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ABSTRACT 

Soil organic matter has strong effects on many soil properties such as water 

holding capacity, soil structure and stability, nutrient availability and cation 

exchange capacity.  Therefore, characterising soil organic matter is necessary 

to improve soil management.  Pyrolysis coupled to gas chromatography-mass 

spectrometry (pyr-GC-MS) is one of many techniques that have been 

successfully used in this characterisation.  However, a major limitation of pyr-GC-

MS is that generates large amounts of mass-spectrometry data preventing fast, 

high throughput data analysis.  This hinders our ability to identify compounds in 

complex matrices such as SOM that could be useful for predicting their 

characteristics.  In this study, we aimed to investigate whether it was possible to 

rapidly identify significant differences among pyr-GC-MS data from soil from 

burnt and unburnt areas using an unsupervised statistical approach and identify 

the specific features that cause them.  Of nearly 400 useful compounds 

extracted from the pyr-GC-MS data, only 15 were found to be necessary to 

classify between burnt and unburnt soil.  We discuss how these features could be 

useful in the classification of soil disturbance such as fire or, potentially, as a 

quantitative measure of fire impact (intensity or severity). 
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END USER STATEMENT 

Felipe Aires, Fire and Incident Management, Office of Environment and 

Heritage, NSW 

 

The complexity of organic materials found in soils make most methodologies 

aiming to identify the components too expensive, time consuming and complex 

and often requires a specialist capable of interpreting the results.  

This study demonstrated the potential of using a rapid automated, processing of 

pyrolysis GC-MS data to identify compounds that are useful in characterising soil 

from burnt or unburnt plots.  

Development of future work should focus on producing operational products 

capable of using these newly developed technologies to assess post-fire severity 

and intensity and its impacts on soil carbon. This would allow a more tailored and 

efficient approach to carbon management by land managers.  
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INTRODUCTION 

Soil organic matter (SOM) is a complex, heterogeneous mixture of organic 

materials derived from plants and animals at different stages of decomposition 

and degree of association with the soil mineral matrix (Buurman and Roscoe, 

2011).  It represents the main terrestrial carbon pool and is an essential 

component of the global carbon cycle (Eglin et al., 2010). Soil organic matter 

has strong effects on many soil properties such as water holding capacity, soil 

structure and stability, nutrient availability and cation exchange capacity 

(Schlesinger, 1986).  Consequently, the precise characterisation of SOM is 

necessary to determine the mechanisms involved in its stabilisation and to 

predict its dynamics to be able to provide recommendations for improving soil 

management (Derenne and Quenea, 2015). 

Fire affects the carbon balance of terrestrial biomes with immediate release of 

carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), volatile organic 

compounds (VOCs) and particulate matter (PM) into the atmosphere during the 

consumption of fuel (Urbanski et al., 2009).  The carbon balance can also be 

changed by modifying and redistributing carbon stocks held in partially 

combusted heavier fuels (i.e. wood converted to charcoal) and in the soil 

(Volkova and Weston, 2013; Possell et al., 2015).  Carbon within the SOM can be 

oxidised during fires with carbon losses varying with fire intensity (Knicker, 2007).  

Post-fire changes in carbon pools are due to alteration in the activity of 

microorganisms responsible for decomposition of organic matter and uptake of 

CO2 via photosynthesis by vegetation regrowth. Pyrogenic carbon 

(thermochemically altered carbon derived during combustion) ranges from 

large pieces of charred biomass, to charcoal, and soot and ash particles often 

submicron in diameter (Hammes et al., 2007). The amount of pyrogenic carbon 

produced by fires and deposited on soil surfaces is a small proportion of the fuel 

consumed (typically less than 3%; Jenkins et al., 2014) but it represents an 

important pathway by which carbon can be rendered inert and accumulate in 

soils over time (Forbes et al., 2006).  The amount and type of pyrogenic carbon 

deposited on and later incorporated into the soil is influenced by the type of pre-

existing vegetation, the spatial distribution of plant species, the density of plant 

material as well as fuel, weather conditions, fire intensity and duration (Knicker, 

2007).  As many of these factors are heterogeneous across the landscape, the 

characterisation of the effects of fire on SOM becomes a challenging task. 

There are a number of analytical methods that have been used to characterise 

the composition of SOM and these have been reviewed in depth by Derenee 

and Tu (2014).  In brief, these methods are used to examine the nature of 

chemical functions (e.g. nuclear magnetic resonance (NMR) and Fourier 

transform infrared (FTIR)); molecular identification of complex organic mixtures 

(e.g. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)); 

spatial elemental and isotopic analysis using x-ray microscopy or secondary ion 

mass spectrometry (SIMS); and degradation techniques that cleave the organic 

matter to provide molecular information (Derenne and Quenea, 2015). 
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Thermal degradation through the use of a pyrolysis unit has been a popular 

analytical technique and methodologies using pyrolysis have recently been 

reviewed by Derenne and Quenea (2015).  An important thermal degradation 

technique is pyrolysis coupled to gas chromatography-mass spectrometry (pyr-

GC-MS), which allows for identification of the compounds that make up the 

pyrolysate (the mixture of products generated by pyrolysis). However, despite this 

being one of the more common methods used, it has some disadvantages.  

Firstly, the compounds can only be identified if they are amenable to separation 

by gas chromatography.  This amenability is influenced by the type of 

chromatography column and the temperature and pressure settings used on the 

column to enact the separation of the pyrolysate (Sáiz-Jiménez, 1994).  Another 

drawback is the difficulty in producing quantitative data because of matrix 

effects (the combined effect of all components of the sample other than the 

analyte on the measurement of the quantity) and the large number of standards 

that are required for extremely complicated pyrolysates (often hundreds of 

different compounds), most of which are commercially unavailable (Derenne 

and Quenea, 2015).  Thus, semi-quantitative approaches based on the peak 

area of the two most common ion fragments for a compound have been utilised 

to allow comparison among chromatograms based on the percentage of the 

total quantifiable peak area (e.g. Buurman et al., 2007). 

A further limitation with pyr-GC-MS is the vast amount of data that it generates.  

A typical electron-impact GC-MS output is represented by two components. The 

chromatogram displays the mixture as separated by the GC, and each peak on 

the chromatogram normally corresponds to the elution of a distinct molecule, 

which is characterised by retention time. For each point on the GC 

chromatogram, a mass spectrum is obtained by fragmentation, using electron 

impact, in the mass-spectrometer chamber.  A mass spectrum is represented by 

a histogram displaying the intensity of each fragment as a ratio of its mass-to-

charge.  Each chromatogram often produces hundreds of peaks with their own 

retention time and ions over a range of masses and intensities leading to the 

identification of several hundreds of compounds (Buurman et al., 2007; Buurman 

and Roscoe, 2011; Schellekens et al., 2009; 2011; Vancampenhout et al., 2008; 

2009).  Although the generation of considerable amounts of mass-spectrometry 

data is not unique to pyr-GC-MS, it presents a bottleneck to fast, high throughput 

data analysis.  Attempts at automated analyses of pyr-GC-MS data, although 

successful, have demonstrated that how the analyses are done, both in terms of 

software and hardware, can have a significant impact on the detection and 

hence quantification of compounds (Wenig and Odermatt, 2010; Tolu et al., 

2015).  The amount of data generated from a small number of samples can also 

limit subsequent statistical analysis of datasets through techniques such as 

principal components analysis because there are too few samples relative to the 

number of variables (compounds) identified.  This limits the ability to identify 

compounds in complex matrices such as SOM that could be useful for predicting 

their characteristics.  However, once a suite of compounds have been identified, 

these compounds could be concentrated on providing a more streamlined, 

quantifiable and potentially faster analysis by pyr-GC-MS. 

Despite the apparent limitations of pyr-GC-MS, it has proved to be a useful 

method for evaluating the impact of heat on certain components of SOM such 
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as cellulose, pectin, lignin, protein and amino acids.  Furans, pyranones, 

anhydrosugars and 5-hydroxymethylfurfural are the major products of pyrolysis of 

cellulose at temperatures <300 °C (Ralph and Hatfield, 1991; Bassilakis et al., 

2001).  As temperatures increase, these compounds are replaced by polycyclic 

aromatic hydrocarbons as the pyrolysis of lignin produces mainly substituted 

methoxyphenols, with the highest yields achieved at pyrolysis temperatures 

between 500 and 600 °C (Knicker, 2007).  Amino acids and proteins generate 

pyrrole-type and nitrogen-containing heterocyclic compounds when pyrolysed 

at low temperatures (200–300 °C) (Chiavari and Galletti, 1992; Britt et al., 2004).  

As pyrolysis temperatures increase above 500 °C, peptides generates 

polynuclear aromatic structures containing nitrogen (Sharma et al. 2003).  In 

studies where SOM has been analysed to determine the effects of fire on soil, the 

maximum temperature that the soil reaches has been shown to have an effect 

on the amount and composition of the SOM.  For instance, de la Rosa et al. (2008) 

showed that when the temperature of SOM is raised to 520 °C there is an 

enrichment of heterocyclic nitrogen compounds and aliphatic nitriles.  This has 

also been demonstrated in SOM from Eucalyptus and Pinus pinaster forests (de 

la Rosa et al., 2012).  The compounds produced at higher temperatures have 

chemically-bound carbon and nitrogen that is far less available for plant and 

microbial uptake.  The study of de la Rosa et al. (2012) also revealed a reduction 

in the amount of isoprenoids in soil (organic compounds of plant origin) due to 

fire.  These few studies highlight that there is great complexity in the 

characterisation of the effect of fire on SOM.  However, there are particular 

compounds that may be useful as marker compounds for how intense or severe 

a fire was in a similar way to how methoxy-phenols are used as marker 

compounds for woodsmoke (Hawthorne et al., 1988). 

The type of pyrogenic carbon generated during a fire can be used to trace fire 

history at a particular site.  For instance, partially-charred litter from a Florida 

Scrub Oak ecosystem was evident in the soil organic matter for at least ten years 

after fire (Alexis et al., 2012).  Charred solid residues, often referred to as black 

carbon, are considered to be one of the most recalcitrant forms of organic 

carbon (Schmidt and Noack, 2000).  The slow decomposition of this black carbon 

has been useful in investigating the fire history of colluvial soils in north-west Spain 

for the past 8,500 years (Kaal et al., 2008a; 2008b; 2008c).  This series of studies 

and that of Kaal et al. (2009) demonstrate that pyr-GC-MS of black carbon 

predominantly produces benzene, toluene, C2-benzenes, polyaromatic 

hydrocarbons and benzonitriles.  However, these compounds can also be found 

in the pyrolysate of soil organic matter, albeit at different proportions (de la Rosa 

et al., 2008; 2012).  It is clear that a robust method is needed to differentiate 

between the origins of these compounds when using pyr-GC-MS.  

In this study, we aimed to investigate whether it was possible to rapidly identify 

significant differences among pyr-GC-MS chromatograms using an unsupervised 

approach that does not require manual scrutiny of all peaks in all of the 

chromatograms nor complicated optimisation of software or hardware.  We 

applied this approach to pyr-GC-MS chromatograms of soil from burnt and 

unburnt areas and then used an ensemble learning method to identify the 

features of the chromatograms that caused the differences.  We discuss how 
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these features could be useful in the classification of soil disturbance such as fire 

or, potentially, as a quantitative measure of fire impact (intensity or severity). 
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METHODS 

1. SITE DESCRIPTION 

Sites (n = 4) were identified within prescribed burns conducted in 2015 in the 

Australian Capital Territory, Australia (Table 1).  Elevation of the sites ranged from 

760–1300 m above sea level and the climate of the study area is broadly 

described as cool temperate.  Sites were classified as low woodland and tall 

open forest dominated by Brittle Gum (Eucalyptus mannifera), Red Box (E. 

polyanthemos), White Gum (E. rossi), Apple Box (E. bridgesiana), Narrow-leaved 

Peppermint (E. radiata) and Broad-leaved Peppermint (E. dives). The understorey 

consisted mostly of Bracken (Pteridium esculentum), Grey Tussock Grass (Poa 

sieberiana) and Native Blackthorn (Bursaria spinosa subsp. lasiophylla). Soils at all 

sites are categorised as Kurosols according to the Australian Soil Classification 

(Isbell, 2016). 

TABLE 1 DESCRIPTION OF THE STUDY SITES IN THE AUSTRALIAN CAPITAL TERRITORY, 

AUSTRALIA AND PRESCRIBED BURNING OPERATIONS. A.S.L. = ABOVE SEA LEVEL; N/A = NO 

RECORDED FIRES SINCE RECORDS BEGAN IN 1902 (NSW LAND AND PROPERTY, 2016). 

Burn name State Longitude Latitude Mean elevation 

(m a.s.l.) 

Ignition 

date 

Date of 

previous burn 

Googong ACT -35.52 149.29 767 11/3/2015 N/A 

Tidbinbilla ACT -35.46 148.90 869 17/3/2015 January 2003 

Cotter ACT -35.60 148.80 1234 30/3/2015 January 2003 

Lone Pine ACT -35.88 148.94 1271 - N/A 

2. SAMPLING PROTOCOL 

At each site, six circular plots (22.5 m radius; 1590.4 m2) were established at 20–

50 m from the access road and at least 500 m apart. Three plots were located in 

the area burnt by the prescribed burn and three plots were located nearby in 

an adjacent unburnt area.  Factors such as spatial proximity, dominant canopy 

species, tree size and density distribution, slope and aspect were considered 

before selecting the adjacent burnt and unburnt plots to ensure that biophysical 

differences in plot properties were minimised. Within each circular plot,  four 

circular subplots (radius = 5 m) located 5 m along the north-south and east-west 

axes of each of the larger plots, as measured from the centre point, were 

established as described in Possell et al. (2015). 

For consistency among sites, soil samples were taken at a random point within 

the north subplot of each plot. Surface material, including ash and charcoal in 

burnt plots and leaf litter (fine fuel) in unburnt plots, was carefully removed to 

expose the underlying soil mineral layer. The top 10 cm of soil was collected using 

a steel core (4.37 cm diameter x 10 cm depth). Soil samples were stored in zip 
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locked bags, cooled and transferred to the laboratory and sieved to 2 mm 

before air-drying for several days and ground. 

3. PYROLYSIS-GC-MS 

Pyrolysis was done using a Gerstel pyrolysis module for the Gerstel Thermal 

Desorption Unit (TDU; Gerstel, Mülheim an der Ruhr, Germany).  Approximately 5 

mg of each sample was purged with ultra-high purity helium (BOC Ltd, North 

Ryde, NSW, Australia) at 60 °C for 3 minutes to eliminate air and residual moisture 

from the sample.  Samples were heated by the TDU at 12 °C s-1 to 300 °C before 

pyrolysis at 600 °C for 20 seconds.  Pyrolysis products were carried by the helium 

through a programmed temperature vaporisation (PTV) inlet (CIS-4; Gerstel) 

installed in an Agilent 7890 GC (Agilent Technologies Pty Ltd, Mulgrave, 

Australia).  The PTV inlet was held at 300 °C with a 25:1 split ratio.  Pyrolysis 

products were separated on a HP-5MS capillary column (30 m x 0.25 mm, 0.25 

µm film thickness; Agilent) which was connected to a two-way splitter with 

makeup gas (Agilent).  A restrictor column of deactivated fused silica (1.44 m x 

0.18 mm; Agilent), connected to the outlet of the splitter, transferred the pyrolysis 

products to a mass selective detector (Model 5975C; Agilent).  Ultra-high purity 

helium was used as carrier gas (flow rate through the HP5-MS column was 2.3 ml 

min–1 and 4 ml min-1 through the restrictor column).  The initial oven temperature 

of the GC was 40 °C, held for 1 minute, then heated at a rate of 5 °C min–1 to 300 

°C, and held isothermal for 15 minutes. The temperature of the GC-MS interface 

was 280 °C, the MS ion source 230 °C and the quadrupole 150 °C. The detector, 

in electron impact mode (70 eV), scanned the range of 45–650 m/z. Operation 

of the GC-MS was controlled by Agilent Chemstation (version E.02.01.117) and 

the pyrolysis module and TDU by Maestro (version 1.4.26.40/3.5; Gerstel). 

4. STATISTICAL ANALYSIS 

Post-processing of mass-spectral data was performed using MSeasy (version 

5.5.3; Nicole et al., 2012).  MSeasy is a package for R (version 3.1.2; R Core Team, 

2015) that performs unsupervised data mining on GC-MS data. This program is 

insensitive to shift in retention times and detects putative compounds within 

complex metabolic mixtures through the clustering of mass spectra. Retention 

times were used after clustering, together with validation criteria, namely the 

Silhouette Width (Rousseeuw, 1987) and Dunn’s Index (Dunn, 1974), for quality 

control of putative compounds. The package generates a fingerprinting or 

profiling matrix compatible with a mass spectral search program and library.  

Identification of the compounds corresponding to the mass spectra of the 

clusters was performed using NIST08 mass spectral library in NIST MS Search (NIST 

MS Search v.2.0f; NIST, Gaithersburg, MD).  Identification was made using a 

combination of the library’s calculated match factor (where 900 or greater is an 

excellent match; 800-899 is a good match; 700-799 a fair match and less than 

600 a poor match; NIST, 2008) and visual comparison of the mass-spectra. 

To test for differences in the fingerprinting matrix between the burnt and unburnt 

sites, a chemical dissimilarity matrix was calculated between pairs of individuals 

using the Manhattan distance 
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where x and y are two distinct individuals and Nm is the total number of 

compounds in the dataset.  A non-parameteric multivariate analysis of variance 

(pMANOVA; Anderson, 2001) was used to test for differences between the 

fingerprinting matrices of burnt and unburnt sites with the pairings from a 

particular site nested together.  This analysis calculates a ‘‘pseudo-F’’ ratio 

analogous to Fisher’s F-ratio for each factor and their interactions based on the 

Manhattan distance matrix. The partial squared coefficient of correlation (R2) is 

the percentage of variance in the chemical dissimilarity matrix that is explained 

by the factor, and the significance (P values) were calculated by performing 

1000 permutations on the rows or columns of the matrices.  The chemical 

dissimilarity matrix and pMANOVA were calculated using the package ‘vegan’ 

in R (Oksanen et al., 2014).  To check that the results were not a function of 

heterogeneity of group dispersions (variances), a multivariate analogue of 

Levene’s test for homogeneity of variances was applied to the distance 

measures using the ‘betadisper’ function within the ‘vegan’ package (Anderson, 

2006).  

To identify the variables (compounds) contributing to any observed differences 

in the chromatograms among the burnt and unburnt sites, Random Forests 

analysis (Breiman, 2001) was used for the classification using the ‘randomForest’ 

package in R (v. 4.6-10; Liaw and Wiener, 2002).  We used a variable selection 

procedure to identify the important compounds (Genuer et al., 2010).  This 

method is based on the unscaled permutation importance calculated by 

permuting each predictor in turn and using the difference in the prediction error 

(out-of-bag (OOB) error) before and after permutation as a measure of variable 

importance (Liaw and Wiener, 2002).  The approach of Genuer et al. (2010) 

identifies a set of classifiers suitable for model interpretation by: 

a) ranking all predictors using the unscaled permutation importance 

(averaged over 999 repetitions) calculated by Random Forests; 

b) discarding noise predictors by fitting a regression tree (Therneau et al., 

2015) to the curve of the plot of standard deviations of importance 

measures ordered by their mean importance.  As the variability of the 

predictor’s importance is larger for true predictors compared to noise 

predictors, predictors with a standard deviation less than the smallest 

predicted value of the regression tree model (the threshold) are 

discarded; 

c) computing OOB error for models (using default parameters for the 

random forest models) starting with a model with the most important 

variable and adding predictors sequentially in the order of their ranking 

(nested models) and; 

d) selecting the model with the smallest OOB error. 
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RESULTS  

Pyrolysis-GC-MS of soil from burnt and unburnt plots produced chromatograms 

containing up to 388 peaks.  Prima facie comparison of chromatograms, such as 

those in Figure 1, indicate that there is little difference between the pyrolysate 

derived from the soil of burnt and unburnt sites because of the similarity in the 

retention times and amplitude of the peaks present.  However, due to the 

potential for co-elution of compounds from the GC column, the number of peaks 

identified does not translate to the number of compounds found.  The use of 

MSeasy in this study identified 642 clusters (putative compounds) of which 371 

were identified as having met the validation criteria.  To test for differences in the 

fingerprinting matrix generated by MSeasy, between the burnt and unburnt sites, 

a chemical dissimilarity matrix was calculated between pairs of burnt and 

unburnt sites.  Permutational MANOVA of the chemical dissimilarity matrix 

identified a significant difference between burnt and unburnt sites (P = 0.003) 

and that burning accounted for 14.3% of the difference (Table 2).  This statistical 

approach does not identify which compounds cause the difference, requiring 

further examination of the data by other techniques.  

 

FIGURE 1 EXAMPLE CHROMATOGRAMS (USING TOTAL ION COUNT; TIC) GENERATED BY 

PYROLYSIS-GC-MS FOR SOIL FROM (A) UNBURNT AND (B) BURNT PLOTS COLLECTED FROM 

TIDBINBILLA (SEE TABLE 1). 
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TABLE 2: NON-PARAMETRIC pMANOVA OF THE EFFECT OF BURNING ON THE PYR-GC-MS 

PYROLYSATE OF THE SOIL SAMPLES ANALYSED IN THIS STUDY.  R2 IS THE PERCENTAGE OF 

VARIANCE EXPLAINED BY THE BURNING. 

 
 

Degrees 

of 

freedom 

Sum of 

squares 

Mean 

Squares 

F (Model) R2 P (>F) 

Treatment 1 7610 7610.3 3.6673 0.14288 0.003 

Residuals 22 45654 2075.2  0.85712  

Total 23 53265   1.00000  

 

Random Forests analysis (Breiman, 2001) was used to identify compounds that 

classify burnt or unburnt sites.  Of the 371 compounds identified by MSeasy, the 

variable selection procedure of Genuer et al. (2010), using Random Forests, 

produced a list of compounds ordered by their importance (Figure 2a).  Applying 

a Classification and Regression Tree analysis (CART; Therneau et al., 2015) to the 

standard deviations of the compound’s importance identified a threshold 

standard deviation value of approximately 0.0004 (Figure 2b).  When this 

threshold value was applied to the importance measure of the 371 compounds, 

those with a standard deviation of the importance measure less than the 

threshold were eliminated.  This reduced the number of compounds to 259.  

Random Forest analysis on these 259 compounds, starting with a model with the 

most important compound and adding compounds sequentially in the order of 

their ranking (nested models), produced a model of 15 compounds that had the 

smallest prediction (OOB) error of all the nested models (33.33%; Table 3; Figure 

3).  These 15 compounds were tentatively identified against the NIST08 mass 

spectral database (NIST, Gaithersburg, MD) and their identities are listed in Table 

4. 

 

TABLE 3: CLASSIFICATION ERROR OF BURNT AND UNBURNT SOILS BY RANDOM FOREST 

ANALYSIS WHEN USING FIFTEEN PREDICTOR COMPOUNDS PRODUCED BY PYR-GC-MS OF 

THE SOIL.   

 

Soil category Predicted count Classification error 

(%) 

 Burnt Unburnt  

Burnt 9 3 0.25 

Unburnt 5 7 0.42 

 

FIGURE 2: THE IMPORTANCE (A) AND STANDARD DEVIATION OF THE IMPORTANCE (B) OF 

THE COMPOUNDS IDENTIFIED BY MSEASY (NICOLE ET AL., 2012) AVERAGED OVER 999 

RANDOM FOREST PERMUTATIONS.  THE RED LINE IN PANEL (B) IS THE THRESHOLD VALUE 

DETERMINED BY CLASSIFICATION AND REGRESSION TREE ANALYSIS (THERNEAU ET AL., 2015) 

ABOVE WHICH VARIABLES ARE RETAINED FOR FURTHER ANALYSIS. 
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FIGURE 2: THE IMPORTANCE (A) AND STANDARD DEVIATION OF THE IMPORTANCE (B) OF 

THE COMPOUNDS IDENTIFIED BY MSEASY (NICOLE ET AL., 2012) AVERAGED OVER 999 

RANDOM FOREST PERMUTATIONS.  THE RED LINE IN PANEL (B) IS THE THRESHOLD VALUE 

DETERMINED BY CLASSIFICATION AND REGRESSION TREE ANALYSIS (THERNEAU ET AL., 2015) 

ABOVE WHICH VARIABLES ARE RETAINED FOR FURTHER ANALYSIS. 

 

 

FIGURE 3: OUT-OF-BAG (OOB) ERROR RATE (PREDICTION ERROR) FOR THE NESTED 

RANDOM FOREST ANALYSIS AFTER ELIMINATING VARIABLES (COMPOUNDS) USING 

CLASSIFICATION AND REGRESSION TREE ANALYSIS (THERNEAU ET AL., 2015). 
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TABLE 4: TENTATIVE IDENTIFICATION OF 15 CLUSTERS (COMPOUNDS) CLASSED AS IMPORTANT IN DISTINGUISHING BETWEEN SOIL FROM 

BURNT AND UNBURNT PLOTS WHEN USING VARIABLE SELECTION BY RANDOM FORESTS.  EXAMINATION OF THE MASS SPECTRA WAS 

PERFORMED USING NIST08 MASS SPECTRAL LIBRARY IN NIST MS SEARCH (NIST MS SEARCH V.2.0F; NIST, GAITHERSBURG, MD).  RETENTION 

TIME (RT) ± ONE STANDARD DEVIATION (S.D.).  MATCH FACTOR IS THE SCORE (OUT OF 1000) THAT THE MASS SPECTRA IDENTIFIED FOR THE 

CLUSTER IS HOMOLOGOUS TO THE ONE CONTAINED IN THE NIST08 MASS SPECTRAL LIBRARY. 

 
Cluster 

ID 

Importance 

(× 10-5) 
Compound name Synonyms (if applicable) Mean RT ( s.d.) 

Match 

Factor 

117 7.9578 
1-methyl-4-(1-methylethyl)-2,3-

Dioxabicyclo[2.2.2]oct-5-ene 
Ascaridol 18.15 ± 0.05 616 

26 6.7576 Ethylbenzene  5.540 ± 0.03 768 

29 5.7148 Methylenecyclooctane  6.000 ± 0.03 674 

43 5.6922 (Z,Z,Z)-9,12,15-Octadecatrienoic acid Linolenic acid 7.670 ± 0.07 716 

76 5.5032 4-Aminobenzyl cyanide  12.04 ± 0.03 603 

535 5.0336 
4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-Buten-

2-ol  
 15.41 ± 0.02 624 

97 4.9275 4,7-dimethyl-benzofuran  15.22 ± 0.06 640 

155 4.6378 
Butanoic acid, 3-methyl-, 3,7-dimethyl-2,6-

octadienyl ester, (E)-  
Geranyl isovalerate 22.66 ± 0.01 681 

54 4.0222 2-methyl-cyclohexanone,   9.480 ± 0.06 636 

157 3.8161 
1β-(3-methyl-1,3-butadienyl)-2α,6β-dimethyl-

3β-acetoxy-Bicyclo[4.1.0]heptan-2-ol 
 22.89 ± 0.06 672 

165 3.6373 4-methoxy-2-phenyl-cycloheptene  23.73 ± 0.01 628 

15 3.5774 3-Heptyn-1-ol  3.600 ± 0.07 676 

304 3.3937 
6,6-dimethyl-bicyclo[3.1.1]hept-2-ene-2-

ethanol  
Homomyrtenol 10.55 ± 0.02 676 

114 3.3858 2-methyl-naphthalene  17.81 ± 0.01 660 

87 3.3727 4-(2,5-Dihydro-3-methoxyphenyl)butylamine  13.91 ± 0.07 692 
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DISCUSSION  

The nature of electron-impact mass-spectrometric techniques, such as pyr-GC-

MS, produces large, multi-dimensional datasets of retention times, mass-to-

charge-ratios and fragment intensities.  This requires either time-consuming 

examination of individual chromatograms to extract mass-spectra of individual 

compounds or the use of software to deconvolute chromatograms using 

automated algorithms.  The methodology employed in this study was designed 

to use rapid automated, unsupervised data mining of pyrolysis GC-MS 

chromatograms to identify compounds that are useful in characterising soil from 

burnt or unburnt plots. 

Unsupervised data mining using the clustering method of MSeasy (Nicole et al., 

2012) identified nearly 400 useful compounds which, when compared as a whole 

between soils from burnt and unburnt plots using pMANOVA, showed that there 

were significant differences in the pyrolysate generated from those soils.  

Prescribed burning accounted for about one-seventh of the difference between 

the pyrolysates of the soil from burnt and unburnt plots.  This highlights the 

complexity of organic materials within soil (i.e. indicated by the high number of 

compounds identified), even from sites putatively similar composition.  However, 

by being able to distinguish between the burnt and unburnt soils without time-

consuming or complex sample preparation (e.g. solvent extraction or acid 

digestion), it shows that pyr-GC-MS is an appropriately sensitive and relatively 

quick technique for this characterisation process. 

Permutational MANOVA of the chemical dissimilarity matrix data generated from 

the chromatograms of the soil from burnt and unburnt plots is useful when 

comparing the resulting pyrolysates as a whole but does not identify which 

compounds are the main causes of the dissimilarity.  Random Forest analysis is an 

ensemble learning method that can be used for classification and regression and 

it utilises variable importance selection (where, in this study, we define variables 

as compounds) to do this (Breiman, 2001).  In this study, we used the variable 

selection procedure proposed by Genuer et al. (2010). This approach was 

chosen because attempts to use a selection strategy based on the recursive 

elimination of compounds, as described by Diaz-Uriarte et al. (2006), consistently 

produced prediction error rates greater than ones where the variables were 

selected at random (data not shown).  This may be a function of how the 

method of Diaz-Uriarte et al. (2006) works by eliminating 20% of the compounds 

having the smallest importance and building a new forest with the remaining 

compounds.  The proportion of compounds to be eliminated is an arbitrary 

parameter and does not depend on the data (Genuer et al., 2010).  The method 

of Genuer et al. (2010) resulted in the best classification (smallest prediction error) 

of chromatograms from the soil from burnt and unburnt plots by using just 15 

predictor compounds.  However, the prediction error indicated that, overall, 

there was a one-in-three chance of misclassifying the soil category (burnt or 

unburnt) when using these predictor compounds (Figure 3).  Misclassification was 

greater for soil from unburnt plots compared to soil from burnt plots (Table 3).  This 

could be a consequence of: (a) the limited number of samples (soil  from 12 burnt 

plots and 12 unburnt plots) from which to try and identify important variables, 

hence a single misclassification can cause a disproportionally large change in 



APPLICATION OF STATISTICAL TECHNIQUES TO PYROLYSIS-GC-MS DATA FROM SOIL TO IDENTIFY THE IMPACT OF FIRE | REPORT NO. 226.2016 

 17 

the OOB error rate; (b) trying to classify between two categories (burnt or 

unburnt) when burning only accounted for a small proportion of the difference 

in combustion products (pyrolysates); and (c) soil from unburnt plots containing 

pyrogenic material from previous fires.  Of the four sites, two were previously burnt 

in 2003 and two have no recorded fire history (Table 1).  Presumably this ‘old’ 

pyrogenic material would still contribute a signal, albeit smaller than for soil from 

recently burnt area.  However, in this study, the signal may have still been strong 

enough to get a misclassification by Random Forest analysis.  Therefore, there is 

a need to understand how marker compounds change over time after fire. 

When attempting to classify between soils from burnt and unburnt areas based 

upon their pyrolysates, a diverse suite of compounds were identified as being 

important.  Cluster IDs 54, 117, 155, 157, 304 and 535, as defined by MSeasy, were 

tentatively identified as being constituent compounds of essential oils. For 

example, ascaridol is a bicyclic monoterpene with a peroxide bridging group. 

These compounds would reflect origins from biomass incorporated into the soil 

or from root exudations that have adsorbed to soil particles (Lin et al., 2007).  As 

demonstrated by de la Rosa et al. (2012), the presence of organic compounds 

of plant origin in soil is significantly reduced by fire.   Therefore, a strong presence 

of these organic compounds in soil would lead to an unburnt classification while 

soil with very few of these compounds would be classified as burnt.  The 

remaining compounds identified as important in the classification are known 

products of pyrolysis.  For instance, ethylbenzene, as a monocyclic aromatic 

hydrocarbon, is a pyrolysis product from many biomass components (Kaal et al., 

2014).  Polyaromatic hydrocarbons such as 2-methyl-napthalene can originate 

from black carbon and have the potential to differentiate between soil from 

burnt and unburnt plots (Kaal et al., 2009).  The presence of dimethyl benzofuran 

in soil is indicative of thermally-altered soil organic matter (Kaal et al., 2014).  

Similarly, the presence of N-containing compounds (e.g. 4-aminobenzyl cyanide 

and 4-(2,5-Dihydro-3-methoxyphenyl)butylamine) may be indicative of pyrolysis 

of amino-acids or proteinaceous material (Chiavari and Galletti, 1992) but is also 

consistent with the enrichment in heterocyclic nitrogen compounds with the 

heating of soil organic matter (de la Rosa et al., 2012).  Although we would 

expect prior to the analyses to have compounds of plant origin and those known 

to be affected by fire in the list of important classification compounds, the 

clustering algorithms of MSeasy and the Random Forests procedure do not make 

that a priori assumption.  This demonstrates the potential of the methodology 

described in this study to rapidly and rationally identify differences and the 

features that cause them in complex matrices such as SOM. 

In this study, we demonstrate that it is possible to use an unsupervised data 

mining approach to successfully identify several statistically important 

compounds from pyr-GC-MS chromatograms that can be used to classify 

between soils that have been collected from recently burnt or unburnt sites.  This 

methodology was able to select these compounds even when prescribed 

burning contributed to a small proportion of the overall difference between the 

soils.  Furthermore, the compounds identified by this approach were compounds 

known to be affected by or produced by burning.  However, further work is 

required to answer the following questions: 

a) Can the results of this classification be used to make accurate predictions 

of whether soil has been burnt using a larger dataset of soil pyr-GC-MS 
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chromatograms, including those from high intensity bushfire or different soil or 

vegetation types?  

b) Does burning change the concentration of marker compounds in soil in a 

predictable way, for example in relation to fire intensity or severity, so that they 

can be used as a quantitative measure of fire impact?  

c) How does time after fire affect the concentration of marker compounds? 

The rationale for this study and our future attempts to answer questions such as 

these is to develop a reliable, quantitative method for post-fire assessment of fire 

severity and intensity on soil that can be used and interpreted by land managers.  

Soil burn assessment protocols are available (Keeley, 2009) but these generally 

include categories or indices of fire intensity (e.g. loss of surface litter or soil 

organic layer, deposition of ash and charred organic matter) and are largely 

subjective and open to interpretation by the assessor. 
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