact location as well as the speed, amplitude and propagation
direction of the moving pressure disturbance. To date, there have been many approaches
but with mixed results. The only ‘operational’ system appears to be that of the Balearic
Meteorological Service, which raises an alert if the synoptic atmospheric conditions are similar
to those observed during previous meteotsunami events and through monitoring of sea-level
stations [84]. The ability to predict the exact weather system (e.g. thunderstorm, squall) at
fine temporal and spatial resolution is inhibited by the availability of meteorological data,
particularly air pressure, in sufficient resolution to be assimilated into the model. Also standard
meteorological forecast output at 3-hourly intervals is inadequate to capture the pressure change
of approximately 0.3 hPa min−1 required to generate a meteotsunami [85]. Thus, many of the
proposed prediction systems have used meso-scale weather predictions to identify conditions
when a meteotsunami may be generated [50,86,87]. An application of the Weather Research
Forecast atmospheric model to the Balearic Sea region was able to reproduce the development of a
convective nucleus and speed of the atmospheric pressure disturbance [85]. Recently, the TMEWS
(Towards a MEteotsunami Warning System) project examined options for the development of a
meteotsunami warning system along the US coastline [9].

In conclusion, are meteotsunamis an under-rated hazard? The documented evidence to date,
presented here, has identified specific locations where destructive meteotsunamis occur as a
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combination of multi-resonance conditions. However, compared with seismic mega-tsunamis,
loss of life and damage to infrastructure has been significantly lower. Seismic tsunamis are
relatively infrequent highly energetic events able to create destruction across ocean basins.
By contrast, atmospheric disturbances of various types (passing fronts, squalls and trains of
atmospheric waves) are common and are able to generate meteotsunamis more frequently but
that are much less energetic than seismic tsunamis. High-energy events occur only for very
specific combinations of resonant effects. The rareness of such combinations is perhaps the main
reason why destructive meteotsunamis are exceptional and observed only at a limited number of
sites globally.
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