THIS PROJECT WILL PRODUCE PROBABILISTIC ASSESSMENTS OF COASTAL EROSION AND INUNDATION RISKS ASSOCIATED WITH STORM SURGE, PARTICULARLY FOR EVENTS THAT ARE CLUSTERED IN TIME. A CRITICAL COMPONENT OF THIS RESEARCH IS TRANSITIONING MODELLLED STORM WAVES AT AN OFFSHORE WAVERIDER BUOY INTO A HYBRID SEDIMENT TRANSPORT MODEL AT THE SHORELINE. DETAILS OF WAVE TRANSFORMATION PROCESSES USING MODEL SIMULATIONS ARE PRESENTED FOR A STUDY SITE AT OLD BAR ON THE NSW MID-NORTH COAST, WHERE EROSION IS AN ONGOING MANAGEMENT ISSUE.

STORM EVENT MODELLING
- Multivariate statistical approach within a probabilistic framework.
- Modeled the magnitude and frequency of storm events to give event exceedance probabilities and to construct synthetic storm events.
- Long-term synthetic time-series of storm events (10^6 years) generated.

SWAN® WAVE MODELLING
- Series of nested nearshore simulations designed to build wave transformation look up tables.
- Accounts for shoaling and refraction of synthetic wave series to 15 m depth contour at 250m intervals along shoreline.
- Method developed for two study sites to represent open coasts (Old Bar, NSW) & semi-enclosed bays (Adelaide, SA)
- Results integrated into sediment transport model to simulate beach morphology.

NEXT STEPS
- Undertake simulations of beach response to modelled storms using a hybrid model accounting for cross-shore and longshore sediment transport processes.
- Produce probabilistic assessments of the coastal erosion and inundation risks associated with storm surge.

END USER STATEMENT
"At the end of its second year...this project has capitalised on the early productive engagement with end-users...to translate the research to the coastal management framework at the state level" (M. Woolf, lead end user)