

#### VERIFICATION OF SOIL MOISTURE FROM MULTIPLE MODELS FOR BUSHFIRE DANGER RATING APPLICATIONS

Vinod Kumar & Imtiaz Dharssi Bureau of Meteorology, Melbourne







# **Project Background**

Bureau researchers were awarded with a project called "Mitigating the effects of severe fires, floods and heatwaves through the improvements of land dryness measures and forecasts" by BNHCRC under the 'Monitoring and Prediction' theme.

#### **Project Team Members**

- Imtiaz Dharssi
- Vinod Kumar
- Peter Steinle
- ➤ Jeff Kepert
- ➤Adam Smith
- Ian Grant
- ➢ Jeff Walker
- ➤Claire Yeo

Paul Fox-Hughes

> John Bally

- Adam Leavesley
- Mark Chladil

#### Rob Sandford

- Ralph Smith
- David Taylor

#### **End-users**

BoM, ACT parks, Tasmania Fire Service, South Australian Country Fire Service, Fire and Emergency Services Authority of Western Australia, Parks and Wildlife Queensland Fire Service



#### Snowy River Feb. 2014, Victoria



### **ACTIVE FIRE DETECTED BY MODIS**



D4: Improvements of land dryness measures and forecasts.

# **McArthur's Forest Fire Danger Index**

#### $FFDI = 2e^{(-0.45+0.987\ln(DF) - 0.0345RH + 0.0338T + 0.0234V)}$

- DF 'Drought Factor'
- T Temperature (°C)
- V Wind speed (km  $h^{-1}$ )
- RH Relative humidity (%)
- FFDI was introduced in 1958.
- FFDI is still used operationally.
- Several modifications over the years.



## **DF and land dryness**

- Land (i.e., soil, litter and vegetation) dryness determines the availability of fuel for burning.
- The ignition, spread as well as the short temporal variation of fire depends on fuel availability.
- Because fuel availability measures are not always readily available, FDRS include sub-models to estimate it.
- Drought Factor (DF) represent fuel availability.
- DF is a combination of seasonal dryness and short-term drying.
- The seasonal dryness are represented by drought indices which are cumulative estimates of soil moisture deficit (SMD) at upper soil layers.

# Keetch-Byram Drought Index (KBDI)

- Formulated in 1968.
- Used operationally in the Australian states of Victoria, NSW & Queensland.
- ET is a function of vegetation cover density (VCD).
- VCD is an exponential function of mean annual rainfall.
- ET is an exponential function of  $T_{max}$ .
- Maximum water available for transpiration is 203.2 mm.

# Mount's Soil Dryness Index (MSDI)

- Formulated in 1972 for Forestry Tasmania
- Used operationally in Tasmania, SA and WA.
- Based on KBDI.
- But interception and runoff are treated separately.
- The interception and runoff is based on seven vegetation categories.
- Numerous parameters for each vegetation class, whose tuning is critical.
- ET is a linear function of  $T_{max}$

# Key objectives of BNHCRC research

• Generate a long time series of gridded KBDI & SDI.

- Validate KBDI & SDI against observations and LSM soil moisture products.
- Explore the scope of better soil moisture products from land surface models by using advanced data assimilation techniques.
- Deliver an operations ready system which gives a high-resolution ( both temporal and spatial) soil moisture analysis for FDR.

## Data sets

#### **KBDI / SDI / API**

- For whole of Australia
- 0.05° x 0.05° grids
- Daily time steps.
- Forcing data: AWAP.

#### In-situ observations

- OzNet
  - 0-30 cm profile
  - Murrumbidgee, NSW
  - 2000 2011
- CosmOz
  - Cosmic ray probes
  - Varying depth profiles
  - 13 sites, 9 calibrated

#### NWP

- ACCESS-Global, ECMWF Operations
- APS0 ~80km, APS1 ~40 km, APS2 ~25km, EC-Op ~25km.
- ACCESS → Soil moisture nudging
- $ECMWF \rightarrow EKF$

#### • ASCAT

- On board MetOp-A
- Resolution ~ 12.5km.
- 1-2 pass per day
- ~ top 5cm soil moisture



## API

- API is a cumulative index representing the soil moisture state.
- It is based on the assumption that, at a given time, amount of moisture in a soil column is related to precipitation at earlier times.
- API for day *i* is given by:
- $API_i = \gamma API_{i-1} + P_i$ 
  - $\gamma$  is the recession coefficient
  - *P* is the daily precipitation.
- γ represent the memory of soil column, i.e., the amount of moisture that has been retained from the preceding times.
- A long-term API reflects seasonal soil moisture conditions while a shortterm API reflects the most recent rainfall intensity.

### In-situ observation locations



## Data prep. & verification metrics

- Verification periods:
  - OzNet 01 September 2009 to 31 May 2011 (21 months)
  - CosmOz 01 May 2012 to 31 December 2014 (32 months)
- Normalized soil moisture

• 
$$SM_{Norm} = \frac{SM - SM_{Min}}{SM_{Max} - SM_{Min}}$$

- Metrics:
  - Correlation (R), RMSD, Bias.
- Taylor Diagram

• 
$$\sigma_{Norm} = \frac{\sigma_{Est}}{\sigma_{Obs}}$$

• 
$$uRMSD^2 = \sigma_{Est}^2 + \sigma_{Obs}^2 - 2\sigma_{Est}\sigma_{Obs}\cos R$$

# **Exponential Filter**

Surface to profile soil moisture

$$SWI_n = SWI_{n-1} + K_n((m_s)_n - SWI_{n-1})$$

SWI - Soil water index  $M_s$  - Degree of saturation  $K_n$  - Gain

*n* - Index of time

The gain 
$$K_n$$
 at time  $t_n$  is given by:

$$K_{n} = \frac{K_{n-1}}{K_{n-1} + e^{\frac{(t_{n} - t_{n-1})}{T}}}$$



# Depth weighting of NWP soil moisture

Based on Franz et al., 2012.

$$wt(z) = \int_{Z_{n-1}}^{Z_n} a\left(1 - \left(\frac{z}{z^*}\right)^b\right) dz$$

0.2

0.0L

50

*a* is defined by:

wt - Weight

 $z^*$  - CosmOz sensing depth

150

7\*

200

- $Z_n$  Model soil layer depth at layer n
- a,b Constants



100

250

30(





## **Skill scores**

OzNet vs. Models

| Data Set | Correlation [-] | Bias [-] | RMSD [-] |  |
|----------|-----------------|----------|----------|--|
| APS0     | 0.72            | 0.02     | 0.19     |  |
| KBDI     | 0.6             | -0.39    | 0.43     |  |
| MSDI     | 0.71            | -0.02    | 0.23     |  |
| API      | 0.66            | 0.14     | 0.26     |  |

#### CosmOz vs. Models

| Data Set | Correlation [-] | Bias [-] | RMSD [-] |  |
|----------|-----------------|----------|----------|--|
| APS1     | 0.81            | -0.03    | 0.15     |  |
| KBDI     | 0.63            | -0.35    | 0.42     |  |
| MSDI     | 0.76            | -0.07    | 0.2      |  |
| API      | 0.73            | 0.14     | 0.23     |  |
| ASCAT    | 0.76            | -0.01    | 0.19     |  |

![](_page_18_Picture_5.jpeg)

| Site | Probing<br>Depth (m) |      | Correlation [-] |     | Bias [-] |      | RMSD [-] |      |      |
|------|----------------------|------|-----------------|-----|----------|------|----------|------|------|
| Site | Mean                 | Max  | Min             | LW  | DW       | LW   | DW       | LW   | DW   |
| Mean | 0.23                 | 0.37 | 0.11            | 0.8 | 0.81     | 0.01 | -0.03    | 0.15 | 0.15 |

LW – Linearly weighed DW – Depth weighed

#### Time series - OzNet

![](_page_20_Figure_1.jpeg)

### Time series - CosmOz

CosmOz Hydrological Network - Site: Tullochgorum

![](_page_21_Figure_2.jpeg)

## **Taylor diagrams**

![](_page_22_Figure_1.jpeg)

#### **Anomalies**

The anomaly (dimensionless) is then given by:

![](_page_23_Figure_2.jpeg)

#### **Anomalies**

|          | Bia   | ls [-] | RMSD [-] |        |  |
|----------|-------|--------|----------|--------|--|
| Data Set | OzNet | CosmOz | OzNet    | CosmOz |  |
| APS0     | 0.06  | _      | 0.17     | _      |  |
| APS1     | -     | 0.02   |          | 0.18   |  |
| KBDI     | -0.17 | -0.18  | 0.24     | 0.26   |  |
| MSDI     | -0.04 | -0.02  | 0.15     | 0.19   |  |
| API      | 0.07  | 0.08   | 0.17     | 0.18   |  |
| ASCAT    | _     | 0.02   | _        | 0.16   |  |

# APS1/APS2/ECMWF

- Period 1 Dec 2013 to 28 Feb 2015 (14 months)
- Depth weighed profiles.

#### Normal

| Metrics          | APS1  | APS2  | EC-Op |
|------------------|-------|-------|-------|
| Mean Correlation | 0.81  | 0.80  | 0.78  |
| Mean Bias        | -0.08 | -0.06 | -0.06 |
| Mean RMSD        | 0.18  | 0.17  | 0.19  |

#### Anomalies

| Metrics          | APS1 | APS2 | EC-Op |  |
|------------------|------|------|-------|--|
| Mean Correlation | 0.57 | 0.57 | 0.6   |  |
| Mean Bias        | 0.0  | 0.0  | 0.07  |  |
| Mean RMSD        | 0.18 | 0.18 | 0.18  |  |

![](_page_25_Figure_7.jpeg)

## **Conclusions**

- In general, ACCESS is better than KBDI or SDI.
- ACCESS results are encouraging when we consider:
  - Coarser resolution (~40 ~80 km) of NWP
  - NWP precipitation estimates are generally erroneous.
- KBDI soils show large wet bias.
- SDI is better than KBDI.
- API with a simple formulation matches MSDI and is better than KBDI.
- ASCAT estimates show very good skills.
- ACCESS soil moisture shows similar skill to ECMWF model.
- This study provide an approach to improve FDR.

### **Future work**

- Develop an operational system delivering near real-time estimates of soil dryness for use in FDR.
- Essentially a state of the art soil moisture analysis system that uses many different sources of observations, cutting edge land surface models and data assimilation techniques.
- Planned horizontal resolution is 5km.
- Downscaling techniques will be developed to improve the horizontal resolution to about 1km.
- The new information will be calibrated so that it can be used with existing fire and flood prediction systems.

# Acknowledgments

- BNHCRC.
- Jeff Walker, Monash University.
- David McJannet, CSIRO.
- Monash University & University of Melbourne for OzNet.
- CSIRO for CosmOz.

# THANK YOU

Vinod Kumar Bureau of Meteorology <u>v.kumar2@bom.gov.au</u> +61 3 9616 8448

![](_page_29_Picture_2.jpeg)