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RATIONALE

Floods cause significant economic and ecological damages and account 

for approximately 40–50% of all disaster-related deaths worldwide

A timely, accurate prediction of 

the flood wave arrival time, depth and velocity 

is essential to reduce flood related mortality and damages.

St. George (QLD, Australia), 2010 March 5th, 

http://www.abc.net.au

Percentage of occurrences of natural disasters by type 

worldwide(1995-2015) (World Economic Forum, 2016)
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FLOOD FORECASTING SYSTEMS

1. HYDROLOGIC MODEL:
Input: rain, PET

Output: discharge hydrograph

2. HYDRAULIC MODEL:

Input: discharge hydrograph 

Output: water depth and velocity at each point of the flooded area
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HYPOTHESIS: 
REMOTE SENSING DATA CAN IMPROVE FLOOD FORECAST ACCURACY

1. HYDROLOGIC MODEL:   REMOTE SENSING SURFACE SOIL MOISTURE

SMOS coverage (morning pass) on 14th and 16th Sep 2013
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HYPOTHESIS: 
REMOTE SENSING DATA CAN IMPROVE FLOOD FORECAST ACCURACY

2. HYDRAULIC MODEL:   REMOTE SENSING-DERIVED FLOOD EXTENT and LEVEL

SAR image

(Cosmo SkyMed, 

Clarence NSW, 12th Jan 2011)

Maps of flood extent

Water level values

DTM

1) RS-derived maps of flood extent can 

be used to identify gross errors in 

the results of the numerical model or 

to detect unexpected events such 

as levee breaches.

2) RS-derived water level at selected 

locations can be used to fine tune 

the parameters of the hydraulic 

model.

Condamine – Balonne catchment, Feb, 2012

StGeorge, 3000 ab.
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STUDY BASINS

Condamine-Balonne

(75370 sq. km)

Clarence 

(20730 sq. km)

St. George, 2012 Feb 7th, http://www.abc.net.au Grafton, 2013 Jan 30th, Mr. Williamson  
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HYDROLOGIC MODELLING

 Literature review (Li et al., 2016, Remote Sensing)

 Data preparation

a) Forcing data

b) Remote sensing data

c) Other data

 Model comparison

 Model calibration

a) Impact of in-situ SM (Zhang et al., 2015, MODSIM)

b) Impact of RS SM

 Clarence

 Balonne-Condamine

 Data assimilation

a) Preliminary experiment in Clarence

SUMMARY
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HYDROLOGIC MODELLING
CALIBRATION

Catchment system in Condamine-Balonne

 Calibration scenarios

a) Streamflow only

b) Streamflow and SMOS SM

 Periods

a) Calibration (2010-2012)

b) Validation (2013-2014)

 Catchments

a) Lumped systems

b) Semi-distributed systems 

with outlet gauges

c) Semi-distributed systems 

with 7 gauges
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HYDROLOGIC MODELLING
CALIBRATION USING STREAMFLOW

 Cashmere

 Chinchilla

NS Lump Semi-1 Semi-2

Cal. 0.63 0.71 0.73

Val. 0.55 0.64 0.66

NS Lump Semi-1 Semi-2

Cal. - 0.59 0.79

Val. - 0.54 0.72

NS Lump Semi-1 Semi-2

Cal. 0.54 0.70 0.77

Val. 0.49 0.63 0.69

NS Lump Semi-1 Semi-2

Cal. - 0.62 0.76

Val. - 0.55 0.69

NS Lump Semi-1 Semi-2

Cal. - 0.47 0.81

Val. - 0.46 0.74

 Mitchell

 Loudouns Bridge

 Distributed models are recommended for large-scale catchments.

 Calibrating the model at a large number of streamflow gauges improves the 

simulation at the outlet (the more data  are used, the more robust the model is).

 Large uncertainty exists at ungauged sub-catchments, more data insertion is 
required --> RS soil moisture.

 Tummaville
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HYDROLOGIC MODELLING
CALIBRATION USING STREAMFLOW AND SM

 Chinchilla (downstream gauge)

NS Lump Semi-1 Semi-2

Cal-Q 0.54 0.70 0.77

Cal-Joint 0.47 0.69 0.74

Val-Q 0.49 0.63 0.69

Val-Joint 0.44 0.65 0.70

Minimizing errors in  soil moisture may lead to sub-optimal streamflow 
simulation during the calibration period

but can lead to a more robust parameter set 
which has the potential to improve the future forecasts.
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HYDROLOGIC MODELLING
CALIBRATION USING STREAMFLOW AND SM

 Tummaville (upstream gauge)

NS Lump Semi-1 Semi-2

Cal-Q - 0.47 0.81

Cal-Joint - 0.55 0.73

Val-Q - 0.46 0.74

Val-Joint - 0.51 0.71

Including  RS soil moisture  improves 

streamflow prediction at ungauged stations.
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HYDROLOGIC MODELLING
CALIBRATION USING STREAMFLOW AND SM

 Semi-1

 Semi-2

NS Chinchilla Loudouns Fairview Tummaville Warwick

Cal-Q 0.70 0.62 0.54 0.47 0.49

Cal-Joint 0.69 0.65 0.52 0.55 0.60

Val-Q 0.63 0.55 0.50 0.46 0.45

Val-Joint 0.65 0.59 0.47 0.51 0.55

NS Chinchilla Loudouns Fairview Tummaville Warwick

Cal-Q 0.77 0.76 0.73 0.81 0.83

Cal-Joint 0.74 0.73 0.69 0.73 0.79

Val-Q 0.69 0.69 0.69 0.74 0.75

Val-Joint 0.70 0.71 0.68 0.71 0.76

Gauged Ungauged

Ungauged locations: 3/4 were improved through using 
remote sensing soil moisture data.

Gauged locations: 4/6 were improved in calibration periods, 
although degradation were found during validation periods.

S1 vs S2: The availability of flow gauges are essential for 
constraining model calibration; however, the soil moisture 

can be alternative information when there is limited flow 

gauges.
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HYDROLOGIC MODELLING
STATE UPDATING – preliminary test

Badly Calibrated (ungauged)

Well Calibrated (gauged)

 EnKF is applied for a lumped catchment upstream of Paddys Flat

 Errors of model and observations are predefined based on previous studies

Overcorrection



15

HYDROLOGIC MODELLING
STATE UPDATING – preliminary test

 EnKF is applied for a lumped catchment upstream of Paddys Flat

The assimilation of soil moisture brings benefit especially when the 

model is NOT well-calibrated, i.e., bias exists.

The assimilation improves prediction for some events but also causes 

over correction for some other events, when the model is well 

calibrated.

Improved results can be expected by joint assimilation of soil 

moisture and streamflow, as antecedent soil moisture updating 

cannot account for mass-balance errors due to poor rainfall data.

NS Simulation EnKF

Badly calibrated 

(ungauged)
0.61 0.70

Well calibrated 
(gauged)

0.76 0.78
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HYDROLOGIC MODELLING
LINKAGE TO HYDRAULIC MODELLING

Hydrologic model 

Prediction of the input discharge hydrograph

Hydraulic model

Flood extent and level in the 

lower Balonne and lower Clarence catchment
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HYDRAULIC MODELLING

 Literature review (Grimaldi et al., 2016, Surv. Geophys.)

 Model selection: LISFLOOD-FP

 River survey field campaigns

a) Clarence (Nov 2015)

b) Balonne-Condamine (May 2016)

 Data preparation

a) Remote sensing water level/extent

b) DEM, bathymetric dataset, land cover and land use data

 Hydraulic modelling

a) Clarence: Numerical modelling of the 2011, 2013 flood events

b) Balonne-Condamine: Preliminary bathymetric data analysis

SUMMARY
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Hydraulic modelling

RS image interpretation

CHALLENGES

1 – Lack of bathymetric data

2 – Low accuracy of the DEM

3 – Densely vegetated, ephemeral, braided river

- QLD – DNRM: 16 cross sections (14 

old/recent gauge stations + 2 transects) (CCBY)

- QLD – DNRM: 30 waterholes between 

Chinchilla and Barrackdale

Our FIELD CAMPAIGN: 

~ 21 km bathymetric data 

5 transects 

Bathymetric dataset

13km

1km

4km
3km
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Combined analysis of field data and remote sensing data  new bathymetric dataset

Acoustic Doppler Profiler , CastAway field data

SPOT 
2016/05/14

SPOT 
2005/03/26

ASTER
2015/09/22

St. George

Condamine

RS to complement field data where weeds and submerged obstacles impeded the measurement 

Use of RS imagery
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FIELD DATA:  ST. GEORGE – 13 KM (101 CROSS SECTIONS)
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FIELD DATA:  ST. GEORGE – 13 KM (101 CROSS SECTIONS)
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ST. GEORGE – BATHYMETRIC DATA AND HDEM

Integration of the new bathymetric dataset into the existing HDEM

The lowest point of the HDEM is ~9 m higher than the 

zero level (= water surface level) of our bathymetric 

dataset
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SRTM derived DEMs are affected by 

systematic errors

Jarihani et al. (2015), Journal of hydrology

Diamantina/Cooper catchments  the SRTM DEM was higher 

than 2700 registered survey marks and 370500 ICESat points

Bias = +2.68 m; RMSD = 3.25 m, SD = 1.84 m
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 Integration of the new bathymetric dataset with the existing HDEM

HDEM  

1. Simple, straightforward approach: 

HDEM new = HDEM – bias (Jarihani et al., 2015)

2. 1D Co-registration or 3D-coregistration

 Extrapolation of the bathymetric dataset: 

analysis of field data, global database, Australian studies 

Definition of a strategy to model the geometry of the river
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Mersel et al. (2013), Domeneghetti et al. 

(2016) suggested a break-slope method 

for depth estimation
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Definition of a strategy to model the geometry of the river

The comparison between HDEM and field data will 
be extended to all the available cross sections
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THANKS FOR YOUR KIND ATTENTION!

Stefania.Grimaldi@monash.eduAshley.Wright
@monash.edu

Jeff.Walker@monash.eduValentijn.Pauwels
@monash.edu

 RS soil moisture can improve streamflow prediction in ungauged catchments.

 Soil moisture assimilation can improve flow predictions; however, over 
correction has also been found for some events. Joint assimilation of soil 

moisture and streamflow is recommended to address errors in rainfall.

 A strategy to build a coherent bathymetric dataset needs to be developed.

 Integrated use of field measurements, remote sensing imageries, and hydraulic 

modelling will be investigated for improved flood inundation prediction.

CONCLUSIONS

Yuan.Li2@monash.eduAntara.Dasgupta
@monash.edu


