

AN EARTHQUAKE LOSS SCENARIO FOR ADELAIDE

Part of the BNHCRC Scenario Project

V. Koschatzky, F. Dimer, P. Somerville Risk Frontiers

RISK FRONTIERS

An independent research capability created in 1994 to:

- Undertake research into natural hazards.
- Develop databases of natural hazards and their impacts on communities.
- Develop catastrophe loss models and software to improve the pricing of natural hazard risks.
- Develop an independent view of catastrophe risks.
- Undertake post-event reconnaissance of natural disasters.
- Encourage the responsible management of catastrophe risks.

BNHCRC Scenario Project

What if?

- One of Australia's major cities were hit by an earthquake similar to the Newcastle event?
- Six catchments in northern NSW flood contemporaneously?
- The Great Flood of 1954 occurred today? What would be the economic cost now that there are six times the number of exposed dwellings?
- A tropical cyclone hits Brisbane?
 What could we expect?
- We experience twenty bushfires in a week? It has happened in the past. What would it look like? Are we prepared?

BNHCRC Scenario Project

Using realistic disaster scenario analysis to understand natural hazard impacts and emergency management requirements

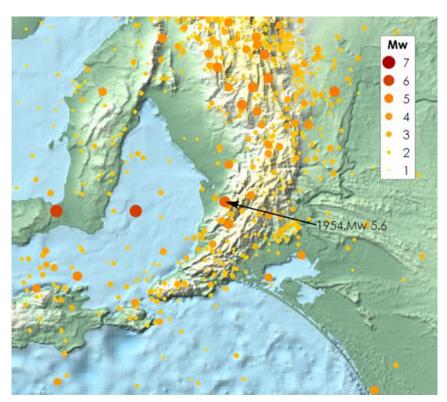
 To deliver a suite of scenario simulations that allow the question of "what if?" to be answered.

Purpose:

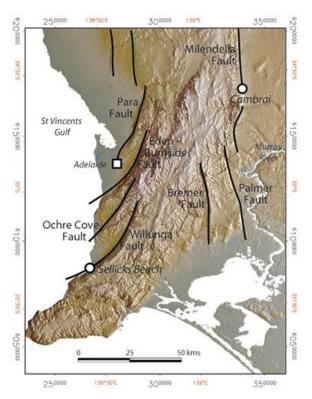
- to visualise potential impacts before disasters happen,
- to better understand the implications of catastrophic events beyond recent experience, and
- to reveal blind spots and vulnerabilities in strategic planning.

Hazards:

- Earthquake
- Tropical Cyclone
- Bushfire
- Flood
- Heatwave

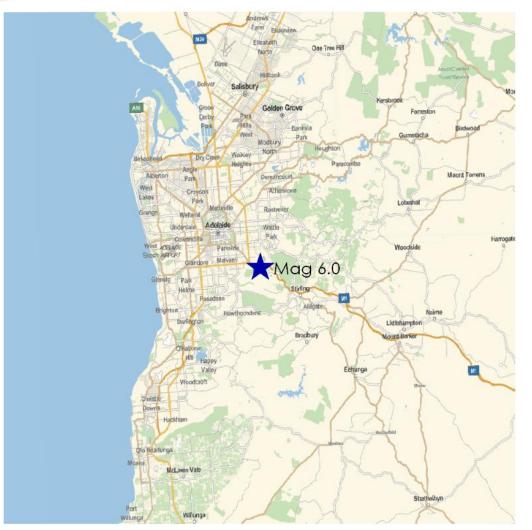

Impacts:

- Building damage (residential, emergency, commercial and industrial)
- Infrastructure damage
- Resultant death/injury and population displacement



SCENARIO SELECTION Adelaide Seismicity

Historically recorded earthquakes (1840-present), source : Geoscience Australia.


Active Faults, from Sandiford (2003)

• M. Sandiford. Neotectonics of southeastern Australia: linking the quaternary faulting record with seismicity and in situ stress. In Evolution and Dynamics of the Australian Plate, volume 22 of Geological Society of Australia Special Publication, pages 101-113. Geological Society of Australia, 2003.

SCENARIO SELECTION The Simulated Event

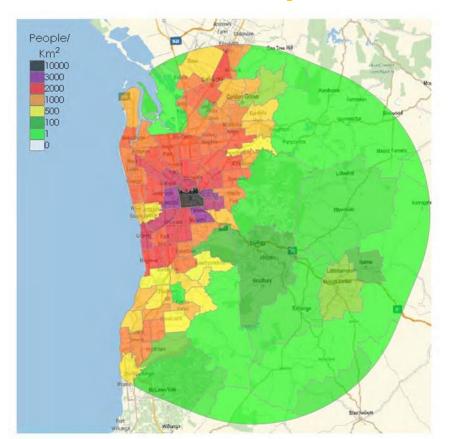
Adelaide Region *

ARP of	Mw of
Ground	Typical
Motion	Scenario

ARI > 10,000 up to 7.0-7.5

ARI≈1000 6

Building code, ARI ≈ 500 5.5


Smaller earthquakes also occur in a distributed manner throughout the region, not only on the identified active faults

* D. Clark and A. McPherson. Large earthquake recurrence in the Adelaide region: a palaeoseismological perspective. Australian Earthquake Engineering Society 2011 Conference, 2011

EXPOSURE Population

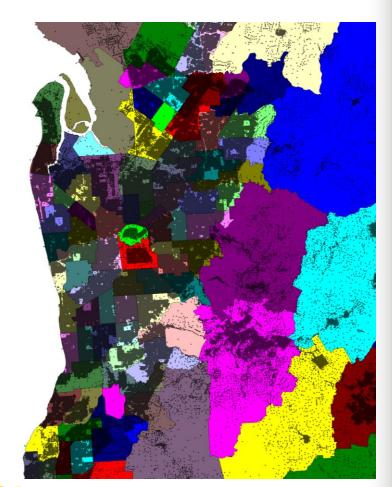
People/ Km² 10000 3000 2000 1000 500 100

Night Time

Day Time

Sources:

- 2011 Census
- Department of Higher Education

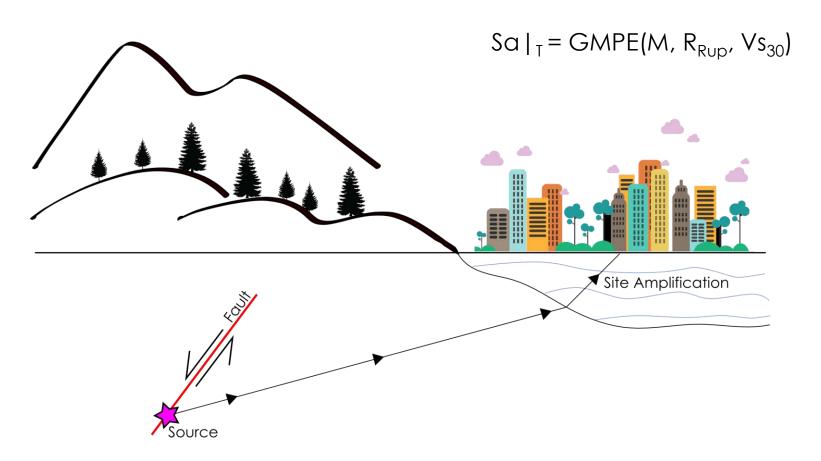


EXPOSURE Buildings' stock

What kinds of buildings are people in?

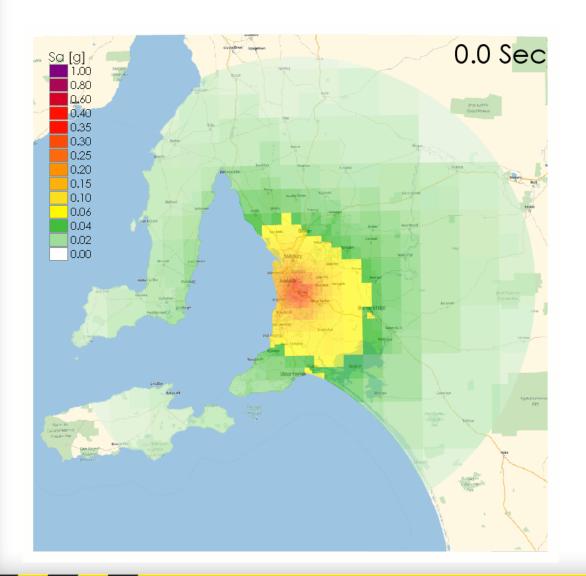
Different building construction types behave differently to seismic shaking

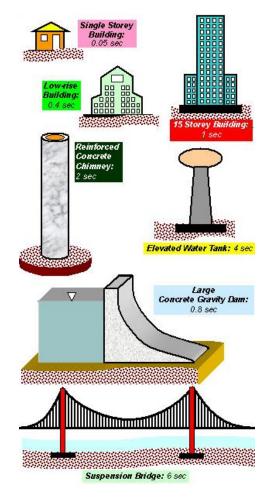
Sources:


- G-NAF (Geocoded National Address File) Lat-Long
- NEXIS (National Exposure Information System) SA2

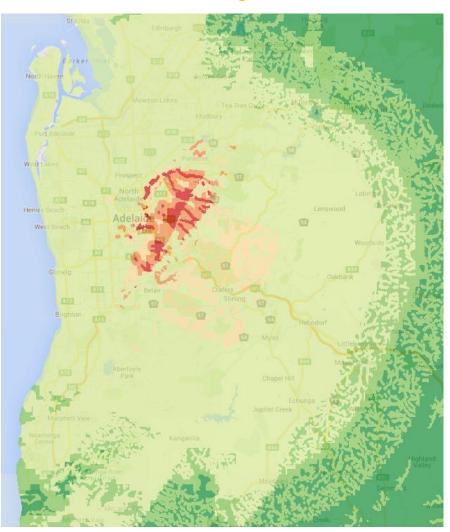
HAZARD Ground Shaking

Ground Motion Prediction Equations (GMPEs)




• P. Somerville, R. Graves, N. Collins, S. G. Song, S. Ni, and P. Cummins. Source and ground motion models for Australian earthquakes. In AEES Conference Papers, 2013.

HAZARD Ground Shaking



HAZARD Liquefaction

Parameters

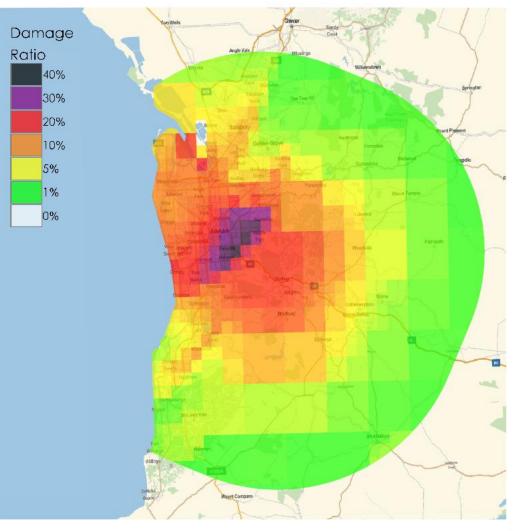
- Soil
- Vs₃₀
- Elevation
- Distance to water bodies
- PGA

Features Affected by Liquefaction

- Buildings
- Roads
- Rail
- Bridges
- Airports
- Pipelines

K. L. Knudsen et al, Development of a liquefaction hazard screening tool for caltrans bridge sites. In TCLEE 2009: Lifeline Earthquake Engineering in a Multihazard Environment, pages 573-584, 2009.

RESULTS Buildings

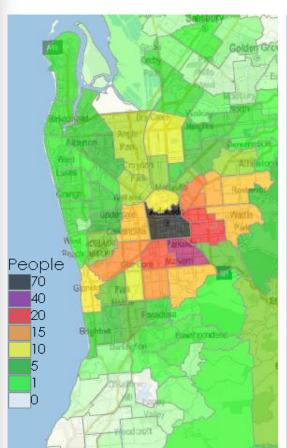

Number of Equivalent Addresses Destroyed

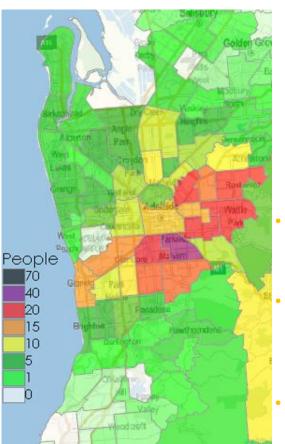
Line of	Business	Number of Ad	dresses

Residential 88,440

Commercial 4,815

Industrial 1,650




Residential Damage Percentage of Replacement Value of the local Buildings' Stock.

RESULTS Casualties

Day Time

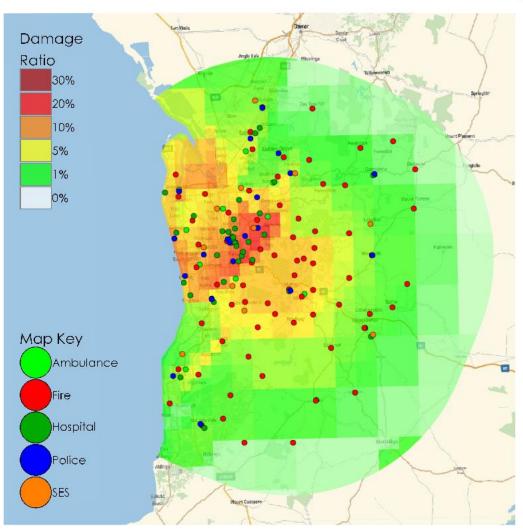
Night Time

Severe Injuries and Deaths

Median total casualties by severity level and time of day (Number of People)

Severity	Day	Night
1	4,988	5,324
2	1,532	1,650
3	170	167
4	322	327

- Severity 1: Injuries requiring basic medical aid that could be administered by paramedics.
- Severity 2: Injuries requiring a greater medical care and medical technology or surgery, but not expected to be life threatening.
- Severity 3: Injuries that pose an immediate life threatening condition if not treated expeditiously.
- Severity 4: killed or mortally injured.

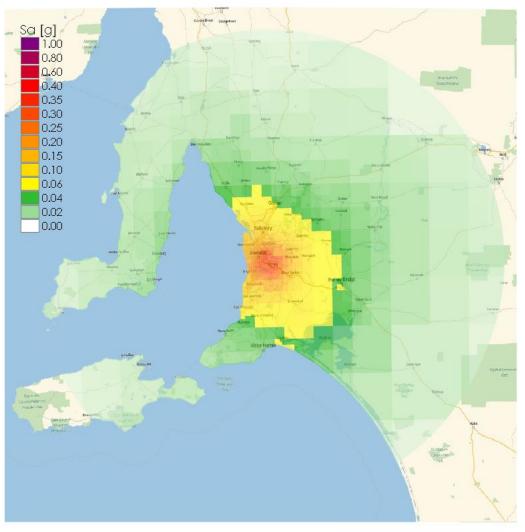


RESULTS Essential Facilities

- Higher design standards than ordinary buildings.
- Hospitals should continue to operate even if power and water networks fail.
- Schools used as temporary shelters.
- Estimated loss of capacity:
 - near the epicentre: up to 22%
 - CBD: up to 14%

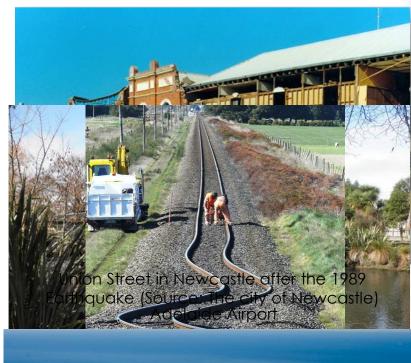
Number of essential facilities expected to experience damage in excess of 10%

Facility	Number
Hospitals	46
Schools	167
Fire Stations	5
Police Stations	5
SES Stations	1
Ambulance Stations	3


Damage Ratio to essential facilities.

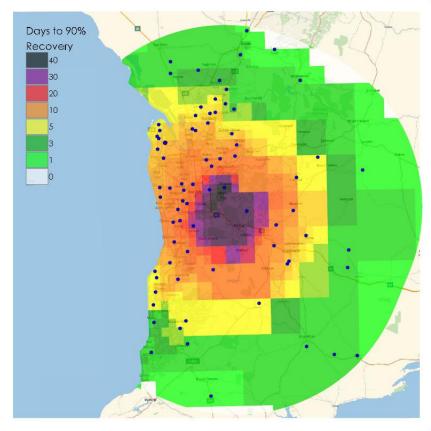
Modelled following the HAZUS methodology with considerations based on the experience with past events.

- Damage estimated using peak ground acceleration and 1 second spectral acceleration as hazard parameters.
- Work and replacement materials shortage and inter-relationships between downtimes from different infrastructures not accounted for.


Peak Ground Acceleration (PGA) [g]

Transport

- Roads blocked from debris or preventively shut. Areas
 of the CBD may be cordoned off for a minimum of 7
 days following the event.
- Bridges may be closed for a day to a week for inspection and repairs of moderate damage. Near the epicentre, a small number of bridges could experience significant damage and take a minimum of 150 days to be completely restored.
- Some railway and tram lines close to the epicentre will experience minor damage, which corresponds to a downtime of 2 to 7 days. Few rail and light rail bridges close to the epicentre may be extensively damaged and take a minimum of 110 days to be repaired. The fuel and maintenance facilities located in the proximity of the epicentre will mostly suffer minor to moderate damage, which may add 2 to 7 days to the downtime. They will also have a 40% chance of suffering extensive damage, with associated downtimes of up to 4 months.
- Adelaide airport is situated 10 km from the epicentre
 of this scenario and is built on soft soil which is prone to
 liquefaction. The airport could be closed for a short
 period of time for damage assessment.



Electricity

- 40% chance of complete failure of large power components in the proximity of the epicentre.
 Downtime of approximately two months.
- Almost all addresses close to the epicentre will experience at least minor power failures with downtimes of up to 3 days (longer if nearby substations are severely damaged).
- Power stations close enough to the epicentre to sustain some slight or moderate damage will take a month or longer to fully recover.

Estimated number of days to reach 90% of the Substations' functionality. The blue dots indicate the substations' location.

Restoration curves for some of the power stations near the epicentre

Water Supply & Waste Water

Water supply

- Major water facilities such as pumping stations and reservoirs may experience extensive damage with a probability of 15%, which implies a downtime of 40 days.
- Minor damage may occur across the network, with a downtime of 3 days (if no major system was completely damaged).
- In case of liquefaction, breakage of pipes is likely to be widespread in the high potential areas, and concerns over contamination may render the water not suitable to drinking.

Waste water

 Extensive damage could occur in 25% of waste water systems near the epicentre even without the occurrence of liquefaction; addresses within this zone may be without sewage services for up to 150 days.

Communications

- The area near the epicentre could experience moderate damage with downtimes ranging from less than 1day to a week.
- About 30% of the major facilities (central offices and broadcast stations) located in the area near the epicentre will experience extensive damage with associated downtimes of up to a month.

POTENTIAL UNFORESEEN IMPACTS

Chemical and high risk industrial plants

- Usually away from residential zones.
- Service disruption (1998 Longford gas explosion, VIC).
- Release of hazardous material.

Hazardous material release

- Not only from heavy industry but also from building collapse.
- Release of carcinogenic or corrosive gases, poisonous liquids that contaminate the water table.
- Asbestos: health risk, large clean-up costs, cordoning of many properties.

Fire following earthquake

- Caused extensive damage in the past (San Francisco 1906, Tokyo 1923).
- Still common today (1995 Kobe, Japan). Likely localized to high risk sites (Cosmo Oil Company fire following the 2011 Tohoku earthquake in Chiba, Japan).
- Gas pipe failure: large fire in the area affected by this scenario. The continued functioning of the water supply for fire fighting would become critical.

Long series of strong aftershocks

- Disruption of recovery activities.
- Decrease in population and economic importance of the city as businesses migrates to safer areas.
- Reconfiguration of the city: older suburbia will progressively close down as the aftershock sequence progresses.
- Such a scenario would be devastating for Australia as it has been for New Zealand following the Canterbury earthquakes.

SOCIAL IMPACT

Short term

- Death/Injury.
- Isolation/separation.
- Loss of lifelines/services (water, sewage, gas, electricity).
- Building damage and loss of refuge (damage to home and possessions, access to home blocked off, etc.).
- Loss of communication.
- Strain on emergency services.
- Vandalism/crime.

Long term

- Long term injuries.
- Moving house/fixing house.
- Struggles with insurance or government pay-outs.
- Loss of income.
- Continual unrest.
- Increase in violence/drug and alcohol use.
- Economic loss in the area.

QUESTIONS

Contacts:

Valentina Koschatzky: valentina.koschatzky@mq.edu.au

Felipe Dimer de Oliveira: felipe.dimer-de-oliveira@mq.edu.au

Paul Somerville: paul.somerville@mq.edu.au

