

VERIFICATION OF SOIL MOISTURE FROM MULTIPLE SOURCES FOR BUSHFIRE DANGER RATING APPLICATIONS

Vinod Kumar & Imtiaz Dharssi Bureau of Meteorology, Melbourne

Project Background

Bureau researchers were awarded with a project called "Mitigating the effects of severe fires, floods and heatwaves through the improvements of land dryness measures and forecasts" by BNHCRC under the 'Monitoring and Prediction' theme.

 Project Team Members ➢ Imtiaz Dharssi ➢ John Bally ➢ Vinod Kumar ➢ Paul Fox-Hughes 		End-users				
Imtiaz Dharssi	≻ John Bally	BoM, ACT parks, Tasmania Fire Service,				
➢ Vinod Kumar	Paul Fox-Hughes	South Australian Country Fire Service, Fire and Emergency Services Authority of				
Peter Steinle	Adam Leavesley	Western Australia, Parks and Wildlife				
≻ Jeff Kepert	Mark Chladil	Queensland Fire Service				
≻Adam Smith	Rob Sandford					
➤ Ian Grant	Ralph Smith					
≻Jeff Walker	David Taylor					
≻Claire Yeo						

Introduction

- Land (i.e., soil, litter and vegetation) dryness determines the availability of fuel for burning.
- Because fuel availability measures are not always readily available, FDRS include submodels to estimate it.
- ✤ Drought Factor (DF) represent fuel availability in FFDI.
- ✤ DF is a combination of seasonal dryness and short-term drying.
- ✤ The seasonal dryness is represented using soil moisture deficit (SMD).
- ✤ SMD is calculated as either:
 - Mount Soil Dryness Index (MSDI; Mount 1972)
 - ✤ Keetch-Byram Drought Index (KBDI; Keetch & Byram 1968)

Introduction: KBDI / MSDI

- KBDI/MSDI make empirical assumptions to moisture depletion in the upper soil layers
- * KBDI is used operationally in the Australian states of Victoria, NSW & Queensland.
- ✤ MSDI is used operationally in Tasmania, SA and WA.
- ✤ These methods make simplistic assumptions about:
 - Canopy Interception
 - Evaporation and Transpiration
 - Rainfall Runoff
- Current simple landscape dryness methods ignore factors such as
 - ✤ Soil Texture
 - Vegetation type and Root depth
 - Solar Insolation
 - Topography and Aspect

Motivation of the present study

- ★ KBDI / MSDI models are simple models developed in 1960s.
- ✤ Rapid advancements were made in the science of soil moisture since.
 - measurements satellite remote sensing
 - prediction physics based land surface models.
- These new techniques potentially provide significantly improved accuracy of the soil moisture fields needed for fire danger rating.
- ✤ There are such products already available in some form.

✤ E.g. – Numerical weather prediction models, ASCAT

So the first step is to validate KBDI & MSDI against observations and also against these available "modern day" soil moisture products.

Data sets

- In-situ observations
 - OzNet
 - 0-30 cm profile
 - Murrumbidgee, NSW
 - 2000 2011
 - CosmOz
 - Cosmic ray probes
 - Varying depth profiles
 - 13 sites, 9 calibrated

KBDI / SDI / API*

- For whole of Australia
- 0.05° x 0.05° grids
- Daily time steps.
- Forcing data: AWAP.

NWP/LSM

- ACCESS-Global, ECMWF Operations
- ACCESS ~80km/~40km/~25km, ECMWF ~25km.
- ACCESS \rightarrow Nudging
- ECMWF \rightarrow EKF

ASCAT

- On board MetOp-A
- Resolution ~ 12.5km.
- 1-2 pass per day
- ~ top 2cm soil moisture

$$* API_i = \gamma API_{i-1} + P_i$$

- γ is the recession coefficient
- *P* is the daily precipitation

In-situ observation locations

Monthly Mean Values [Using 40 Years of data]

Data prep. & verification metrics

• Verification periods:

- OzNet 01 September 2009 to 31 May 2011 (21 months)
- CosmOz 01 May 2012 to 31 December 2014 (32 months)
- Normalized soil moisture

•
$$SM_{Norm} = \frac{SM - SM_{Min}}{SM_{Max} - SM_{Min}}$$

- Metrics:
 - Correlation (R), RMSD, Bias.
- CIs for correlation estimates

•
$$z = 0.5 \ln \left(\frac{1+r}{1-r}\right)$$
 $\sigma = \sqrt{1/(N_{eff} - 3)}$

• $N_{eff} = N \frac{(1 - r_a r_b)}{(1 + r_a r_b)}$

Exponential Filter

Surface to profile soil moisture

$$SWI_n = SWI_{n-1} + K_n ((m_s)_n - SWI_{n-1})$$

- SWI Soil water index M_s - Degree of saturation K_n - Gain
- *n* Index of time

The gain K_n at time t_n is given by:

$$K_n = \frac{K_{n-1}}{K_{n-1} + e^{\frac{(t_n - t_{n-1})}{T}}}$$

Depth weighting of NWP soil moisture

 z^*

Based on Franz et al., 2012.

$$wt(z) = \int_{Z_{n-1}}^{Z_n} a\left(1 - \left(\frac{z}{z^*}\right)^b\right) dz$$

wt - Weight

- CosmOz sensing depth
- Z_n Model soil layer depth at layer n
- *a*,*b* Constants

a is defined by:

Statically weighted (SW) vs Depth weighted (DW) for ACCESS_40km w.r.t CosmOz

Site	Probing Depth (m)			Correlation [-]		Bias [-]		RMSD [-]	
	Mean	Max	Min	LW	DW	LW	DW	LW	DW
Baldry	0.22	0.38	0.11	0.89	0.87	0.02	0.01	0.11	0.13
Daly	0.4	0.55	0.16	0.82	0.84	-0.02	-0.03	0.13	0.13
Gnangara	0.4	0.56	0.24	0.57	0.66	-0.07	0.05	0.21	0.19
Robson Creek	0.13	0.21	0.08	0.8	0.82	0.06	-0.06	0.16	0.15
Temora	0.17	0.27	0.09	0.9	0.9	-0.01	-0.05	0.12	0.13
Tullochgorum	0.2	0.47	0.08	0.76	0.75	0.09	0.00	0.18	0.16
Tumbarumba	0.1	0.14	0.06	0.81	0.81	0.04	-0.05	0.16	0.16
Weany Creek	0.23	0.35	0.11	0.74	0.75	-0.02	-0.05	0.15	0.17
Yanco	0.2	0.37	0.08	0.87	0.88	-0.03	-0.05	0.13	0.13
Mean			0.8	0.81	0.01	-0.03	0.15	0.15	

Skill scores

		Anomaly series						
Data Set	Correlation [-]		Bias [-]		RMSD [-]		Correlation [-]	
	OzNet	CosmOz	OzNet	CosmOz	OzNet	CosmOz	OzNet	CosmOz
ACCESS_80km	0.72	_	0.02	_	0.19	_	0.67	_
ACCESS_40km	_	0.81	_	-0.03	_	0.15	_	0.51
KBDI	0.6	0.63	-0.39	-0.35	0.43	0.42	0.65	0.31
MSDI	0.71	0.76	-0.02	-0.07	0.23	0.2	0.76	0.46
API	0.66	0.73	0.14	0.14	0.26	0.23	0.69	0.61
ASCAT	_	0.76	_	-0.01	_	0.19	_	0.55

Time series - OzNet

OzNet Hydrological Network

bnhcrc.com.au

m.au

Time series - CosmOz

CosmOz Hydrological Network - Site: Tullochgorum

Taylor diagrams

Correlation & CIs

Anomaly time series

ACCESS_40km/ACCESS_25km/ECMWF

• Depth weighed profiles.

Metrics	ACCESS_40 km	ACCESS_ 25km	ECMW F
Correlation [-]	0.82	0.80	0.81
Anomaly Correlation [-]	0.49	0.56	0.58
Bias [-]	-0.04	-0.06	-0.04
RMSD [-]	0.16	0.17	0.17

Conclusions

- In general, ACCESS is better than KBDI or MSDI.
- ACCESS results are encouraging when we consider:
 - Coarser resolution (~40 ~80 km) of NWP
 - NWP precipitation estimates can be generally erroneous.
 - KBDI and MSDI uses observation based rainfall analyses.
- KBDI soils show large wet bias.
- MSDI is better than KBDI.
- API with a simple formulation matches MSDI and is better than KBDI.
- ASCAT estimates show very good skills.
- ACCESS soil moisture shows similar skill to ECMWF model.
- This study provide an approach to improve FDR.

Future work

- Develop an operational system delivering near real-time estimates of soil dryness for use in FDR.
- Essentially a state of the art soil moisture analysis system that uses many different sources of observations, cutting edge land surface models and data assimilation techniques.
- Planned horizontal resolution is 5km.
- Downscaling techniques will be used to improve the horizontal resolution to about 1km.
- The new information will be calibrated so that it can be used with current operational FDR.
- In addition, the new system provides the capability to be used within dynamic fire weather models.

Acknowledgments

- BNHCRC.
- David McJannet, CSIRO.
- Jeff Walker, Monash University
- Monash University & University of Melbourne for OzNet.
- CSIRO for CosmOz.

THANK YOU

Vinod Kumar Bureau of Meteorology Melbourne <u>v.kumar2@bom.gov.au</u> +61 3 9616 8448