

A heatwave classification for heat related fatality risk

contact: Thomas Loridan, Risk Frontiers thomas.loridan@mq.edu.au

BNHCRC scenario project

- Develop a set of **realistic disaster scenarios**:
 - TC, EQ, ECL, HW in QLD, VIC/SA and NSW
 - Quantify hazard magnitude and risk thresholds
 - Assess vulnerability and exposure at risk
- Use this framework to help:
 - o Better understand / communicate about extreme disaster risk
 - Assess capability from emergency management sector

Heatwaves

- HW are responsible for *more deaths than all other natural perils in Australia put together* (Risk Frontiers, 2014)
- Lack of a **clear definition** of a HW event
 - pressing need for a common intensity metric
- BoM developed the Excess Heat Factor with this goal in mind

• Our aim is to create a category system for risk to human life

Hazard risk categories

- What we can learn from other perils (TC/BF):
 - Need for a simple and clear cat system
 - Extension beyond initial scope is dangerous
- What we aim to achieve here:
 - Define a category system specifically for risk to human life
 - Quantify that risk for each category: **guidelines** as to what can be expected

Starting point: Excess Heat Factor

- The EHF metric takes into account:
 - the **ability** of the local community **to adapt** to its climate
 - the impact of sharp temperature spikes that do not allow such acclimatization
- A positive EHF indicates a heatwave
- A HW event magnitude can be measured by
 - the peak EHF
 - the accumulated EHF (Heat Load)

Spatial definition: event "footprint"

- An event starts when first grid cell in domain has EHF > 0
- Finishes when last cell turns back to EHF=0

EHF & fatalities: input data

- BoM: 100 year record of gridded daily temperatures (max, min).
- Risk Frontiers' fatality database (Peril Aus): date & location of fatalities + cause of death.

Maximum daily temperature [C]: 18/12/2008

Fatality risk categories

 For each fatality record (224), compute EHF estimates (EHF_{sum}, EHF_{max})
12 days period

Category	EHF _{sum}	EHF _{max}	Mean number of fatalities	Percentage of record covered
CAT0	> 0	> 0	5	82.6
CAT1	> 30	> 15	6.7	55.4
CAT2	> 80	> 30	8.6	38.9
CAT3	> 150	> 50	10.4	28.6
CAT4	> 300	> 70	18.5	12

Peak EHF over the event (2009)

Peak EHF over the event (1939)

EHF accumulation over the event

EHF accumulation over the event

Fatality risk categories (2009)

Fatality risk categories (1939)

longitude

Example: JAN 1959

Quantifying the risk

Fatality rate curve

- 10 biggest events of the last decade in Vic/SA
- Census population records trended over the period
- Normalised heat-related fatality records

Uncertainty

- Risk of under-reporting / wronglycategorising deaths
- Few events to map the range of risk: fatality rate is a distribution at each point
- Range of curves by age, etc... need for more data!
- Communities & governments learn from past experience and improve their level of preparedness

Summary

• EHF based category system

Category	EHF _{sum}	EHF_{max}
CAT0	> 0	> 0
CAT1	> 30	> 15
CAT2	> 80	> 30
CAT3	> 150	> 50
CAT4	> 300	> 70

- Specifically designed to characterize heat related fatality risk
- Fatality estimates for each category
- These estimates are very uncertain... and more records are needed

Scenario building

Coastal event: 86 fatalities

- Generate hazard footprint (EHF_{sum}, EHF_{max}) consistent with historical obs... but potentially more extreme
 - Principal component analysis
- Compute associated categories
- Make assumptions on population density
- Apply fatality curve to compute death rate
- Sample a number of fatality for each cell

Historical event footprints

Event 3

Scenario 1

- Coastal event impacting both Adelaide and Melbourne with Cat 4 HW
- 86 fatalities

Coastal event: 86 fatalities

Scenario 2

- Inland event
- Higher intensity overall hazard but impacting less populated regions
- Adelaide in cat 4 and Melbourne in cat 3 risk
- 35 fatalities

Inland event: 35 fatalities

longitude

Scenario 3

- Most severe of the 3 scenarios in terms of hazard intensity
- Peak Cat 4 risk in Adelaide
- Melbourne in Cat 3 risk
- 41 fatalities

Adelaide event: 41 fatalities

longitude

Extreme scenario

