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Abstract: Quantifying post-fire effects in a forested landscape is important to ascertain burn 

severity, ecosystem recovery and post-fire hazard assessments and mitigation planning. 

Reporting of such post-fire effects assumes significance in fire-prone countries such as USA, 

Australia, Spain, Greece and Portugal where prescribed burns are routinely carried out. This 

paper describes the use of Terrestrial Laser Scanning (TLS) to estimate and map change in 

the forest understorey following a prescribed burn. Eighteen descriptive metrics are derived 

from bi-temporal TLS which are used to analyse and visualise change in a control and  

fire-altered plot. Metrics derived are Above Ground Height-based (AGH) percentiles and 

heights, point count and mean intensity. Metrics such as AGH50change, mean AGHchange and 

point countchange are sensitive enough to detect subtle fire-induced change (28%–52%) whilst 

observing little or no change in the control plot (0–4%). A qualitative examination with field 

measurements of the spatial distribution of burnt areas and percentage area burnt also show 

similar patterns. This study is novel in that it examines the behaviour of TLS metrics for 

estimating and mapping fire induced change in understorey structure in a single-scan mode 

with a minimal fixed reference system. Further, the TLS-derived metrics can be used to 

produce high resolution maps of change in the understorey landscape. 

Keywords: terrestrial LiDAR; change detection; understorey; prescribed burns; terrestrial 

laser scanning; single-scan; LiDAR metrics 
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1. Introduction 

Ecological systems are dynamic and disturbance is an important factor for change. Fire is an agent of 

environmental change globally at various spatial and temporal scales determining land use, productivity, 

biodiversity and has impacts on hydrologic, biogeochemical and atmospheric processes [1]. Fires occur 

over the majority of the Australian landscape and in most vegetation types [2], and Australian dry 

sclerophyll forests are amongst the more fire-prone forest communities in the world [3]. Land managers 

in such fire-prone countries mitigate the threat posed by catastrophic wildfires using prescribed burning 

(fuel reduction). These low intensity burns involve the deliberate application of fire to forest fuels under 

specified conditions in order to achieve well-defined management goals [4]. These goals include reduction 

of wildfire hazard, protecting biodiversity and protecting infrastructures at the urban interface [5]. 

Measuring the effects of a prescribed burn on the landscape (i.e., burn severity) is important for burn 

efficacy reporting [6] and allowing land managers to manage post-fire rehabilitation and remediation 

(e.g., to prevent runoff and erosion) [7,8]. Reporting following a prescribed burn can also help monitor 

ecosystem recovery [9] and quantify carbon emissions [10]. As such, land managers require an effective 

and meaningful way of quantifying burn severity. 

Established techniques for describing or quantifying the effects of a fire include destructive sampling 

of the remaining fuel, in-situ visual estimates or measurement of post-burn variables [4]. Post-burn 

variables include percentage surface burnt, percentage understorey cover burnt (grass and litter), 

percentage canopy scorch and burnt and litter depth post-burn amongst others. Routinely used field 

measures of burn severity such as Composite Burn Index (CBI) are based on ocular estimation and 

judgement [11]. In Australia too, the techniques aimed at reporting the nature of the burn event using a 

number of variables to ascertain severity are also based on visual field assessments which are both 

subjective and qualitative [12]. The ability to draw accurate links between fire effects and operational 

fire models whilst overcoming cost, time and technical challenges posed to forest managers involved in 

collecting field data has also been acknowledged by several researchers [13–15]. In order to improve the 

reporting procedures around prescribed burns and quantify fire effects, a need for repeatable and 

quantified description has been identified in this paper. 

Knowledge of the understorey environment is essential for fire behaviour modelling [15–17], wildlife 

habitat assessment and modeling [18] and carbon stocks and sequestration [19]. Hence, estimates of 

change in the understorey vegetation become important in burnt landscapes, however this has utility 

beyond fire severity mapping. 

Airborne LiDAR technology has found wide utility in forest attribution [20–26]. Terrestrial Laser 

Scanning (TLS) is also increasingly being used to quantify forest properties such as canopy height [27], 

tree diameter [28–30], LAI [31,32] and canopy gap fraction [33]. These studies have focused on deriving 

a biophysical description of forests at a single point in time. Change detection in forested landscapes 

using LiDAR (both terrestrial and airborne) has been reported by many researchers [34–37]. However, 

this research has focused primarily on biomass accumulation or growth and dynamics of the canopy and 

emergent layers. 

Detecting and quantifying the properties of the understorey using LiDAR technology has been less 

widely studied. Reported attempts [15,16] quantifying various properties of the understorey have utilised 

a variety of metrics derived from both airborne and terrestrial LiDAR data for fire-behaviour monitoring 
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purposes as outlined in Table 1 ([14,15,17,18,38–40]). These metrics, which are primarily point density 

or height-based, have been used successfully to predict and estimate various understorey vegetation 

properties including volume, density, cover, height and biomass to varying degrees [17,38].  

Table 1. LiDAR derived understorey metrics used by researchers to map understorey vegetation. 

Metric Property Metric Type Scale 
LiDAR 

Platform 
Application Study 

Proportion of corrected number 

of understorey laser hits 
Cover Point Density Landscape Airborne 

Fire behaviour 

modelling 
Riano et al. [15] 

Proportion of corrected number 

of understorey laser hits 
Cover Point Density Plot Airborne 

Ecological and 

forestry 
Goodwin [38] 

Presence or absence of laser 

points within each cm3 space 
Volume Point density Plot Terrestrial 

Fire behaviour 

modelling 
Loudermilk et al. [15] 

% of ground returns % of 

returns between 1 and 2.5 m 

Cover 

Distribution 
Point Density Plot Airborne 

Ecological 

management 
Martinuzzi et al. [18] 

Difference between pre- and 

post-fire LiDAR elevation 
Cover Biomass Height Landscape Airborne Fire severity Wang and Glen [39] 

Variety of height metrics Ratio 

of Points Above and Below the 

Inflection Point 

Cover 

Both Point 

Density and 

Height 

Plot Terrestrial 
Fire behaviour 

modelling 
Rowel and Seielstad [17] 

Proportion of number of 

understorey laser hits after 

applying intensity filter 

Number of LiDAR points per 

square metre under 1.5 m 

Cover Point Density Plot Airborne 
Ecological 

management 
Wing et al. [40] 

Variety of Height-based 

Metrics 
Cover Height Height Plot Airborne 

Wildfire behaviour 

modelling 
Jakubowski et al. [14] 

This paper is motivated by the successful use of point cloud based metrics to produce estimates of 

change in understorey properties. Given this success, LiDAR technology may provide an avenue to 

producing quantifiable and repeatable measurements of the effects of low intensity prescribed burns. 

This study explores the use of terrestrial LiDAR technology to produce estimates of understorey forest 

change which is accurate, repeatable, robust and sensitive to the low intensity nature of a prescribed burn 

and can be used by the land management agencies to supplement qualitative assessments of change in 

response to prescribed burns. 

2. Method 

2.1. Study Area and Field Data 

The study area was located in St Andrews, approximately 45 km northeast of metropolitan 

Melbourne, Victoria, Australia. The study was conducted in a dry sclerophyll forest with a grassy 

understorey (Figure 1). The site can be described as open Eucalypt woodland with an average canopy 

height between 10 and 12 m [41]. The midstorey vegetation layer was notably absent. The understorey 

was dominated by a variety of Tussock grass species with heights ranging from 30 to 50 cm. Two circular 
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plots of 9 m radius were identified which were similar in topography (i.e., flat), vegetation species 

composition and arrangement. The extents of the plots were chosen to be close to the guidelines set out 

for the visual field assessment of burn severity developed by the Department of Environment, Land, 

Water and Planning (DELWP). 

 

Figure 1. Dry sclerophyll forest with a grassy understorey in the study area. 

A planned burn was carried out by Parks Victoria and the DELWP on 15 April 2012. One plot 

received a fire treatment (fire-altered plot) which acted as the change agent while the other plot was left 

unburnt and acted as the control. 

A burn severity assessment was conducted approximately two weeks after the planned burn on 27 

April 2012. This visual assessment followed the methods described for use by local land managers [11]. 

The variables recorded in the understorey layer were percentage of the plot burnt, pre- and post-fire % 

cover (grass and litter), pre- and post-fire litter depth, post-fire leaf fall cover and char depth. 

2.2. Terrestrial Laser Scanner and Surveys 

The TLS instrument used in this research was a Trimble CX which utilises a combination of  

time-of-flight and phase-based measurement principles. The specifications are summarised in Table 2. 

Bi-temporal TLS data was acquired pre-burn on 8 March 2012 and post-burn on 30 April 2012 for each 

plot. All scans were obtained in a single-scan mode with the scanner located at the centre of the plot at 

an above ground height of 1.5 m. The angular point spacing was set to 1 cm at 10 m distance. The scans 

were performed to capture the scanner’s full range of view (360° horizontally and 300° vertically). Each 

hemispherical scan took approximately 45 min to complete. Co-registration between the bi-temporal scans 

was achieved by using permanent reference targets (stainless steel tags) fixed to stems within the plot. 
  



Remote Sens. 2015, 7 8184 

 

Table 2. Specifications of the terrestrial LiDAR system (Trimble CX) used in this study. 

Specification Type Specification Value 

Calibrated range 80 m to 90% reflective surface, 50 m to 18% reflective surface 

Scan rate 54,000 points per second 

Output angle accuracy 0.002° = 35 μrad (horizontal and vertical) 

Vertical scanning angle 300° 

Horizontal scanning angle 360° 

Spot size 8 mm @ 25 m; 13 mm @ 50 m 

Laser wavelength 660 nm (red) 

Weight 11.8 kg 

Dimensions (LxWxH) 12 × 52 × 35.5 cm 

Power consumption 50 W 

2.3. Point Cloud Pre-Processing 

The raw point clouds were processed following the steps depicted in Figure 2. Initially, the raw point 

clouds were exported to ASCII format using Trimble’s proprietary software (Trimble Realworks 

software version 6.5, 2009). Ground points were then identified in the fire-altered point clouds using the 

lasground tool of lastools [42]. We trialled several of the verbose options of lasground and visually 

assessed the results to determine the optimum combination for this landscape type. The “-not_airborne” 

option which is recommended for extracting ground points from terrestrial LiDAR data produced the 

best result and was therefore used to extract ground points. This allowed for a TIN representation of the 

ground surface to be generated. The final ground density after filtering was 2996.70 points/m2. The 

Above Ground Height (AGH) of all points within the pre- and post-burn point clouds were then 

determined based on this ground surface representation. The ground points from the post-burn scans 

were used in the normalisation process of both pre- and post-burn point clouds to avoid introducing 

discrepancies in further analysis due to differing representations of the ground. 

Points within the understorey were then selected as those with AGH between 5 and 100 cm. A 

minimum threshold was used due to uncertainty in ground detection results. This ensured any remaining 

ground points were excluded from the change detection analysis. The maximum threshold was selected 

based on the properties of the understorey vegetation in the study area. To avoid differences in occlusion 

between data capture events, caused by small variations in instrument set up for instance, points within 

areas deemed as occluded in one or both of the point clouds were removed from further analyses. This 

was achieved by creating a coverage map for each point cloud using the α-shape of the 2D point 

projections with α = 0.3 m. The coverage map was then used to clip the alternate point cloud. 

This resulted in two sets of point clouds of pre and post-burn with equal areas of occlusion across the 

plot area. Understorey points were then assigned to 0.5 × 0.5 × 1.0 m voxels. Any voxels containing 

fewer than 10 points in either post- or pre-burn point clouds were considered still as being affected by 

occlusion. This approach also helped eliminate spurious points which were present in all point clouds. 

These corresponding voxels in both point clouds were removed from further analyses. The point count 

per voxel was >2000 in this research. 
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Figure 2. The work flow of the TLS data processing for deriving the understorey change 

detection metrics. 

  



Remote Sens. 2015, 7 8186 

 

2.4. Metric Extraction 

Change in the understorey is likely to be represented within each voxel’s point cloud as a change in 

the number of points or change in the AGH distribution. As such, for each point cloud metrics describing 

these properties were derived for each voxel. These are listed in Table 3. In all, a total of 18 metrics were 

extracted and tested. 

Table 3. TLS-derived metrics used in this research to characterise change in forest understorey. 

These metrics were computed for each voxel in both pre- and post-burn point clouds. 

Metric Name Metric Description 

AGH10, AGH20…AGH90, AGH95 Above Ground Height Percentiles (AGH50 is median height) 

AGH mean Mean Above Ground Height 

AGH mode Mode Above Ground Height 

AGH maximum Maximum Above Ground Height 

AGH skewness Skewness of Above Ground Height 

AGH kurtosis Kurtosis of Above Ground Height 

Mean intensity Mean intensity of TLS returns 

Point count Point count of TLS returns 

In order to map and comparatively assess the likelihood of change indicated by each of these metrics, 

the proportion of post- and pre-burn measures was computed following Equation (1). The use of 

proportion to assess change approach allowed for a unitless comparison between metrics and also 

accounts for variations in some of the laser properties which are affected by the radial distance from the 

scanner (i.e., point count decreases towards the edge of the plot). 

Metricchange = Metricpost-burn/Metricpre-burn (1)

A value for Metricchange close to 1 indicates that no change has occurred in the metric between scans. 

Voxels with Metricchange value of less than 1 indicate a decrease in that metric and a value of greater than 1 

indicates that the metric has increased. It is expected that a loss of understorey biomass due to burn will 

create a decrease in most metrics including the point count and AGH percentiles. For each change metric, 

Mean (μ) and Standard Deviation (σ) for the population of voxels in each plot pre and post-burn was 

computed. A voxel was determined to have been altered by the burn where the change detected by the 

metric was greater than μcontrol ± 1.64 × σcontrol (90% confidence interval). This allowed a burn map to be 

generated. Finally, in order to provide a quantified estimated of change the understory height differences 

were computed based on differences in AGH95 and AGH99. 

The μcontrol and σcontrol are being used because the control plot represents the “natural-change” 

environment. In a no-change environment, the ratio-based metrics should show a value of 1 between the 

post- and pre-burn measures in the control plot indicative of no change. Nonetheless, some change is 

expected to occur in the control plot. These are expected to be subtle and may include phenological 

change, wildlife movement and wildlife foraging activity. This approach also allows any small errors in 

co-registration of the point clouds to be excluded from being mapped as change. 
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2.5. Occlusion Impact Assessment 

TLS surveys were performed in single-scan mode to allow for the most rapid data collection. 

Nevertheless, occlusion has been identified as a major issue for measuring forest properties with TLS 

technology [43]. In order to assess the impact of occlusion on the ability of the metrics to remain robust 

and detect change in the vegetated understorey bootstrapping analysis was applied. Stems (modelled as 

cylinders of random diameter between 0.1 and 0.5 m) were created and placed in the plot. All points 

which would have been occluded by the stem were them removed. Modelled stems were randomly 

located within the plot to simulate visible plot areas at 5% increments from 5% to 70%. Figure 3 shows 

some randomly generated stem maps. Bootstrapping analysis was then applied on the voxels of the two 

plots with n = 50. The μ and σ was then calculated for all the TLS-derived metrics.  

Figure 3. Randomly generated stem maps simulating plot coverage at 10%, 30%, 50% and 

70%, respectively. Red areas correspond to visible plot area. 

2.6. Metric Assessment 

The criteria for metric’s ability to detect change induced by prescribed burn were based on three 

factors: sensitivity, stability and similarity. Sensitivity relates to the ability of the metric to detect change 

(in the fire-altered plot). Stability relates to the metric showing the least change in the control plot which 

was assessed based on the µ, σ of Metricchange in the control plot along with % voxels recording change. 

Similarity relates to the ability of the metric to identify spatial patterns of change which are similar to 

visual assessments. To summarise, to be used in measuring fire effects in the understorey, TLS derived 

metrics should detect very little change in the control plot whilst detecting a change in the fire-altered 

plot that matches well with true change on the ground. 

3. Results 

3.1. Field Assessment 

As expected, the control plot which received no fire treatment showed no discernible change due to 

the burn. However, defoliation of a fallen tree in the south east region of the plot represented a loss of 

biomass within the height range of the voxels between surveys resulting in a small, localised change. 

The qualitative field assessment suggested that the prescribed burn resulted in a mosaic burn pattern with 

60%–70% of the plot estimated to be affected by fire. Figure 4A demonstrates the patchy nature of 

prescribed burn. The understorey forest on the eastern side of the plot showed a larger and uniform burnt 

area as compared to the west (Figure 4B) and. a large unburnt area in the south-western edge of the plot 
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slightly away from the plot centre (Figure 4C).  Apart from that, there were unburnt patches interspersed 

with burnt patches all around the plot. The severity class identified based on the field assessments 

suggested a variable intensity of fire ranging from a warm ground burn to an intense understorey fire. 

 
(A) (B) (C) 

Figure 4. (A) Patchiness of low intensity prescribed burns that result in a mosaic landscape 

of burnt and unburnt patches; (B) A large burnt area on the eastern side of the fire-altered 

plot; (C) Part of the unburnt patch in the south-western side of the fire-altered plot. 

3.2. TLS Change Detection 

3.2.1. Descriptive Statistics 

In 16 of the 18 TLS-derived metrics, the mean of the change metrics in the control plot varied between 

0.95 and 1.01 (σ = 0.14 − 0.45) as listed in Table 4. The mean for both AGH skewnesschange and AGH 

kurtosischange were exceptions to this trend and showed a much higher value of 1.36 (σ = 10.91) and 1.53 

(σ = 2.84), respectively. Percentage of voxels in the control plot which were classified as having 

undergone change varied between 1% and 9% for all 18 metrics. 

In the fire-altered plot, the metrics showed a much more diverse mean change which was recorded in 

the range of 0.48–1.19 (σ = 0.32 − 1.67) in contrast to the control plot. The percentage change recorded 

by these metrics was in the range of 18%–52%. The percentage of voxels affected by change because of 

the fire varied between 22% and 71%. AGH skewnesschange showed a mean value of 1.39 (σ = 17.06) 

which was quite similar to that from the control (µ = 1.36, σ = 10.91). AGH skewnesschange showed a 

lower mean value of 1.29 (σ = 2.09) in the fire-altered plot as compared to the control (µ = 1.53,  

σ = 2.84). The percentage of voxels identified as having undergone a change in the fire-altered plot was 

3% and 2% for AGH skewnesschange and AGH kurtosischange, respectively. 

The change in understorey vegetation height as computed by AGH95 and AGH99 metrics in the two 

plots is listed in Table 5. The mean change in the control plot was 2 cm and 3 cm (σ = 7 − 11 cm) for 

the AGH95 and AGH99 metrics, respectively, as compared to 6 cm and 9 cm (σ = 16 − 20 cm) in the  

fire-altered plot. This is a very small change at the plot level. 
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Table 4. Descriptive statistics of the change detected by the various TLS-derived metrics 

and number of change voxels examined for the control and fire-altered plot. Statistics 

presented are aggregates of all voxels in each plot. Voxels recording a change have been 

computed as those having values greater than ± 1.64 × σ of µ for that particular metric. 

Metric 

Control Plot Fire-Altered Plot 

Statistic Change Statistic Change 

Mean (µ) 
Standard 

Deviation (σ) 

Number 

of Voxels 

% of Voxels 

(n = 872) 
Mean (µ) 

Standard 

Deviation (σ) 

Number of 

Voxels 

% of Voxels 

(n = 925) 

AGH10change 0.99 0.14 60 7 0.76 0.38 587 63 

AGH20change 0.98 0.16 41 5 0.72 0.37 571 62 

AGH30change 0.98 0.15 57 7 0.72 0.38 604 65 

AGH40change 0.98 0.14 78 9 0.71 0.37 623 67 

AGH50change 0.98 0.14 64 7 0.72 0.36 598 65 

AGH60change 0.97 0.19 32 4 0.74 0.37 491 53 

AGH70change 0.97 0.21 31 4 0.76 0.38 449 49 

AGH80change 0.96 0.18 44 5 0.79 0.39 475 51 

AGH90change 0.95 0.18 56 6 0.82 0.42 451 49 

AGH95change 0.95 0.21 54 6 0.85 0.44 400 43 

AGH99change 0.95 0.26 69 8 0.82 0.44 344 37 

mean AGHchange 0.96 0.13 70 8 0.76 0.32 563 61 

mode AGHchange 1.01 0.38 39 4 0.70 0.54 320 35 

maximum AGHchange 0.98 0.40 70 8 0.70 0.38 199 22 

AGH skewnesschange 1.36 10.91 6 1 1.39 17.06 26 3 

AGH kurtosischange 1.53 2.84 29 3 1.29 2.09 19 2 

point countchange 1.00 0.45 37 4 0.48 1.67 653 71 

mean intensitychange 0.99 0.15 64 7 1.19 0.41 506 55 

Table 5. Summary statistics of the absolute change in height detected by AGH95 and 

AGH99. Statistics presented are aggregates of all voxels in each plot. 

Metric 
Control Plot Fire-Altered Plot 

Mean (µ) Standard Deviation (σ) Mean (µ) Standard Deviation (σ) 

AGH95 2 cm 7 cm 6 cm 16 cm 
AGH99 3 cm 11 cm 9 cm 20 cm 

Histogram distributions between the control and fire-altered plot for all the TLS metrics were plotted to 

ascertain if fire induced change was discernible. It is evident from Figure 5 that there were clear differences 

between the two plots across all but two metrics (AGH skewnesschange and AGH kurtosischange). General 

trends suggest that histogram distributions were approximately normal in the control plot for most metrics. 

In the fire-altered plot most of the metrics exhibited either multi- or bi-modal distributions.  
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Figure 5. Histograms of voxels for the TLS-derived metrics (a) AGH10change, (b) AGH20change, 

(c) AGH30change, (d) AGH40change, (e) AGH60change, (f) AGH70change, (g) AGH80change,  

(h) AGH90change, (i) AGH95change, (j) AGH50change, (k) mean AGH change, (l) point count change, 

(m) AGH99change, (n) mode AGHchange, (o) maximum AGHchange, (p) AGH skewnesschange,  

(q) AGH kurtosischange, and (r) mean intensitychange in the control and fire-altered plot. The solid 

red line indicates µ change for that metric in the control plot. Voxels with values outside of the 

range defined by the dashed red lines (µ ± 1.64 × σ) are considered as fire-altered. 
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Histogram distribution of voxels in the control plot was approximately normal when computed using 

metrics such as AGH50change to AGH99change, mean AGHchange, point countchange and mean intensitychange. 

For these metrics the mode was centred between 0.9 and 1.0 with the mean and mode being coincidental. 

The histogram distribution of point countchange metric (Figure 5l) was slightly flatter in comparison to the 

metrics which were normally distributed (AGH50change to AGH99change, mean AGHchange, and mean 

intensitychange). This is demonstrated by the large σ value recorded by point countchange at 0.45 in 

comparison to the abovementioned metrics (σ = 0.14 − 0.26). 

Histogram distributions for other metrics such as AGH10change to AGH40change, (Figure 5a–d) and 

mode AGHchange (Figure 5n) showed multiple peaks in the control plot. The common factor between the 

histograms of these metrics is that the mode was centred between 0.9 and 1.0. The peaks in the 

histograms for these metrics was seen to occur at 1.1–1.2. AGH metrics such as AGH10change and 

AGH20change exhibited a minor peak centred at 0.7–0.8 (Figure 5a,b). Histogram distribution of 

AGH95change, AGH99change and maximum AGHchange (Figure 5i,m,o) exhibited a slight negative skew with 

the mode centred at 1.0–1.1. AGH skewnesschange and AGH kurtosischange (Figure 5p,q) histogram 

distribution was very flattish in comparison to the distribution of other metrics from the control plot. 

Both these metrics showed a very large variance. 

The histogram distributions of the TLS-derived metrics were very different in the fire-altered plot. 

None of the distributions except point countchange (Figure 5l) were unimodal. Histogram distribution of 

point countchange was extremely positively skewed with the mode centred between 0 and 0.10. 

AGH10change (Figure 5a) distribution was multimodal with peaks at 0.4–0.5, 0.6–0.7, 0.8–0.9 and  

0.9–1.0. Distributions of AGH20change to AGH95change and mode AGHchange were nearly bimodal with 

0.4–0.5 and 0.8–0.9. For the remaining metrics (AGH99change, mean AGHchange, maximum AGHchange, 

AGH skewnesschange, AGH kurtosischange, AGH intensitychange), the distribution was comparatively flat. 

The distribution of both AGH skewnesschange and AGH kurtosischange from the fire-altered plot in 

particular were similar to those from the control plot (Figure 5p,q). Histogram distribution of mean 

intensitychange (Figure 5r) was flatter in the fire-altered plot with a large variance. Barring the histogram 

distribution of AGH skewnesschange and AGH kurtosischange all others exhibited a much higher variation 

in the fire-altered plot in contrast to the control plot whilst also showing a change in the distribution. 

3.2.2. Spatial Distribution of Change 

The spatial distribution of change detected by the 18 TLS derived metrics in the two plots is presented 

in Figure 6 as binary maps of “change” and “no change” categories. This figure shows that no metrics 

reported a change (greater than µ ± 1.64 × σ) in the majority of the control plot. The percentage of plot 

area that showed a change in the control plot corresponded to 1%–9% of the voxels. In contrast, in the 

fire altered plot change was detected in 22%–71% of the voxels using 16 of the 18 TLS-derived metrics 

(except AGH skewnesschange and AGH kurtosischange). AGH skewnesschange and AGH kurtosischange showed 

no difference between the control and fire-altered plot.  

The spatial pattern and distribution of change in the control plot did not vary as much between the 

various metrics. There was some systematic change observed towards the south eastern part of the 

control plot using the AGHchange percentiles (except AGH99change), mean AGHchange, point countchange and 

mean intensitychange.  
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This region of change found in the control plot was at the location of the defoliated fallen tree. Apart 

from this the little change detected by all the metrics in the control plot appeared to be random with little 

evidence of clustering as is evident from Figure 6.  

Figure 6. Spatial distribution of change detected by the various TLS-derived metrics in the 

control (C) and fire-altered (FA) plot. Blank areas correspond to occluded voxels or missing 

data. Areas of no change (grey) were calculated as having values within ± 1.64 × σ of the µ 

from the control plot. 
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In the fire-altered plot, the spatial pattern of change was markedly different as compared to the control 

plot. % of voxels affected by the fire ranged between 62% and 67% for AGH10change to AGH50change 

metrics. Most of the change detected by these five metrics was in the eastern and northern part of the 

plot with small unburnt patches interspersed. Most of the unburnt area was around the west and south 

western edge of the plot. The change detected by the remaining AGHchange percentiles decreased from 

53% (AGH60change) to 37% (AGH99change). 

These upper AGHchange percentiles detected more unburnt areas in north and northwest edge of the 

plot. AGH95change and AGH99change in particular detected patchy burnt areas within large contiguous 

unburnt areas which were quite opposite to the pattern of change detected by other AGHchange percentiles 

and field assessments of plot areas burnt. These two metrics also detected a large burnt area only in a 

small section of the south-eastern edge of the plot. Spatial pattern of change detected by maximum 

AGHchange and mode AGHchange was similar to AGH99change. Maximum AGHchange detected even lesser 

burnt patches (22%) as compared to mode AGHchange (35%). Mean AGHchange detected change similar to 

AGH10change to AGH50change (61%). Point countchange metric detected change in 71% of the voxels of the 

fire-altered plot. Patches of no change were limited to the southwest part of the plot and smaller patches 

elsewhere interspersed with large patches of burnt areas especially in the western side. The pattern of 

change detected by Point countchange was somewhat comparable to AGH10change to AGH50change and mean 

AGHchange. The mean intensitychange metric showed an extremely patchy pattern with random burnt and 

unburnt areas throughout the fire-treated plot distinct from the change detected by the other metrics. 

3.2.3. Effects of Occlusion 

The mean value of the various AGH metrics showed very little change for the different visible plot 

area coverage in the control plot. As examples, the plots of AGH50, AGH90, mean AGH, point count 

and mean intensity are shown in Figure 7. The mean change decreased slightly from 0.008 cm at 5% 

plot coverage to 0.007 at 70% plot coverage using the mean AGH metric. The trend for AGH50 was 

similar to that of mean AGH. AGH90 showed an opposite trend of an increasing mean value from  

0.012 cm at 5% plot coverage to 0.014 cm at 70% plot coverage. The point count decreased from 152 at 

5% plot coverage to 88 at 70% plot coverage in the control plot (Figure 7). Mean intensity metric in 

contrast increased slightly from −0.10 to 0.20.  

In the fire-altered plot, the change detected was relatively large compared to the control plot. The 

mean AGH metric increased from 0.03 cm at 5% plot coverage to 0.05 cm at 70% plot coverage. A 

similar trend was observed in AGH50 and AGH90 metric.  

The point count decreased sharply as compared to the control plot from 2570 at 5% plot coverage to 

2100 at 70% plot coverage. Mean intensity metric showed an increase just like in the control plot.  

A common trend observed in both the plots was that although the mean change in value by the various 

metrics was very small the associated standard deviation values decreased with increasing plot area 

coverage. For example, the mean standard deviation values calculated using mean AGH decreased from 

0.005 cm (5% plot coverage) to 0.001 cm (70% plot coverage) in the control plot and from 0.018 cm 

(5% plot coverage) to 0.006 cm (70% plot coverage) in the fire-altered plot. This was consistently 

observed across different metrics with larger standard deviation values at 5% plot coverage as compared 

to 70% plot coverage irrespective of the plots. 
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Figure 7. Mean and Standard Deviation (grey polygon) at different plot coverage for five 

sample metrics from the control and fire-altered plot. 

4. Discussion 

TLS technology is increasingly being used to produce accurate measurements of forest understorey 

conditions [15,44,45]. However, the ability to monitor understorey forest dynamics (biomass loss or 

growth) using TLS has not been widely reported. Results obtained in this study indicate that fire-induced 
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change, as an example of a disturbance in a forest understorey, is clearly discernible between  

multi-temporal TLS scans. The spatial distribution of change detected by most of the metrics in the  

fire-altered plot was found to be in agreement with visual field assessments demonstrating the concept 

of similarity. TLS derived metrics were assessed for correctly reporting minimal or no change in 

unaltered natural landscapes. In this study, this concept of stability was assessed using the control plot. 

All metrics showed only small changes between 1% and 5% in the control plot. The concept of sensitivity 

was explored by the ability of the metrics to detect fire-induced change in the forest understorey. In the 

fire-altered plot, all metrics (except AGH skewnesschange, AGH kurtosischange and mean intensitychange) 

showed a change between 30% and 52% whilst 10 of these exhibited bimodal distribution highlighting 

the subplot sensitivity of TLS metrics to detecting fire-induced change.  

The methodology employed in this research is unique in that it applies bi-temporal TLS scans 

captured in single-scan mode to detect and quantify change in forest understorey. Scans were captured 

in single-scan mode and with a minimal fixed reference system which allowed for faster data acquisition 

and processing whilst also avoiding the need for co-registration [46,47]. It has been demonstrated that 

whilst TLS data acquired in single-scan mode suffers from some limitations such as occlusion [43], such 

datasets still have utility in change detection studies as has been demonstrated in this paper. However, 

in change detection studies in a forested environment, occlusion due to high tree densities needs to be 

carefully considered. The results of modelling the effects of occlusion in this paper show that high levels 

of occlusion are likely to bias the results towards changes occurring closer to the scanner’s location (i.e., 

the plot centre). Hence, for the change detection methods described in this paper using TLS to be 

successful, it is recommended that at least 50% plot visibility needs to be achieved. 

Given that the control plot received no burn it was reasonable to expect that there would be little or 

no change detected between the two TLS data capture. TLS-derived metrics recorded a large change in 

metric values <10% voxels across the plot. The upper AGHchange percentiles (AGH90change, AGH95change 

and AGH99change) were relatively less stable as compared to some of the lower AGH percentiles 

(AGH10change to AGH50change) (for example AGH95change.σ = 0.21 and AGH50change σ = 0.14) in the 

control plot. It could be that in the event of a low intensity change event such as prescribed burns, 

environmental factors such as wind can potentially affect the stability of these metrics because of 

movement of features in the landscape. It must be noted that during the second set of TLS data capture 

the conditions in the study area were extremely windy with faint drizzle which may have also contributed 

to noise in the point clouds. Another reason is that these upper AGHchange percentiles are also most likely 

to contain change in response to phenological growth and senescence in the control plot. However, the 

histogram distribution for some lower AGHchange percentiles (AGH10change to AGH40change) was 

multimodal while for the other metrics it was normal. These lower AGHchange percentile metrics are likely 

to be affected by interaction with ground elements and thus may not be appropriate for describing 

unaltered understorey landscapes. 

In the fire-altered plot, 16 TLS-derived metrics were reported as being sensitive at detecting  

fire-induced change in the forest understorey. This is supported by the σ values being much larger in the 

fire-altered plot (0.32–1.67) in comparison to the control plot (0.14–0.45) as listed in Table 3. A larger 

σ value is representative of unburnt patches interspersed with burnt areas in the fire-altered plot when 

examining the histograms. Histograms of AGHchange percentiles such as AGH30change to AGH95change 

exhibit bimodal distributions with peaks in the range of 0.3–0.5 and 0.8–1.1 in the fire-altered plot. The 
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local maximum peak between 0.3 and 0.5 corresponds to voxels that have undergone fire-induced 

change. These voxels are also found to lie outside the dashed red line in Figure 5 which is indicative of 

a fire-induced change. Similarly, voxels around the local maximum peak centred at 0.8–1.1 are those 

belonging to unburnt patches in the forest understorey in the fire-altered plot. As stated earlier, values 

closer to 1 in ratio-based metrics is indicative of little or no change. Thus, the bimodal distribution 

exhibited by some TLS-derived metrics is able to account for populations belonging to two disparate 

groups. In this research these two groups would be burnt and unburnt forest understorey. The upper 

AGHchange percentiles (AGH70change to AGH99change) and maximum AGHchange are shown to record a lower 

fire-induced change (37%–53% voxels) as compared to lower AGHchange percentiles (62%–67% voxels). 

The field based assessments recorded burn in 60%–70% of the plot area. This could be attributed to the 

environmental conditions (e.g. wind) and patchy nature of prescribed burns. If a voxel with dimensions 

0.5 × 0.5 ×1.0 m was affected by fire, a few remaining stalks of grass may classify this voxel as being 

unburnt. These findings suggest that the upper AGHchange percentiles may not actually be appropriate for 

reporting fire-induced change following low intensity prescribed burns. The mean intensitychange metric 

which was stable in the control plot showed a change in the fire-altered plot. The change recorded was 

only 19% which suggests that the change detected by mean intensitychange in the fire-altered plot could 

be due to a number of factors other than fire. 

Although it has been established in this paper that TLS technology and its derived metrics are sensitive 

at detecting fire-induced change in forested understorey, it is equally important to attempt to map where 

these changes have occurred on the ground. The patchy nature of prescribed burns is a well 

acknowledged fact [3]. As shown in Figure 6, vast areas of the control plot recorded no change which 

was to be expected. However, the majority of the change detected in the control plot for most metrics 

was found to occur in a small localised area of the plot. This corresponded and could be explained due 

to the defoliation of a fallen tree. However, this change was not detected by AGH99change, mode AGHchange 

and maximum AGHchange metrics as the large woody component of the tree was still present. This 

defoliation appears to present a similar pattern to fire induced change within the fire-altered plot where 

large woody debris was still present following prescribed burns. Whilst it was ascertained that the ideal 

metric should remain stable and detect little or no-change in the control plot, it would be inaccurate if 

the metric did not detect a real and a substantial non fire-induced change in the forest understorey even 

in the undisturbed plot.  

In the fire-altered plot, unburnt patches interspersed with burnt patches are reported by the majority 

of the metrics (except AGH skewnesschange and AGH kurtosischange). Figure 4A shows an image from the 

fire-altered plot highlighting the mosaic landscape as a result of the prescribed burn. Although the degree 

of patchiness and plot area burnt is extremely variable amongst the metrics (22%–71%), the ability of 

TLS technology to map this “patchiness” is an extremely promising finding. The level of patchiness 

within burnt areas can determine the proportion of vegetation population exposed to heat. This can 

inform vegetation mortality rates and seed germination [48,49]. Patchiness can also help predict fire 

intensity. Low intensity fires are shown to be significantly patchier than higher intensity fires [50]. The 

pattern of the burn represented by the binary maps (Figure 6) for many metrics (AGH10change to 

AGH50change, mean AGHchange and point countchange) is similar and closer to the field assessments of burnt 

areas. This includes both the percentage area burnt and spatial distribution of burnt areas in the  
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fire-altered plot. These metrics consistently detected a much larger burnt area on the eastern side of the 

plot (Figure 4B) in comparison to the west with a large unburnt patch in the southwest region of the plot. 

From the above analysis AGH50change, mean AGHchange and point countchange seem to be the most 

suitable individual metrics for attributing change in an altered understorey forest whilst remaining stable 

in an undisturbed one. It is important to ensure that the metrics being used in change detection studies 

remain stable in an undisturbed landscape whilst remaining sensitive at attributing change in an altered 

landscape. It is also important to consider that the metrics being used report spatial distribution of change 

similar to change occurring on the ground. These findings suggest that TLS technology and TLS-derived 

metrics can be used to supplement the routine qualitative field assessments of change which are often 

based on visual estimates thereby providing a method to allow for a more quantified and accurate 

reporting approach. The burn maps showing the spatial distribution of change can be used by land 

managers to identify areas in need of urgent rehabilitation. 

Future work could involve exploring the utility of the method presented in this research to quantify 

biomass change. This research could be further developed by exploring the binary change detection maps 

for mapping different burn severity levels. This could also help identify unburnt patches which can help 

in understanding ecological impacts on fire-sensitive plants, watershed hydrology and soil stability 

amongst others. This may involve using a combination of the metrics used in this paper given their 

demonstrated differences in each metric shown here. Given that post-burn TLS scans were carried out 

within two weeks of the burn event, they helped ascertain change in the landscape in response to the 

burn. A longitudinal study involving multi-temporal scans over longer time scales can help monitor fuel 

accumulation, post-fire regeneration dynamics and vegetation senescence. 

5. Conclusions 

The objective of this paper was to assess a set of terrestrial LiDAR-derived metrics for detecting, 

analysing and visualising fire-induced change in a forest understorey following low intensity prescribed 

burns. The metrics were assessed in their ability to remain stable in unaltered natural landscape whilst 

being sensitive enough to detect fire-induced understorey change. They were also assessed for their 

similarity in mapping the spatial distribution of change and percentage area burnt based on visual field 

assessments. The key findings of this research demonstrate that terrestrial LiDAR technology can be 

effectively used in a single-scan mode to make repeated measurements in both an unaltered and altered 

forest understorey with a minimal fixed reference system. Three TLS-derived metrics AGH50change 

(change in Above Ground Height at 50th percentile), mean AGHchange (change in mean Above Ground 

Height) and point countchange are capable of attributing fire-induced change in forest understorey that can 

be qualitatively validated with field assessments. These metrics whilst detecting fire-induced change 

(sensitive) are also capable of capturing the patchy nature of prescribed burns and produce burn maps 

comparable to visual field assessments of area burnt (similarity). At the same time, these three metrics 

report little or no change in an undisturbed (control plot) forest understorey (stable). The method 

described in this paper facilitates rapid data capture, easy post-processing of data and is fit-for-purpose 

in terms of the required accuracies to detect fire-induced changes in forest understorey. This approach 

has great potential for land and forest managers to quantitatively monitor dynamic changes in the 

understorey landscape in a way that is repeatable and accurate. Given the change agent in this research 
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was a low intensity prescribed burn, it is encouraging to note that Terrestrial LiDAR technology and 

some of the metrics show immense potential in attributing and mapping subtle fire-induced changes. In 

the event of large-scale environmental changes (e.g., wildfires or floods), mapping change in forested 

understorey using such techniques can potentially assist land managers in identifying areas in need of 

urgent rehabilitation, accurately quantify the area of land affected and fuel management. 
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