An analysis of human fatalities and building losses from natural disasters in Australia

Katharine Haynes, Rob van den Honert, Lucinda Coates
Risk Frontiers, Macquarie University, NSW
Objectives

To analyse the impacts of:

- floods, cyclones, bushfires, earthquakes, heatwaves and severe storms (wind, hail, lightning, tornados, flash floods)

in terms of:

- demographics, social and environmental circumstances surrounding deaths
- people otherwise affected – injured, near-misses, rescued
- building losses and damage – over the last century
Major outcomes

Evidence-based data to assist with appropriate emergency management and government decision making:

• a longitudinal and geographical examination of trends in the exposure and vulnerability of people and buildings

• an interpretation of these trends in the context of emerging issues (e.g. ageing population, population shifts, climate change), in order to determine potential future trends

• an understanding of the impact of changes to policy and procedures on life and property loss.
Initial objective

To analyse the impacts of **floods** in terms of:

- human fatalities and
- physical characteristics of the flood

Milestones:

- 29 May 2015 – report on flood fatalities alongside a discussion of the results with end-users
- mid-July – submission of journal article
PerilAUS: a means to the end

A database of natural hazard impacts in Australia

- **Data held** from 1788; best data is from 1900.

- **14,760** event reports from 1900 to the present (and counting…)

Coronial inquests: crucial to augmenting the detail surrounding fatalities.

[garnered for bushfire fatalities (as at 2008) for a previous project for the Bushfire CRC]

First we needed to add as many names as possible…
What we’ve done

Enriching the database (from March 2014 to now):

- Fatal flood events: 548 → 1076 (96%)
- Number of flood deaths 1207 → 1799
- Named flood deaths 606 → 1559 (from 50% → 87%)
- References 16,598 → 19,924

Qld Archives – office Step 2. Having found the most likely page no. on the appropriate microfilm from the inquest register, ensure it’s the right event/person and get the inquest number. Next: order via the online form; wait for the staff to find it; unwrap carefully and photograph. Return to Sydney office and very nicely ask De to input it.
What we’ve done

Coronial inquest reports: types of data

• name, age, occupation, where found, date of death
• actions of deceased; reasoning behind decisions
• knowledge/ forewarning of flood dangers; ability to swim; blood alcohol level
• details of weather; state of river; type of flood

QLD 1920/16555: Inquest gave the reason behind the attempt to cross the river, time, details on the incident and information on where the body was found.

PerilAUS: [deceased] drowned whilst crossing Russell River at the old Chuchabber crossing during the flood.

[deceased] was a labourer and contractor, ~50, unmarried, originally from Inverell. His employer, who was going to Cairns, instructed [him] to remove horses from the opposite side of the river if there was any sign of flood. A witness accompanied [him] at about 5.30am to bring horses from across the river as the river was rising and there was a danger of flood. [He]crossed the river on his horse which appeared to get into difficulties about halfway across. Both disappeared: the horse reappeared downstream but [deceased] did not. The river was running very quickly and the water was muddy. His body was found the following day, caught in the roots of a big tree, about half a mile from where he entered the river.
What we’ve done

Coronial inquest reports

Challenges encountered:

• Accessing some Records offices (WA, NT)
• Inquests aren’t always kept (NSW, WA)
• Variable names in PerilAUS
• Reports difficult to read!
What we’ve done

Current state of play

Inquest reports held at State Archives offices:
- accessed available reports: SA, Vic, Qld, NSW
- end of April will complete Tas, ACT
- unable to access records for NT
- hope springs eternal – WA

May be able to access more recent inquest reports direct from the Coroner for some states

Still closing gaps for physical characteristics of fatal flood events – about four decades’ worth.
What you can expect

Fatalities from natural perils: raw data

Figure 1: Australian natural disaster fatalities, 1900-2010 - raw data
(Data source: PerilAUS database, Risk Frontiers)

Perils include:
bushfire, earthquake, flood, grassfire, wind gust, hail, landslide, lightning, rain, tornado and tropical cyclone
What you can expect

Fatalities from natural perils normalised by population

Figure 2: Australian natural disaster fatalities, 1900-2010 – population normalised to year 2010 numbers (Data source: PerilAUS database, Risk Frontiers)

Perils include:
bushfire, earthquake, flood, grassfire, wind gust, hail, landslide, lightning, rain, tornado and tropical cyclone
Natural hazard fatalities

<table>
<thead>
<tr>
<th>Natural hazard</th>
<th>Deaths 1900–2011</th>
<th>% total natural hazard deaths 1900–2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme heat</td>
<td>4,555</td>
<td>55.2</td>
</tr>
<tr>
<td>Flood</td>
<td>1,221</td>
<td>14.8</td>
</tr>
<tr>
<td>Tropical cyclone</td>
<td>1,285</td>
<td>15.6</td>
</tr>
<tr>
<td>Bush/grassfire</td>
<td>866</td>
<td>10.5</td>
</tr>
<tr>
<td>Lightning</td>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>Landslide</td>
<td>88</td>
<td>1.1</td>
</tr>
<tr>
<td>Wind storm</td>
<td>68</td>
<td>0.8</td>
</tr>
<tr>
<td>Tornado</td>
<td>42</td>
<td>0.5</td>
</tr>
<tr>
<td>Hail storm</td>
<td>16</td>
<td>0.2</td>
</tr>
<tr>
<td>Earthquake</td>
<td>16</td>
<td>0.2</td>
</tr>
<tr>
<td>Rain storm</td>
<td>14</td>
<td>0.2</td>
</tr>
</tbody>
</table>
What you can expect

Heatwaves: deaths & death rates 1890-2010

- at least 363 heat events since 1788 and 5,332 fatalities since 1844
What you can expect

Heatwaves: summary & policy implications

- Concentrate more resources at all levels of government on risk reduction
 - 5,332 deaths since 1844 and 4,555 deaths since 1900
 - Decrease in death rate BUT future risk: climate change + social vulnerability

 - Who to target? WHS:
 - Those working in hot environments

 - Recreation-related:
 - > 25% fatalities prior to 1956 working at death; < 10% from 1956
 - 1956-2010 – recreation riskiest activity, then working

 - The very old

- Long term risk reduction focus:
 - Planning policies currently are response-focused... and...
 - Many of the most vulnerable groups are difficult to reach
 - We suggest: urban planning, building design, social equity, community development

Another heat disaster is inevitable – not enough has changed since 2009...
What you can expect

Bushfires: gender

Table 2a - Gender and age of bushfire fatalities over three different time periods.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number killed</td>
<td>552</td>
<td>292</td>
<td>260</td>
<td>z-Score</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td>p-Value</td>
</tr>
<tr>
<td>Male</td>
<td>373 (67%)</td>
<td>224 (77%)</td>
<td>149 (57%)</td>
<td>5.011</td>
</tr>
<tr>
<td>Female</td>
<td>147 (27%)</td>
<td>48 (16%)</td>
<td>99 (38%)</td>
<td>-5.856</td>
</tr>
<tr>
<td>Unknown</td>
<td>32 (6%)</td>
<td>20 (7%)</td>
<td>12 (5%)</td>
<td></td>
</tr>
</tbody>
</table>

What you can expect

Bushfires: capacity to respond

<table>
<thead>
<tr>
<th>Table 8 – Awareness/capacity to respond.</th>
<th>1900–2008</th>
<th>1900–1954</th>
<th>1955–2008</th>
<th>Comparison of the two periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>%</td>
<td>Number</td>
<td>%</td>
</tr>
<tr>
<td>Physically and/or mentally incapable</td>
<td>24</td>
<td>4.3</td>
<td>8</td>
<td>2.7</td>
</tr>
<tr>
<td>Aware of the fire and carrying out a premeditated action</td>
<td>152</td>
<td>27.5</td>
<td>72</td>
<td>24.7</td>
</tr>
<tr>
<td>Aware of the fire but had no plans or did not follow them</td>
<td>110</td>
<td>19.9</td>
<td>54</td>
<td>18.5</td>
</tr>
<tr>
<td>Unaware of the fire and realised too late</td>
<td>59</td>
<td>10.7</td>
<td>28</td>
<td>9.6</td>
</tr>
<tr>
<td>Extenuating circumstances, e.g. heart attack</td>
<td>25</td>
<td>4.5</td>
<td>10</td>
<td>3.4</td>
</tr>
<tr>
<td>Children who followed adults’ decisions</td>
<td>60</td>
<td>10.9</td>
<td>39</td>
<td>13.4</td>
</tr>
<tr>
<td>Unknown</td>
<td>122</td>
<td>22.1</td>
<td>81</td>
<td>27.7</td>
</tr>
<tr>
<td>Total</td>
<td>552</td>
<td>100</td>
<td>292</td>
<td>100</td>
</tr>
</tbody>
</table>

What you can expect

Floods: location
Total flood deaths (and %) by state/territory, 1788-1996, and in 50-year intervals

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New South Wales</td>
<td>1090</td>
<td>49.3</td>
<td>76</td>
<td>562</td>
<td>196</td>
<td>256</td>
</tr>
<tr>
<td>Queensland</td>
<td>741</td>
<td>33.5</td>
<td>2</td>
<td>336</td>
<td>301</td>
<td>102</td>
</tr>
<tr>
<td>Victoria</td>
<td>178</td>
<td>8.0</td>
<td>3</td>
<td>81</td>
<td>82</td>
<td>12</td>
</tr>
<tr>
<td>South Australia</td>
<td>78</td>
<td>3.5</td>
<td>5</td>
<td>50</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Tasmania</td>
<td>60</td>
<td>2.7</td>
<td>0</td>
<td>21</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>Western Australia</td>
<td>28</td>
<td>1.3</td>
<td>0</td>
<td>24</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Northern Territory</td>
<td>26</td>
<td>1.2</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Australian Capital Territory</td>
<td>12</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>2213</td>
<td>100.0</td>
<td>86</td>
<td>1084</td>
<td>636</td>
<td>407</td>
</tr>
</tbody>
</table>

What you can expect

Lightning: circumstances

339 known deaths out of 650 total deaths
- indoors (47) 13.9%
- outdoors (292) 86.1%
- exposed (162) 55.5%
- shelter sought (81) 27.8%
- unknown (49) 16.7%

<table>
<thead>
<tr>
<th>Activity of casualty at time of strike</th>
<th>Unknown (7)</th>
<th>En route (19)</th>
<th>Other (40)</th>
<th>On the land (94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>work related (176) 62.6%</td>
<td>4.0%</td>
<td>10.8%</td>
<td>22.7%</td>
<td>53.4%</td>
</tr>
<tr>
<td>incidental (48) 17.1%</td>
<td>72.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>near chimney (11) 22.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

281 known deaths out of 650 total deaths

Activity of casualty at time of strike

Milestones

• 30 Mar 2014 – Submit journal article on heatwave deaths based on current knowledge
• 28 Nov 2014 – Report on data quality and completeness of historical natural hazard building losses
• 31 Dec 2014 – Report on data quality for fatalities from flood and the social and environmental circumstances surrounding each fatality
• **CM 1.03.2** – 29 May 2015 – report on flood fatalities alongside discussion of results with end-users
• *mid-July* – submission of journal article on flood fatalities
• **CM 1.03.3** – 31 Dec 2015 – Report on data quality for fatalities from tropical cyclone, earthquake, heatwaves and severe storm and environmental and social circumstances surrounding each fatality
• 31 May 2016 – Workshop with end-users and stakeholders to discuss fatality and building loss data
• **CM 1.03.4** – 31 July 2016 – Report and journal article on fatalities from tropical cyclone, earthquake, heatwaves, bushfire, and severe storm
• **CM 1.03.5** – 31 Dec 2016 – Report and journal article of detailed analysis of all historical natural hazard building losses (by state and time period), alongside presentation to relevant end-users
• 30 Mar 2017 – Report on the analysis of injury, near-miss and rescue data
• 15 Jun 2017 – A report on the impact of changes to policy and procedures related to natural hazard risk
THANK YOU!

http://www.riskfrontiers.com/

Contact:

Dr Katharine Haynes
ph: +61-404 938 981; email: katharine.haynes@mq.edu.au

Dr Robin Van den Honert
ph: +61-2-9850 6312; email: rob.vandenhonert@mq.edu.au

Lucinda Coates
ph: +61-2-9850 6312; email: lucinda.coates@mq.edu.au