VERIFICATION OF SOIL MOISTURE FROM MULTIPLE SOURCES FOR BUSHFIRE DANGER RATING APPLICATIONS

Vinod Kumar & Imtiaz Dharssi
Bureau of Meteorology, Melbourne
Project Background

Bureau researchers were awarded with a project called "**Mitigating the effects of severe fires, floods and heatwaves through the improvements of land dryness measures and forecasts**" by BNHCRC under the '**Monitoring and Prediction**' theme.

<table>
<thead>
<tr>
<th>Project Team Members</th>
<th>End-users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imtiaz Dharssi</td>
<td>BoM, ACT parks, Tasmania Fire Service, South Australian Country Fire Service, Fire and Emergency Services Authority of Western Australia, Parks and Wildlife Queensland Fire Service</td>
</tr>
<tr>
<td>Vinod Kumar</td>
<td></td>
</tr>
<tr>
<td>Peter Steinle</td>
<td></td>
</tr>
<tr>
<td>Jeff Kepert</td>
<td></td>
</tr>
<tr>
<td>Adam Smith</td>
<td></td>
</tr>
<tr>
<td>Ian Grant</td>
<td></td>
</tr>
<tr>
<td>Jeff Walker</td>
<td></td>
</tr>
<tr>
<td>Claire Yeo</td>
<td></td>
</tr>
<tr>
<td>John Bally</td>
<td></td>
</tr>
<tr>
<td>Paul Fox-Hughes</td>
<td></td>
</tr>
<tr>
<td>Adam Leavesley</td>
<td></td>
</tr>
<tr>
<td>Mark Chladil</td>
<td></td>
</tr>
<tr>
<td>Rob Sandford</td>
<td></td>
</tr>
<tr>
<td>Ralph Smith</td>
<td></td>
</tr>
<tr>
<td>David Taylor</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

- Land (i.e., soil, litter and vegetation) dryness determines the availability of fuel for burning.
- Because fuel availability measures are not always readily available, FDRS include sub-models to estimate it.
- Drought Factor (DF) represent fuel availability in FFDI.
- DF is a combination of seasonal dryness and short-term drying.
- The seasonal dryness is represented using soil moisture deficit (SMD).
- SMD is calculated as either:
 - Mount Soil Dryness Index (MSDI; Mount 1972)
 - Keetch-Byram Drought Index (KBDI; Keetch & Byram 1968)
Introduction: KBDI / MSDI

- KBDI/MSDI make empirical assumptions to moisture depletion in the upper soil layers.

- KBDI is used operationally in the Australian states of Victoria, NSW & Queensland.

- MSDI is used operationally in Tasmania, SA and WA.

- These methods make simplistic assumptions about:
 - Canopy Interception
 - Evaporation and Transpiration
 - Rainfall Runoff

- Current simple landscape dryness methods ignore factors such as
 - Soil Texture
 - Vegetation type and Root depth
 - Solar Insolation
 - Topography and Aspect
Motivation of the present study

- KBDI / MSDI models are simple models developed in 1960s.

- Rapid advancements were made in the science of soil moisture since.
 - measurements — satellite remote sensing
 - prediction — physics based land surface models.

- These new techniques potentially provide significantly improved accuracy of the soil moisture fields needed for fire danger rating.

- There are such products already available in some form.
 - E.g. – Numerical weather prediction models, ASCAT

- So the first step is to validate KBDI & MSDI against observations and also against these available "modern day" soil moisture products.
Data sets

In-situ observations
- **OzNet**
 - 0-30 cm profile
 - Murrumbidgee, NSW
 - 2000 - 2011
- **CosmOz**
 - Cosmic ray probes
 - Varying depth profiles
 - 13 sites, 9 calibrated

KBDI / SDI / API*
- For whole of Australia
- 0.05° x 0.05° grids
- Daily time steps.
- Forcing data: AWAP.

NWP/LSM
- ACCESS-Global, ECMWF Operations
- ACCESS ~80km/~40km/~25km, ECMWF ~25km.
- ACCESS → Nudging
- ECMWF → EKF

ASCAT
- On board MetOp-A
- Resolution ~ 12.5km.
- 1-2 pass per day
- ~ top 2cm soil moisture

* $API_i = \gamma API_{i-1} + P_i$
 - γ is the recession coefficient
 - P is the daily precipitation
In-situ observation locations

(a) OzNet

(b) CosmOz

bnhcrc.com.au
Monthly Mean Values [Using 40 Years of data]
Data prep. & verification metrics

- **Verification periods:**
 - OzNet – 01 September 2009 to 31 May 2011 (21 months)
 - CosmOz – 01 May 2012 to 31 December 2014 (32 months)

- **Normalized soil moisture**

 \[SM_{Norm} = \frac{SM_{Max} - SM_{Min}}{SM_{Max} - SM_{Min}} \]

- **Metrics:**
 - Correlation (R), RMSD, Bias.

- **CIs for correlation estimates**

 \[z = 0.5 \ln \left(\frac{1+r}{1-r} \right) \]
 \[\sigma = \sqrt{1/(N_{eff} - 3)} \]
 \[N_{eff} = N \frac{(1-r_a r_b)}{(1+r_a r_b)} \]
Exponential Filter

Surface to profile soil moisture

\[SWI_n = SWI_{n-1} + K_n (m_s)_n - SWI_{n-1} \]

- SWI - Soil water index
- \(M_s \) - Degree of saturation
- \(K_n \) - Gain
- \(n \) - Index of time

The gain \(K_n \) at time \(t_n \) is given by:

\[K_n = \frac{K_{n-1}}{K_{n-1} + e^{\left(\frac{t_n - t_{n-1}}{T}\right)}} \]
Depth weighting of NWP soil moisture

Based on Franz et al., 2012.

\[wt(z) = \int_{z_{n-1}}^{z_n} a \left(1 - \left(\frac{Z}{z^*} \right)^b \right) dz \]

where:
- \(wt \) - Weight
- \(z^* \) - CosmOz sensing depth
- \(Z_n \) - Model soil layer depth at layer n
- \(a, b \) - Constants

\(a \) is defined by:

\[1 = \int_{0}^{z^*} a \left(1 - \left(\frac{z}{z^*} \right)^b \right) dz \]
<table>
<thead>
<tr>
<th>Site</th>
<th>Probing Depth (m)</th>
<th>Correlation [-]</th>
<th>Bias [-]</th>
<th>RMSD [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max</td>
<td>Min</td>
<td>LW</td>
</tr>
<tr>
<td>Baldry</td>
<td>0.22</td>
<td>0.38</td>
<td>0.11</td>
<td>0.89</td>
</tr>
<tr>
<td>Daly</td>
<td>0.4</td>
<td>0.55</td>
<td>0.16</td>
<td>0.82</td>
</tr>
<tr>
<td>Gnangara</td>
<td>0.4</td>
<td>0.56</td>
<td>0.24</td>
<td>0.57</td>
</tr>
<tr>
<td>Robson Creek</td>
<td>0.13</td>
<td>0.21</td>
<td>0.08</td>
<td>0.8</td>
</tr>
<tr>
<td>Temora</td>
<td>0.17</td>
<td>0.27</td>
<td>0.09</td>
<td>0.9</td>
</tr>
<tr>
<td>Tullochgorum</td>
<td>0.2</td>
<td>0.47</td>
<td>0.08</td>
<td>0.76</td>
</tr>
<tr>
<td>Tumbarumba</td>
<td>0.1</td>
<td>0.14</td>
<td>0.06</td>
<td>0.81</td>
</tr>
<tr>
<td>Weany Creek</td>
<td>0.23</td>
<td>0.35</td>
<td>0.11</td>
<td>0.74</td>
</tr>
<tr>
<td>Yanco</td>
<td>0.2</td>
<td>0.37</td>
<td>0.08</td>
<td>0.87</td>
</tr>
<tr>
<td>Mean</td>
<td>0.8</td>
<td>0.81</td>
<td>0.01</td>
<td>-0.03</td>
</tr>
</tbody>
</table>
Skill scores

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Normal time series</th>
<th>Anomaly series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation [-]</td>
<td>Bias [-]</td>
</tr>
<tr>
<td></td>
<td>OzNet</td>
<td>CosmOz</td>
</tr>
<tr>
<td>ACCESS_80km</td>
<td>0.72</td>
<td>-</td>
</tr>
<tr>
<td>ACCESS_40km</td>
<td>-</td>
<td>0.81</td>
</tr>
<tr>
<td>KBDI</td>
<td>0.6</td>
<td>0.63</td>
</tr>
<tr>
<td>MSDI</td>
<td>0.71</td>
<td>0.76</td>
</tr>
<tr>
<td>API</td>
<td>0.66</td>
<td>0.73</td>
</tr>
<tr>
<td>ASCAT</td>
<td>-</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Bias: KBDI vs OzNet @ site A1

-ve means wetter
+ve means drier
Bias: MSDI vs OzNet @ site A1

-ve means wetter
+ve means drier
Taylor diagrams

OzNet

CosmOz

Normalized Standard deviation

Correlation

Normalized Standard deviation

OzNet

ACCESS_80km

KBDI

MSDI

API

CosmOz

ACCESS_40km

KBDI

MSDI

API

ASCAT

bnhcrc.com.au
Correlation & CIs

Anomaly time series

Correlation

ACCESS_80km API_OzNet MSDI_CosmOz
KBDI_OzNet ACCESS_40km API_CosmOz
MSDI_OzNet KBDI_CosmOz ASCAT

bnhcrc.com.au
ACCESS_40km/ACCESS_25km/ECMWF

- Period – 1 Dec 2013 to 28 Feb 2015 (14 months)
- Depth weighed profiles.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>ACCESS_40 km</th>
<th>ACCESS_25km</th>
<th>ECMWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation [-]</td>
<td>0.82</td>
<td>0.80</td>
<td>0.81</td>
</tr>
<tr>
<td>Anomaly Correlation [-]</td>
<td>0.49</td>
<td>0.56</td>
<td>0.58</td>
</tr>
<tr>
<td>Bias [-]</td>
<td>-0.04</td>
<td>-0.06</td>
<td>-0.04</td>
</tr>
<tr>
<td>RMSD [-]</td>
<td>0.16</td>
<td>0.17</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Conclusions

- In general, ACCESS is better than KBDI or MSDI.
- ACCESS results are encouraging when we consider:
 - Coarser resolution (~40 – ~80 km) of NWP
 - NWP precipitation estimates can be generally erroneous.
 - KBDI and MSDI uses observation based rainfall analyses.
- KBDI soils show large wet bias.
- MSDI is better than KBDI.
- API with a simple formulation matches MSDI and is better than KBDI.
- ASCAT estimates show very good skills.
- ACCESS soil moisture shows similar skill to ECMWF model.
- This study provide an approach to improve FDR.
Future work

- Develop an operational system delivering near real-time estimates of soil dryness for use in FDR.

- Essentially a state of the art soil moisture analysis system that uses many different sources of observations, cutting edge land surface models and data assimilation techniques.

- Planned horizontal resolution is 5km.

- Downscaling techniques will be used to improve the horizontal resolution to about 1km.

- The new information will be calibrated so that it can be used with current operational FDR.

- In addition, the new system provides the capability to be used within dynamic fire weather models.
Acknowledgments

- BNHCRC.
- David McJannet, CSIRO.
- Jeff Walker, Monash University
- Monash University & University of Melbourne for OzNet.
- CSIRO for CosmOz.
THANK YOU

Vinod Kumar
Bureau of Meteorology
Melbourne
v.kumar2@bom.gov.au
+61 3 9616 8448