

RESEARCH ADVISORY FORUM (RAF) 19 OCTOBER 2016 CANBERRA

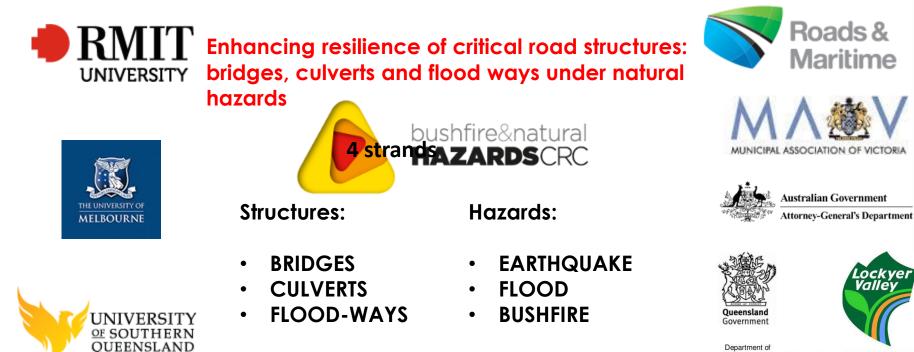
ENHANCING RESILIENCE OF CRITICAL ROAD STRUCTURES: BRIDGES, CULVERTS AND FLOOD WAYS UNDER NATURAL HAZARDS

Professor Sujeeva Setunge Dr. Hessam Mohseni Dr. Yew-Chin Koay

An Australian Government Initiative

PROJECT OVERVIEW

- Stage 1 Jan.2014-June 2017
 - Vulnerability modelling of critical road structures flood, bush fire and earthquakes, methodology and validation
 - Understanding consequences of failure of road structures social, economic and environmental impacts
 - Complete vulnerability modelling for two case study regions – GIS map of vulnerable structures
- Stage 2 July 2017-Dec. 2020
 - Identify vulnerable road structures in a GIS tool
 - Optimised strengthening and non asset solutions
 - A decision making tool to prioritise strengthening decisions considering impact on all stakeholders
 - Design guideline for resilient floodways


RESEARCHERS & END USERS

Australian Government

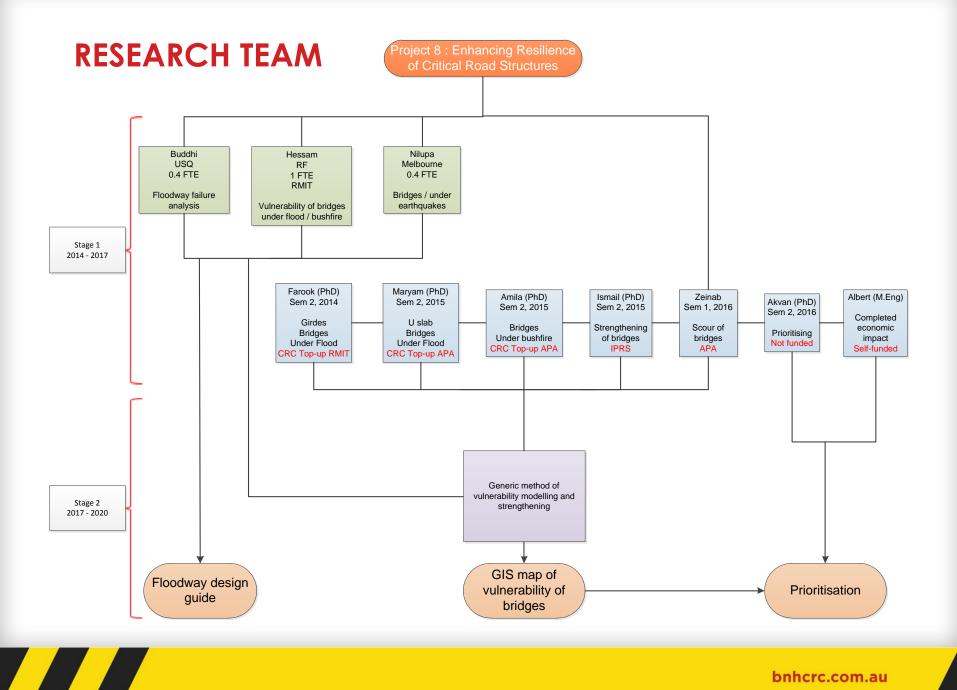
Geoscience Australia

Department of Transport and Main Roads REGIONAL COUNCIL

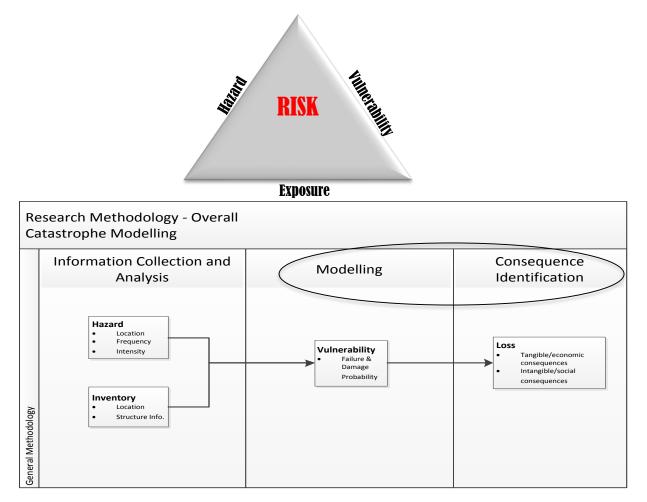
PEOPLE

(Huddersfield, UK)

13 Dr. Jane Mullet (RMIT)


10 Dr. Hessam Mohseni (RMIT)

12 Dr. Nilupa Herath (UniMelb)


11 Dr. Buddhi Wahalathantri (USQ)

9

	RMIT, UniMelb, USQ & Huddersfield	End-Users	HDR Students
1	Prof. Sujeeva Setunge (RMIT)	Dr. Ross Prichard (TMR Qld)	Mr. Farook Kalendhar (RMIT scholarship)
2	Prof. Chun-Qing Li (RMIT)	Mr. Myles Fairbairn (LVRC)	Mr. Albert (Yue) Zhang
3	Prof. Darryn McEvoy (RMIT)	Dr. Yew-Chin Koay (VicRoads)	Ms. Maryam Nasim (APA)
4	A/Prof. Kevin Zhang (RMIT)	Mr. Henry Luczak (VicRoads)	Mr. Amila Gunasekara (APA)
5	Prof. Priyan Mendis (UniMelb)	Prof. Wije Ariyaratne (RMS NSW)	Mr. Ismail Queshta (IPRS)
6	Dr. Tuan Ngo (UniMelb)	Dr. Neil Head (Attorney General Dept.)	Ms. Zeinab Yazdanfar (APA)
7	Prof. Karu Karunasena (USQ)	Ms. Leesa Carson (Geoscience Aust.)	Mr. Akvn Gajanayake
8	Dr. Weena Lokuge (USQ)	Mr. Ralph Smith (DFES WA)	
9	Prof. Dilanthi Amaratunga		

RESEARCH PROGRAM – STAGE 1 - METHODOLOGY

Quantitative Risk Assessment $R = H_z \times V_u \times C_q$

OUTCOMES TO DATE

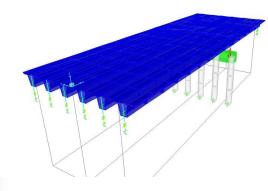
- The methodology for evaluating vulnerability based on structural capacity of road structures established.
- Case studies of failure of bridges under natural hazards completed
 -methodology of analysis demonstrated
 - Flood Lockyer Valley bridge case studies
 - Bushfire Effect of fire on concrete bridges, steel bridges
 - Earthquakes Lockyer Valley girder bridge under earthquake
- Methodology for establishing damage curves based on cost of recovery developed with a floodway case study.
- Community resilience study conducted researchers spent a week in Lockyer valley interviewing community
- A method to quantify the economic impact of failure of road structures established
- Decision tree is being developed to capture failure of structures and assist in decision making

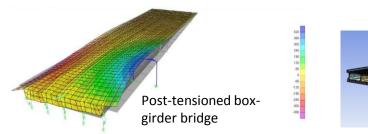
DISSEMINATION

REPORTS

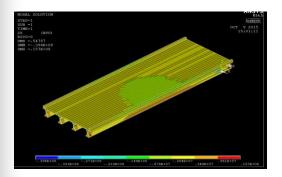
- Report 1: Failure of road structures under natural hazards
- Report 2: Community resilience to flooding and road network disruption
- Report 3: Failure mechanisms of bridge structures under natural hazards
- Report 4: Analysis of design standards and applied loads on road structures under extreme events

JOURNALS AND CONFERENCES

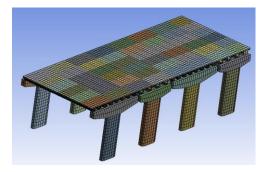

- 9 Journal papers
- 12 refereed conference papers

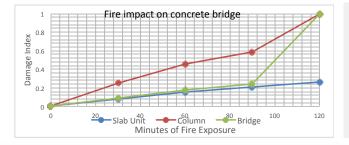

DISSEMINATION

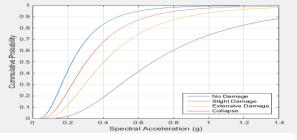
End user workshops

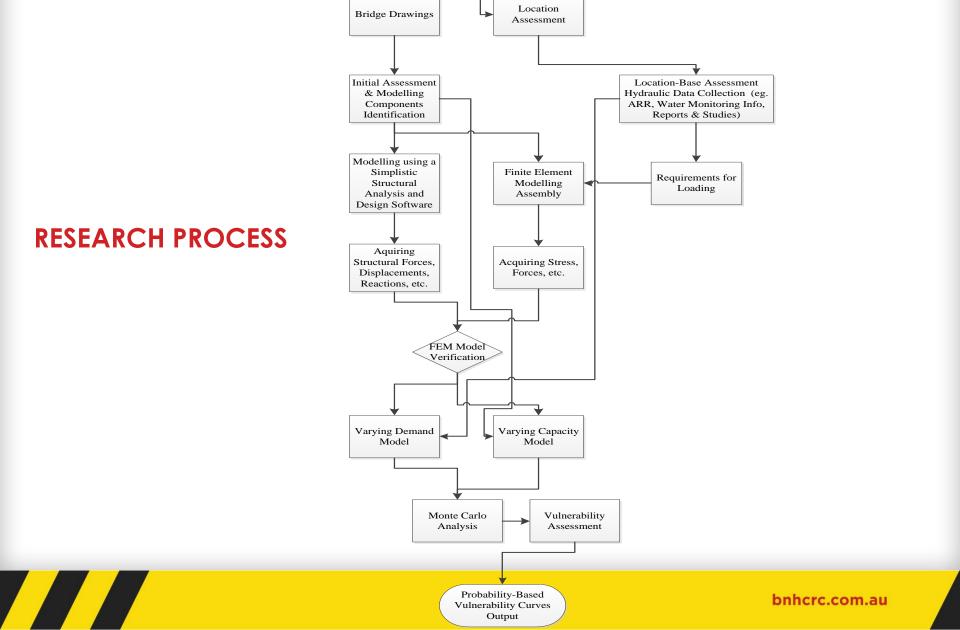

- A mini-symposium was held on 13th July 2015 at RMIT in Melbourne
- A presentation was made to the Austroads committee on 21 October 2015 to disseminate the findings and secure Austroads support to provide a pathway for translation of knowledge.
- 4th formal end-user workshop held at the University of Southern Queensland on 7th March 2016 with 35 attendees (23 end-user and industry reps., BNHCRC Research Manager, 7 researchers & 4 students).
- A number of other informal events were held: meeting with Queensland Main Roads on 26/Mar/2015, VicRoads on many occasions and RMS on 31/Jul/2015
- Workshop on the next stage held on 10th Oct. 2016

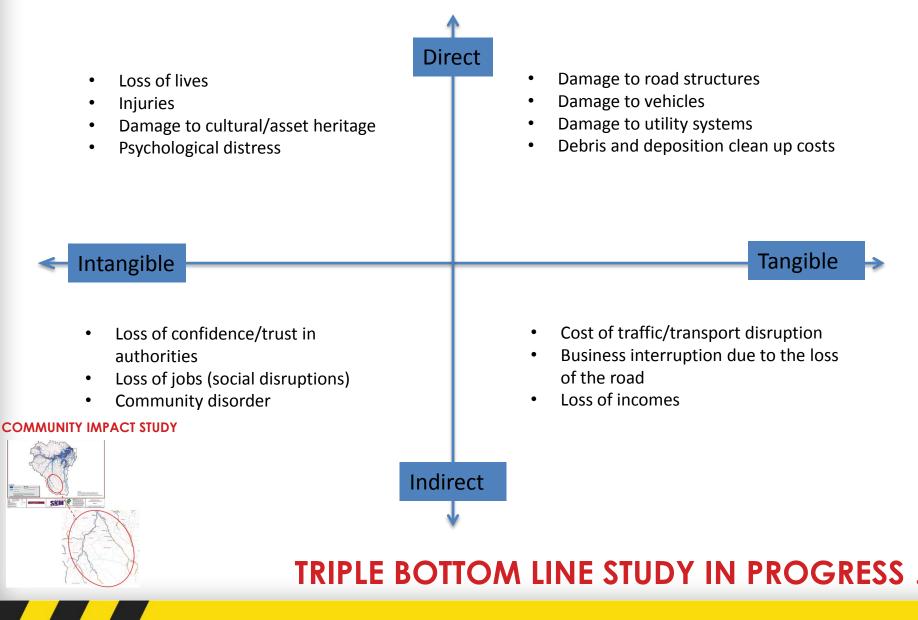
DAMAGE CURVES - BRIDGES UNDER FLOOD, BUSHFIRE & EARTHQUAKE











Bridge Case Study

QUANTIFYING ECONOMIC CONSEQUENCES

EFFECT OF SCOUR ON FLOODWAYS

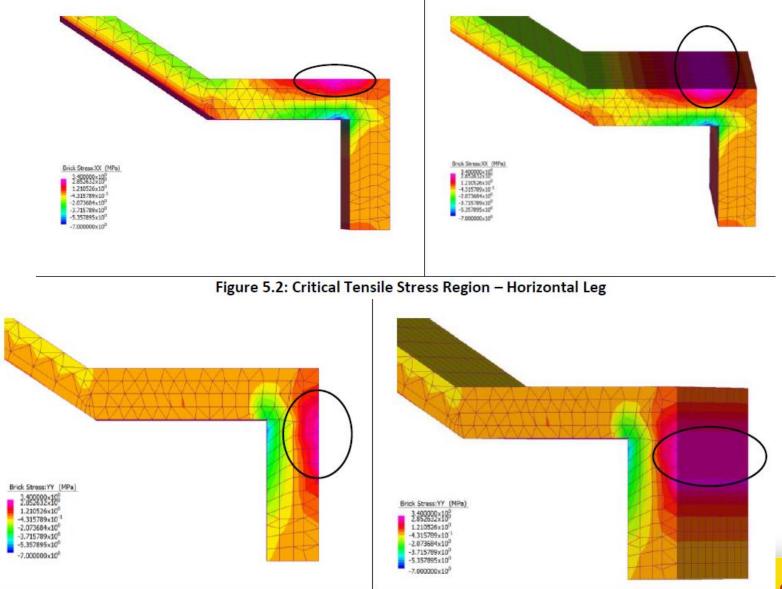
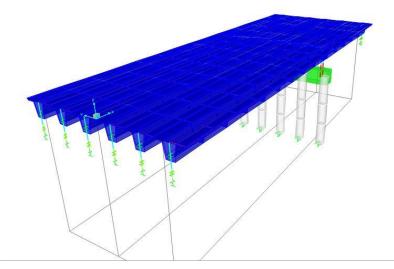
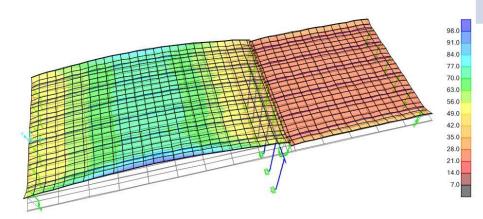


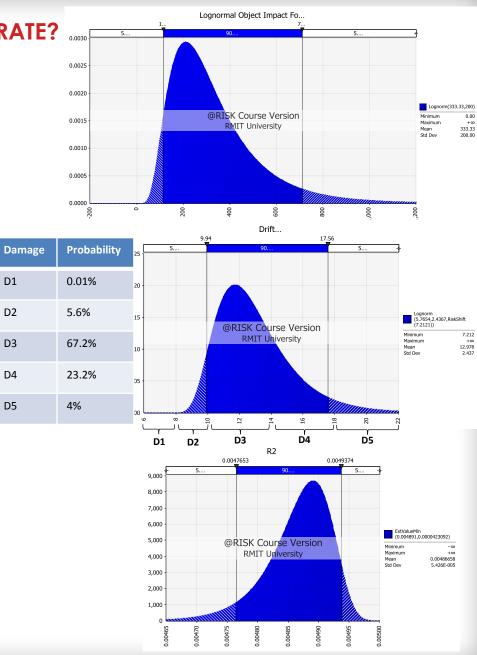
Figure 5.3: Critical Tensile Stress Region – Vertical Leg

com.au

FLOODWAY/CULVE RT DESIGN GUIDELINE


1.				
2.			ction	
З.	De:		criteria and considerations	
3	8.1	-	irology and design flows	
3	8. Z	Ser	viceability level	
	3.2	.1	Selection of floodway serviceability	
	3.2	Z	Time of submergence/ closure	
	3.2	.3	Economic considerations	
3	5.3	Roa	d geometry and vehicle safety	
	3.3	1.1	Horizontal alignment	
	3.3	.Z	Vertical alignment	
	3.3	ι.3	Embankment cross section	
	3.3	.4	Safety issues and floodway signage	
3	1.4	Env	ironmental issues	
4.	Hys	drau	lic analysis	
4	1.1	Ger	ieral	
4	l. 2	Nat	ural section discharge	
5.	Ge		nical investigation	
6.			rotection	
Ē	5.1		ur potential of the natural section	
	5.Z		vnstream Rock protection design	
-	6.7		Type of rock protection	
	6.7	_	Configuration of rock protection	
-			tream Rock protection design	
		-	wall design	
			-	
	1.1		figuration of cut off wall	
_	'.Z		nforcement for cut off wall	
8.	Pak	леттю	ent design	
9.			ices	


Appendix A. Nomenciature and Terminology Appendix B. Design flowcharts


Appendix C Worked example

WAY FORWARD – HOW DOES IT ALL INTEGRATE?

CASE STUDY - SUPER - T BEAM

FROM CASE STUDIES TO AUSTRALIA WIDE ROAD STRUCTURES

1) Categorisation

- a) Based on understanding of their vulnerability
- b) Based on structural type & form
- c) Based on construction year
- d) Based on current & future condition
- e) Other influencing factors
- 2) Integration with other sources of information
 - a) Hazard maps
 - b) Road structures inventory
 - c) Social, environmental & economic impact
- 3) Modelling & decision support tools
 - a) Scenario analysis
 - b) Optioneering
 - c) Strengthening techniques recommendation
 - d) Prioritisation
 - e) Investment decisions

WE ARE NOT ALONE

Table D.12 Highway Bridges

fiHighwayBridge						
Name	Description	Format	Default Value			
HighwayBridgeId	Highway bridge unique id	char(8)	not null			
Elevation	Bridge elevation above surface of normal flow (not used)	float	null			

Table D.13 Railway Bridges

Table

nkailwayBridge						
Name	Name Description Format					
RailwayBridgeId	Railway bridge unique id	char(8)	not null			
Elevation	Bridge elevation above surface of normal flow (not used)	float	null			

Table D.29 Bridge Damage Functions for Highway, Railway, and Light Rail Table

flBridgeDmgFn

Name	Description	Format	Default Value
BridgeDmgFnId	Bridge damage function unique id	numeric	not null
Occupancy	Bridge specific occupancy	char(7)	null
Source	Damage function source	char(16)	null
Description	Damage function description	varchar(50)	null
RP0	Percent damage for return period 0-years	real	null
RP25	Percent damage for return period 25-years	real	null
RP50	Percent damage for return period 50-years	real	null
RP75	Percent damage for return period 75-years	real	null
RP100	Percent damage for return period 100-years	real	null
RP125	Percent damage for return period 125-years	real	null
RP150	Percent damage for return period 150-years	real	null
RP175	Percent damage for return period 175-years	real	null
RP200	Percent damage for return period 200-years	real	null
RP225	Percent damage for return period 225-years	real	null
RP250	Percent damage for return period 250-years	real	null

Table 7.2 Highway Single-span Bridge Damage Relationship

Flood Return Period	Scour Potential ⁽¹⁾ /Probability of Failure (percent)					
	1	2	3	4-8	9	
100-year	5	2	1	0	N/A	
500-year (2x 100-year probability)	10	4	2	0	N/A	
1000-year (1.5x 500-year probability)	15	6	3	0	N/A	

The Scour Potential is a field in the Hazus Bridge database and is from the FHWA inventory of bridges

Table 7.3 Highway Continuous-Span Bridge Damage Relationship

Flood Return Period	Scour Potential ⁽¹⁾ /Probability of Failure (percent)				
	1	2	3	4-8	9
100-year	1.25	0.5	0.25	0	N/A
500-year (2x 100-year probability)	2.5	1	0.5	0	N/A
1000-year (1.5x 500-year probability)	3.75	1.5	0.75	0	N/A

⁽¹⁾ The Scour Potential is a field in the Hazus Bridge database and is from the FHWA inventory of bridges

In the future, it may be possible to develop damage relationships for different bridge span materials (concrete, steel, wood), but no data exists, and the focus is on the bridge foundation vulnerability rather than the span.

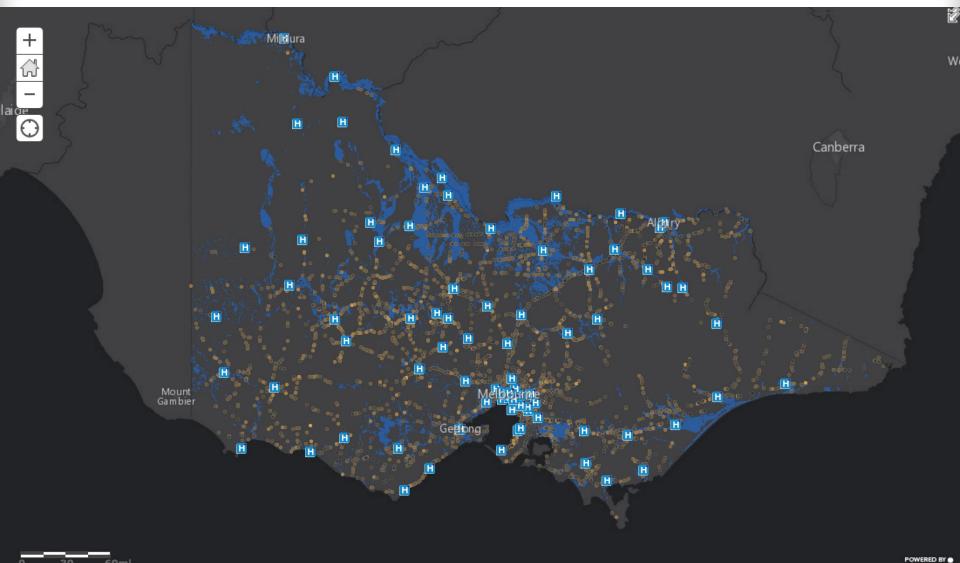
9.4 Damage Functions

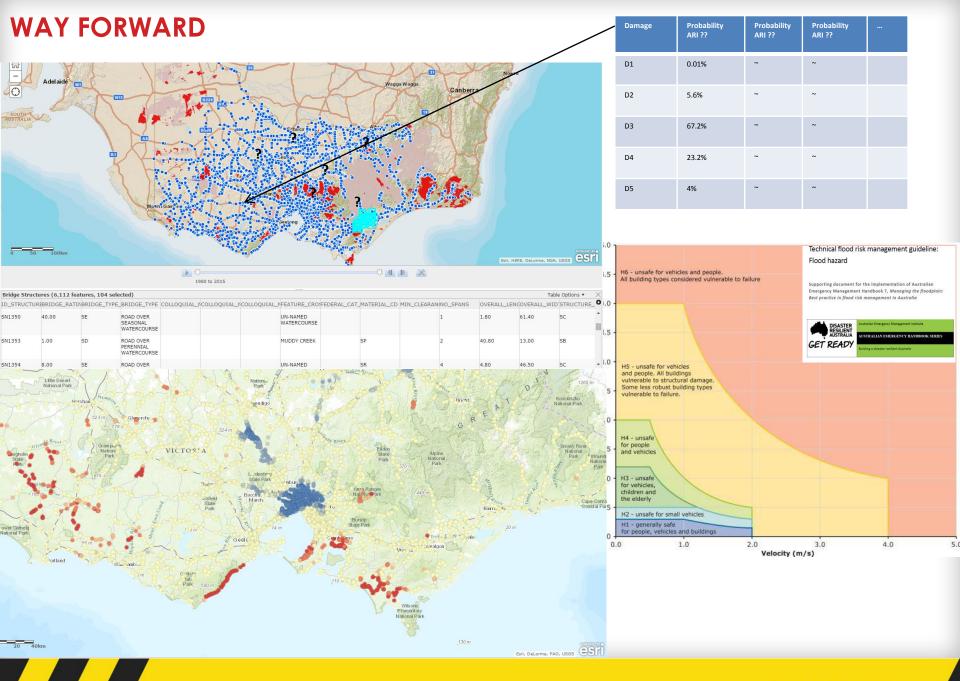
The Flood Model default data includes over 700 depth-damage functions that relate water depth to structure and content percent damage. The Damage Functions includes Buildings, Essential Facilities, Transportation Systems, Utility Systems, Agricultural Products, and Vehicles. All of

FLOOD-DEPTH FUNCTION

Midwest_Flooding us.resiliencesystem.org

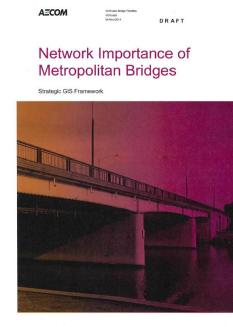
FLOOD-VELOCITY FUNCTION


AP_louisiana_flooding_1_jt_160813_4x3_992 usa.superlive.tv


http://www.abc.net.au/news/2015-05-02/queensland-weather-five-people-killed-as-cars-swept-away-floods/6439550

WAY FORWARD – GIS INTEGRATION

- Austroads bridge design code introduced 1 in 2000 year flood design for bridges
- Constructed bridges pre-1992 were mostly designed for 1 in 100 year ARI (Bennett et al. 2009)



esri

NETWORK PRIORITISATION - BRIDGES

- 1. Freight Movement
 - Principal Freight Route
 - % Commercial Vehicles
 - Over Dimension Route
- 2. Vehicle Movement
 - Traffic Flow
 - Road Use
 - Volume/Capacity
- 3. Community Access
 - School
 - Hospital
 - Police
 - Ambulance
- 4. Commuter Movement
 - Bus Route
 - Bus Passengers
 - Tram Route
 - Tram Passengers
- 5. Features Below Bridge

WAY FORWARD & PROJECT UTILISATION

Three main Utilisation outcomes

- 1) Map of vulnerable structures in GIS
 - a) Generic methodology for calculating vulnerability
 - b) Coverage of major failure modes
- 2) Prioritisation for funding allocation based on community needs and vulnerability of bridges
 - a) Strengthening methods
 - b) Incorporation of hazard maps and adjustment of weightings
 - c) Social & environmental impact identification
 - d) Economic impact consideration
- 3) Floodway design guide
 - a) Understanding failure of different designs
 - b) Practitioners view point on resilient designs
 - c) Changes to design considering resilience
 - d) Endorsement by Austroads and IPWEA

INITIAL OVERALL PLAN FOR THE 2ND PHASE

- 1. July 2017 → June 2018
 - Hazard maps for Victoria/Queensland/Australia;
 - Finalise generic analysis methodology;
 - Categorisation of the structural forms.
 - Floodway analysis converted to design schemes
- 2. July 2018 → June 2019
 - Analysis of Structural groups using the generic methodology
 - Damage quantification and categorisation;
 - Strengthening/rehabilitation methods and reduction of vulnerability;
 - Community impact;
 - GIS map + vulnerability.
 - Floodway modelling converted to resilient designs
- 3. July 2019 → June 2020
 - Cost estimation linked with damage categories;
 - Community impact quantification;
 - Prioritisation and decision making;
 - Validation & implementation.
 - Floodway design guide developed and endorsed.

WORKSHOP 10TH OCT. RMIT UNIVERSITY

END-USER ATTENDANCE

- VicRoads
- Emergency Management Victoria (EMV)
- Queensland Reconstruction Authority (QRA)
- Department of Environment, Land, Water and Planning (DELWP)
- Yarra Ranges Council
- City of Greater Geelong
- Pyrenees Shire Council
- City of Greater Geelong
- Pitt&Sherry

FEEDBACK FROM STAKEHOLDERS

- Identifying susceptible assets is very important include scenario modelling to determine vulnerability
- QRA is interested in cost to community, access to primary industries, key evacuation routes, prioritisation. Cost is important to road authorities and local governments as well.
- Development of inspection practice for post disaster inspection of assets is important
- Be conscious of different priorities of state road authorities in developing the utilisation plan.
- Bridges under bush fire is not a major issue for road authorities, however, is a major issue for local government eg: Murrindindi shire, shire of Macedon ranges and Yarra ranges.
- Scour of bridge piers is an important failure mode to be considered and is where least amount of information is available. VicRoads and QRA have information on scour which will assist researchers.
- Loss of approach roads to be examined considering the whole of life of the structures. Sometimes, failure of the approach is better than failure of the structure.
- DELWP has data on flooding, which is on a fine grid in some areas and a coarse grid on others. The first pilot of the GIS tool should use a selected area where information is available on a fine grid, rather than the whole state.

THANK YOU

