

FIRE SPREAD ACROSS FUEL TYPES Research Advisory Forum

Duncan Sutherland^{1,2}, Khalid Moinuddin¹, Andrew Ooi², Daniel Chung², Graham Thorpe³, Vasily Novozhilov¹

- 1. CESARE, Victoria University, Melbourne
- 2. Mechanical Engineering, University of Melbourne, Parkville
- 3. College of Engineering and Science, Victoria University, Melbourne

© BUSHFIRE AND NATURAL HAZARDS CRC 2015

Australian Government Department of Industry, Innovation and Science Business Cooperative Research Centres Programme

OUTLINE

PROGRESS REPORT

- 1) Physics based simulation of grassfires
- 2) Simulation of sub-canopy flows

FUTURE DIRECTIONS

1) Inhomogeneous canopies

2) Surface fires impacting on structures

PHYSICS-BASED FIRE MODELLING

- 1) Flame & smoke propagation and fire suppression simulation by computational fluids dynamics (CFD)-based modelling
- 2) Start with fundamental <u>differential</u> equations for:
 - a) Fluid momentum and mass transport (including turbulence)
 - b) Thermal degradation & combustion of materials and transport of gasses and soot
 - c) Heat transfer by radiation and conduction
- 3) This is time consuming but gives a more practical result than engineering equations (simple equations from experiments)
- 4) We use Fire Dynamics Simulator (FDS) developed by NIST

LARGE SCALE EXPERIMENTAL FIRES (GRASSLAND, CSIRO, AUSTRALIA)

Plot: 104 m x 104 m (+ development & downstream region)

420 y = 0.978x + 227.8 $R^2 = 0.9652$ 410 400 500 8718x + 234 3 390 = 0.913 × 250 Ē 167 **.5** 380 5868x + 273.28 250sp5 0.9774x + 22Flame Propaga $R^2 = 0.9623$ 250sp25 370 Linear (500) — Linear (250) 360 – Linear (167) — Linear (250sp5) 350 — Linear (250sp25) 0.5152x+279.26 $R^2 = 0.9497$ 340

160

Time (sec)

170

180

190

200

150

Cheney et al Int. J. Wildland Fire 1998

MODEL VALIDATION: FIRE PROPAGATION

RATE OF SPREAD – EMPIRICAL MODEL

Mark 5 version of McArthur model

Rate of fire spread (R) R = 0.13 F

 $F = 3.35W \times Exp(-0.0897M + 0.0403V)$ $F = 0.299W \times Exp(-1.686M + 0.0403V) \times (30 - M)$ when *M*<18.8% when 18.8% *M*<30%

CSIRO model (Project VESTA)

 $R_{\rm cu} = \begin{cases} (0.054 + 0.209U_{10})\phi M \phi C & U_{10} \le 5 \,\rm km \, h^{-1} \\ (1.1 + 0.715(U_{10} - 5)^{0.844})\phi M \phi C & U_{10} > 5 \,\rm km \, h^{-1} \end{cases},$ $\phi M = \begin{cases} \exp(-0.108 \,\rm MC), \,\rm MC < 12\% \\ 0.684 - 0.0342 \,\rm MC \,\rm MC \ge 12\%, U_{10} < 10 \,\rm km \, h^{-1} \\ 0.547 - 0.0228 \,\rm MC \,\rm MC \ge 12\%, U_{10} \ge 10 \,\rm km \, h^{-1} \end{cases}$

RATE OF SPREAD – FDS VS EMPIRICAL

GRASS FIRE RESULT-UNMOWED VS MOWED CONSTANT AMOUNT OF FUEL

GRAPH OF RATE OF SPREAD

CONSTANT FUEL DENSITY

MCARTHUR MODEL (NOBLE 1980)

$$F = 2.0 \exp(-0.450 + 0.987 \ln(D) - 0.0345 H + 0.0338 T + 0.0234 V)$$

R = 0.0012 * F * W

McArthur Model:

$$R = a_0 W \exp(-a_1 + a_2 \log(D) - a_3 H + a_4 T + a_5 u/\alpha),$$

where W, D, H, and T are fuel and weather conditions u is the open wind speed a_i are positive empirical constants α is the wind reduction factor

McArthur Model:

$$R = a_0 W \exp(-a_1 + a_2 \log(D) - a_3 H + a_4 T + a_5 u / \alpha),$$

where W, D, H, and T are fuel and weather conditions u is the open wind speed a_i are positive empirical constants α is the wind reduction factor

McArthur Model:

$$R = a_0 W \exp(-a_1 + a_2 \log(D) - a_3 H + a_4 T + a_5 u/\alpha),$$

where W, D, H, and T are fuel and weather conditions u is the open wind speed a_i are positive empirical constants α is the wind reduction factor

 $\frac{u}{\alpha}$ models the flame-height wind speed in the canopy

SIMULATION DOMAIN

How does the wind profile change over different canopy lengths and LAD?

EFFECT OF LEAF AREA DENSITY

Variation across the canopy

FLOW STRUCTURES

Exterior canopy streamlines

STRESS-BALANCE MODEL (HARMAN AND FINNIGAN) REVISE

- An idealised canopy flow
- Two sources of momentum
 - Drag of the trees
 - Turbulent eddies
- Balance to give velocity profile:

 $\bar{u}_c(z) = \bar{u}_a(h) \exp\left(\frac{(z-h)c_D\bar{a}}{2\beta^2}\right).$

Blue: Harman & Finnigan Model, red: canopy average, black: developed canopy average Dots: profile at a range of streamwise locations in the canopy Dashed: canopy top

WHERE TO FROM HERE?

Area of interest

Prevailing wind direction

BENEFITS

- An easily implemented model for wind profile downstream of the canopy
- Sub-canopy wind model for inhomogeneous canopies
- Understanding the significant factors effecting sub-canopy winds

SURFACE FIRES

APPRAISAL OF AS3959/BCA GV5.1

APPRAISAL OF AS3959/BCA GV5.1

Wind

(a) Furticle activity (i)

BENEFITS

- Assessment of heat and ember loading on structures
- Appraisal of standards
- Development of engineering models for heat and ember load
- Potential risk modelling
 - Estimation of fire breaks, etc

QUESTIONS?

© BUSHFIRE AND NATURAL HAZARDS CRC 2016

Edge canopy streamlines

