Cardiovascular Risk Screening and Stratification of Victorian Volunteer Firefighters

Alexander Wolkow1, 2
Kevin Netto1, Peter Langridge3, Jeff Green3,
David Nichols2, 3, Michael Sergeant4 and Brad Aisbett1, 2

Affiliations
1Centre for Exercise and Sports Science, Deakin University, Burwood, AUSTRALIA.
2Bushfire Co-operative Research Centre, East Melbourne, AUSTRALIA.
3Country Fire Authority, Burwood East, AUSTRALIA.
4Public Health Management, Melbourne, AUSTRALIA.
Cardiovascular Disease (CVD)

CVD is the leading cause of death and disability worldwide (WHO 2005; AIHW 2006)

CVD affects the heart and blood vessels (AIHW 2008; Nieman 2007)
CVD Risk Factors

<table>
<thead>
<tr>
<th>Positive Risk Factors</th>
<th>Risk Factor Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Men \geq 45 years; Women \geq 55 years</td>
</tr>
<tr>
<td>Family History of CVD</td>
<td>Myocardial infarction, coronary revascularization, or sudden death before 55 yr of age in father or other male first-degree relative, or before 65 yr of age in mother or other female first-degree relative</td>
</tr>
<tr>
<td>Hypertension</td>
<td>SBP \geq 140 mm Hg and/or DBP \geq 90 mm Hg confirmed on at least two separate occasions or taking antihypertensive medication</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>LDL-C \geq 3.37 mmol(\cdot)L(^{-1}) (130 mg(\cdot)dL(^{-1})) or HDL-C $<$ 1.04 mmol(\cdot)L(^{-1}) (40 mg(\cdot)dL(^{-1})) or on lipid-lowering medication</td>
</tr>
<tr>
<td>Impaired Fasting Glucose (Diabetes)</td>
<td>Fasting blood glucose \geq 5.50 mmol(\cdot)L(^{-1}) (100 mg(\cdot)dL(^{-1})) but $<$ 6.93 mmol(\cdot)L(^{-1}) (126 mg(\cdot)dL(^{-1})) or Impaired glucose tolerance (i.e. two hour values in oral glucose tolerance test \geq 7.70 mmol(\cdot)L(^{-1}) but $<$ 11.0 mmol(\cdot)L(^{-1})) confirmed on at least two separate occasions</td>
</tr>
<tr>
<td>Obesity</td>
<td>BMI \geq 30 kg(\cdot)m(^{-2}) or WC $>$ 102 cm (40 inches) for men and $>$ 88.0 cm (35 inches) for women</td>
</tr>
<tr>
<td>Exercise/Sedentary Lifestyle</td>
<td>Not participating in at least 30 min of moderate intensity (40%-60% VO(_2)R) physical activity on at least three days of the week for at least three months</td>
</tr>
<tr>
<td>Smoking</td>
<td>Current cigarette smoker or has quit in the last six months</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative Risk Factors</th>
<th>Risk Factor Classification Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>High HDL-C</td>
<td>HDL-C \geq 1.55 mmol(\cdot)L(^{-1}) (60mg(\cdot)dL(^{-1}))</td>
</tr>
</tbody>
</table>

(American College of Sports Medicine 2009)
Cardiovascular Disease (CVD) and Firefighters

• CVD related deaths are the leading cause of on-duty death among firefighters in USA (50%) (Fahy et al. 2012; Kales et al. 2007)

• CVD related deaths occur among individuals with ↑ prevalence of CVD risk factors (Kales et al. 2007)

• Intense physical work in potentially hazardous environments

• Significant strain on the cardiovascular system

Intense work + Hazardous environment + CVD risk factors = Cardiac events
No national CVD-related mortality data

Country Fire Authority (CFA) volunteer firefighters

- Similar prevalence of CVD risk factors to Australian population (Wolkow et al. In second review)

- Compared to overseas emergency services, CFA firefighters have a greater CVD risk (Wolkow et al. in second review)

- Volunteer and career firefighters share similar demands and on-duty CVD risks (Kales et al. 2007)

- May not be subject to same stringent health-related employment procedures as their paid counterparts
Mandatory medical screening standards in USA based firefighting & emergency service agencies

CVD risk screening and stratification research

• Accurately identify emergency service personnel at high CVD risk (Gaetano et al. 2007)

• Rural volunteer firefighters & emergency medical service personnel (n = 315) (Gaetano et al. 2007)

• Soldiers (n = 76) (Foder et al. 1998)

Currently no mandatory risk screening standards for volunteer CFA firefighters

Without screening, volunteer firefighters with ↑ CVD risk factors and ↑ risk of on-duty CVD-related events are less likely to be identified
Typical risk screening and stratification involves:

- Questionnaires
- Blood samples
- Blood pressure
- Body composition assessment
- Graded exercise task

To be effective:

- Time and cost-efficient
- Suited for large scale application
- High level of accuracy
- Prevent false positive results
- Minimal financial costs
CVD Risk Screening Tools

Implementing CVD risk screening in Firefighting:

• ‘Moderate’ to ‘very-hard’ physical activity intensity e.g. vigorous weightlifting and circuit training

• Firefighting and intense physical activity share similar CVD risks

• Pre-participation Fitness Screening Questionnaire appropriate e.g. the AHA/ACSM Health and Fitness Pre-participation Fitness Screening Questionnaire
 • Widely used and recognised for low to high-intensity exercise
 • CVD history, symptoms and risk factors → Low, Moderate or High Risk
 • Uses evidence-based CVD risk factor guidelines
 • Time-efficient and easily applied to large populations
Aim

- To evaluate the consequences of applying a time and cost-efficient CVD risk screening tool to a volunteer firefighter population.
Methods

Major CVD risk factors collected from:
• n = 3777 CFA volunteer firefighters
 • 80% Males
 • 20% Females
• Between 18-75 years old
• Undergoing the Emergency Services Volunteer (ESV) Healthwatch health assessment program
• Data collection: Individual brigades and non-emergency firefighting events across Victoria (e.g. Rural and Urban firefighting games)
Methods

Questionnaire
• Each participant completed an online questionnaire to assess the main CVD risk factors

Body composition
• Height, weight and waist circumference

Resting blood pressure (BP) measurement

Finger-prick blood sample
• Total cholesterol
• Low-density lipoprotein cholesterol
• High-density lipoprotein cholesterol
• Triglyceride
• Blood glucose
Risk factor data entered into AHA/ACSM pre-participation CVD risk stratification

Risk stratify individuals according to a certain level of CVD risk

Low Risk: ≤ 1 CVD risk factor
- No medical clearance required

Moderate Risk: ≥ 2 CVD risk factors
- Medical clearance + graded exercise test prior to high intensity exercise

High Risk: Diagnosed diabetes (type 1 or type 2)
- Medical clearance recommended prior to low, moderate or high intensity exercise
Results

Demographic Results:
- Males: 80% (n = 3011); 46 ± 15 yr
- Females: 20% (n = 766); 43 ± 15 yr

Figure I. Percentage of CFA firefighters with low, moderate and high risk stratification
Results

Figure II. Percentage of female CFA firefighters with low, moderate and high risk stratification

Figure III. Percentage of male CFA firefighters with low, moderate and high risk stratification
Research Implications

- Large % of CFA firefighters stratified as moderate risk
- ↑ risk of CVD related event during moderate to vigorous intensity activity
- % at moderate risk is higher than USA firefighting and emergency medical service personnel (Gaetano et al. 2007)

- **Moderate and high risk personnel** require medical examination + Graded exercise test (GXT)
 - Cost $280 AUD per person
 - Skilled staff
 - Large financial cost to CFA / Australian Agencies ~$45,500,000
 - Reduce volunteer firefighter numbers → Reduce fire agency response
Research Implications

Points for consideration:

• Fire agencies should invest in screening and stratification for high risk personnel

• When recruiting, consider combining risk factor screening + Job-specific physical capacity tests
 • More comprehensive and accurate assessment
 • Reduce inappropriate exclusion of firefighters

• Possibility that the ACSM tool may not be the best screening and stratification method for this population
 • Places a large emphasis on any one risk factor
 • Ageing firefighting population
 • No distinction between individuals with two or nine risk factors
 • Potential financial and practical implications
 • Therefore, need to explore other screening options
Recommendations:

• Introduce agency wide health education
• Implement regular health monitoring of personnel
• Reducing the number of personnel at CVD risk
• Increases healthy volunteer firefighter numbers
• Increases fire agency response capacity
Summary

• First study to investigate AHA/ACSM pre-participation screening questionnaire in firefighters

• Large % of CFA firefighters at moderate risk

• Focus screening and stratification of high CVD risk personnel

• Screening combined with physical capacity to perform job requirements

• Agency wide CVD health interventions