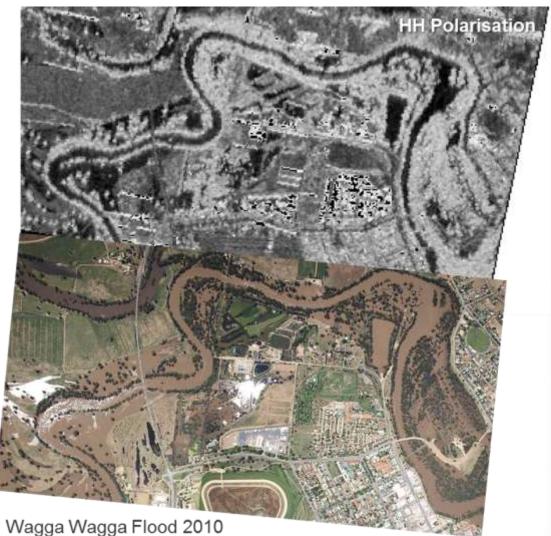
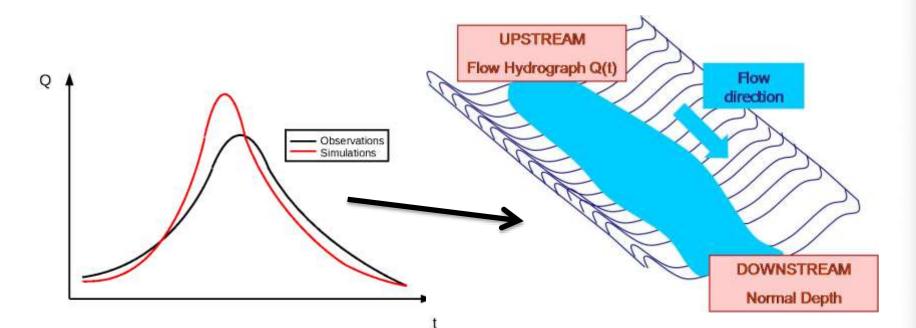


IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA

Valentijn Pauwels, Stefania Grimaldi, Yuan Li, Ashley Wright, Jeffrey Walker Department of Civil Engineering, Monash University, Clayton, Victoria



MOTIVATION


- 1) Floods are among the most important natural disasters in Australia.
- 2) Average annual cost of floods for the last 40 years: \$377M/yr.
- 3) 2010-2011 floods in Brisbane and South-East Queensland:
 - 35 confirmed deaths
 - \$2.38 billion damage

Examples of airborne radar and visible data

FLOOD FORECASTING SYSTEMS

Flood **volume** and **extent** are predicted by a sequence of models:

Remote sensing data should improve the predictive skill of flood forecast systems.

OBJECTIVES

- 1) Identify two test sites that will form the focus of the study
 - Frequent flooding must have occurred since 2010
 - All data needed to apply the models must be available
- 2) Calibrate a flood forecasting system using remote sensing data
- 3) Develop data assimilation methods that work optimally for the hydrologic/hydraulic model sequence and types of data that will be used.
- 4) Perform a scenario analysis to assess the optimal spatial and temporal resolution of the remote sensing data and hydrologic/hydraulic models.

THE PROJECT TEAM

A/Prof. Valentijn Pauwels

Dr. Stefania Grimaldi

Prof. Jeffrey Walker

Dr. Yuan Li

Mr. Ashley Wright

CANDIDATE BASINS

AVON RIVER

Considerations

- 1) Basin characteristics
 - a) Size (large enough)
 - b) Location (not too close to the coast)
 - c) Not regulated
- 2) Flood events
 - a) Several flood events for modelling
 - b) Flooding characteristics (fast/slow responses)
- 3) Data availability
 - a) Hydrologic data (P, PET, Q)
 - b) RS-based SM products
 - c) Hydraulic data (Enough resolution)
 - d) RS-based water level/extents (during recent flooding)

WIMMERA MURRAY RIVERINA LODDONOVENS RIVER CAMPASPE

CONDAMINE

bnhcrc.com.au

CLARENCE RIVER

TEST BASIN 1: CLARENCE

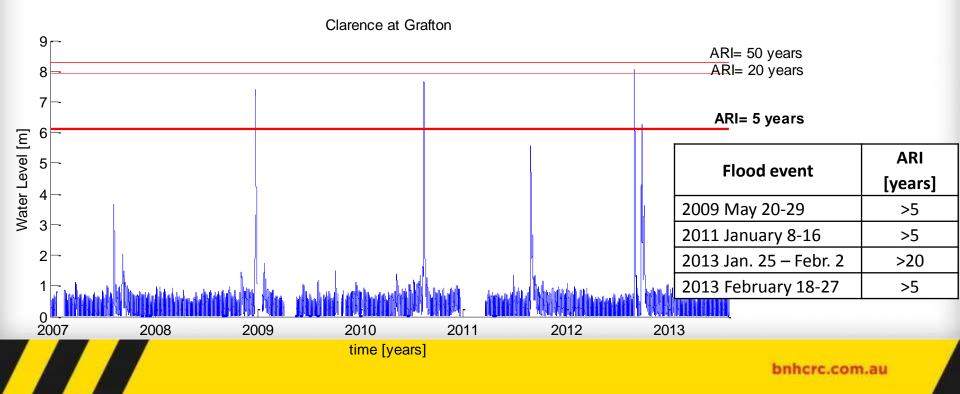
Area [km²]	20,7	0,730				
Elevation [masl] 1564-0		the second se				
Main rivers	Clare	ence, Mann, Nyml	boida, Orara			
Main urban areas	Lilyd	lale, Grafton, McL	ean	WR: in		Å
DATA		Region	Sources	Resolution/number of gauges	Period	Temporal resolution
DEM		Australia	GA	1 sec & 3 sec	1	/
Land cover		Australia	GA	250 m	1	/
Geofabric		Australia	ВоМ	/	1	/
Water Level and Discharge		Clarence	NSW Office of Water	30 gauges	2000 -	hourly
Rainfall		Clarence	ВоМ	~130 gauges	2007 –	hourly
PET		Clarence	AWAP	5 km	2000 –	monthly
Soil moisture		Australia	SMOS L3	~50 km	2010 -	~daily
Water Level w/o Disch	harge	Lower Clarence	MHL	13 gauges	Varies	hourly
Land cover		Lower Clarence	CVC	Higher	/	/
Levee and channel sur	rveys	Lower Clarence	CVC	/	/	/
SAR IMAGES		Lower Clarence	GA	60 m	1 images (1 e	event)
OPTICAL IMAGES		Lower Clarence	GA	30 m	4 images (3 e	events)
AIRBORNE IMAGES		Lower Clarence	LPID-NSW	10-20-30 cm	Images for 2	events

TEST BASIN 1: CLARENCE

Rationale: 1) Large basin without regulation;

2) Fast flow response with recent flood events;

3) Initial soil moisture is important during floods


Previous flood studies:

(GA: Australian Flood Risk Information Portal; BMT WBM Pty Ltd for Clarence Valley Council;

BOM: Water Data Online)

- → Flood frequency analysis: definition of Average Recurrence Interval (ARI) of the flood events
- → Recording of structural interventions:

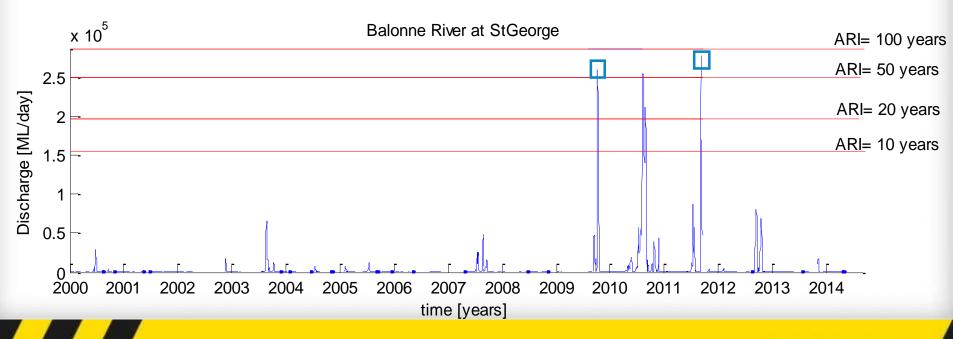
Grafton and McLean have levees designed against flood events having ARI=5

TEST BASIN 2: CONDAMINE-CULGOA-BALONNE

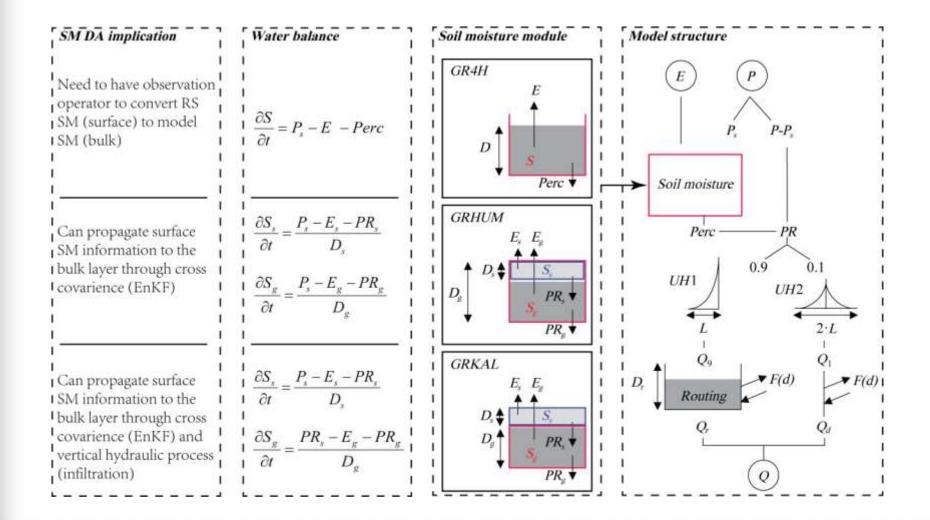
Area [km²]	147,817	
Elevation [masl]	1300-256	
Main rivers	Condamine-Culgoa-Balonne (657km)	
Tributaries	Charley Creek, Dogwood Creek, Maranoa River	
Main urban areas	Warwick, Dalby, Chinchilla, Surat, StGeorge	

DATA	Region	Sources	Resolution/number of gauges	Period	Temporal resolution
DEM	Australia	GA	1 sec & 3 sec	/	/
Land cover	Australia	GA	250 m	/	/
Geofabric	Australia	BoM	/	/	/
Water Level and Discharge	Cond-Cul-Bal	BoM, QLD Department of Natural Resources	13 – Condamine 4 – Balonne 8 - Culgoa	1960/1999 to present	hourly
Rainfall	Cond-Cul-Bal	BoM	About 200	2007 -	hourly
PET	Cond-Cul-Bal	AWAP	5 km	2000 –	monthly
Soil moisture	Australia	SMOS L3	~50 km	2010 -	~daily
Levee and channel surveys	Cond-Cul-Bal	GA, QLD reconstruction Authority, Western Downs Regional Council			Council
SAR IMAGES	Cond-Cul-Bal	GA	8-50-60 m	8 images (2 e	events)
OPTICAL IMAGES	Cond-Cul-Bal	GA	8-10-22-30 m	7 images (3 e	events)
AIRBORNE IMAGES	Narran River	GA	50 cm	Images for 1	flood event

TEST BASIN 2: CONDAMINE-CULGOA-BALONNE


Rationale: 1) slow system;

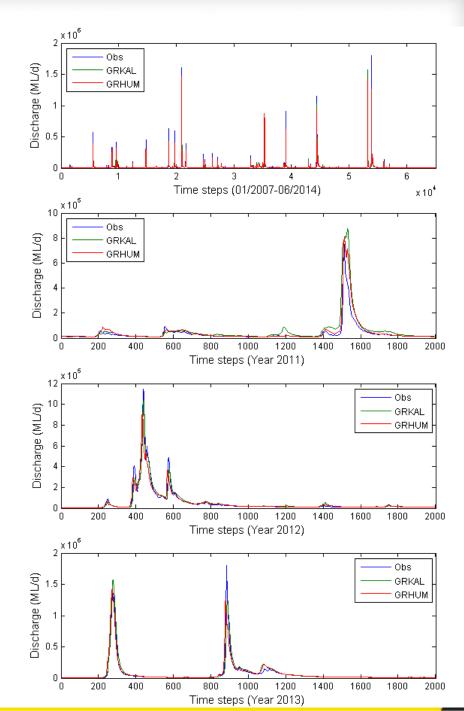
- 2) complex network of meandering and braided rivers;
- 3) good availability of remote sensing data (SAR, OPTICAL, AIRBONE images).


Previous flood studies:

(GA: Australian Flood Risk Information Portal; BOM: Water Data Online)

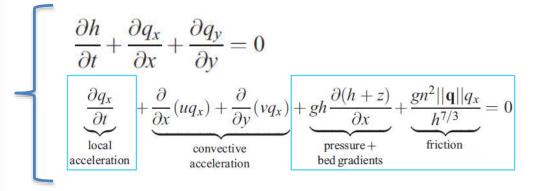
Year – Month - Days	ARI [years]
2010 March 1-20	>50
2010 Dec 27 - 2011 February 4	>50
2012 February 1-15	>50

HYDROLOGIC MODEL: GR MODEL



bnhcrc.com.au

MODEL CALIBRATION AT LILYDALE


- Calibration using discharge data gives similar results for GRHUM and GRKAL.
- Soil moisture predictability needs to be evaluated against ground measurements.
- Recall that GRKAL is more physically based in terms of SM parameterization and can more efficiently propagate surface SM updates into root-zone layer and routing stores

Statistics	NS efficiency	RMSE (m ³ /s)	R ²
GRHUM Cal.	0.74	2.9	0.77
GRKAL Cal.	0.78	2.2	0.81
GRHUM Val.	0.70	3.6	0.75
GRKAL Val.	0.71	3.6	0.75

HYDRAULIC MODEL: LISFLOOD*, concepts

Flood waves are described by the shallow water equations (2D)

Conservation of mass

Conservation of momentum

Our model is based on the LISFLOOD-FP model (Bates et al., 2000; 2010).

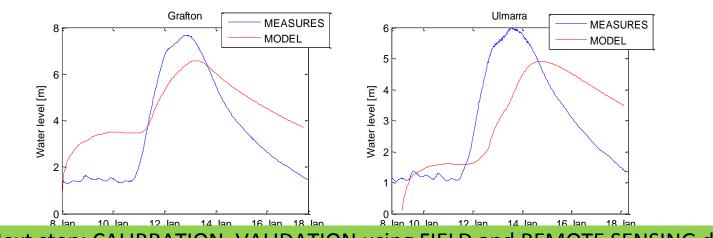
It solves the inertial approximation of the Shallow Water Equations using a finite difference scheme based on a rectangular grid. As such, it is suited for the modelling of gradually varied flows in floodplain inundation problems.

In order to optimise both modelling accuracy and computational time, our code (C#) uses an original <u>variable spatial discretization</u>:

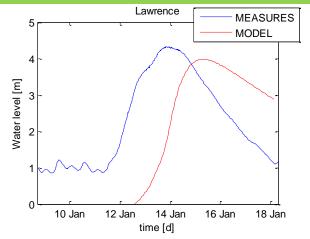
- a "coarse" space discretization is used for the modelling of the flood wave in the floodplains;

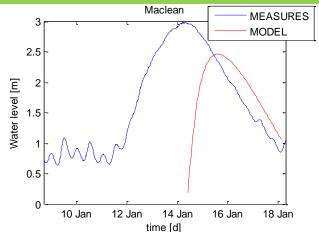
- a "fine" spatial discretization is used for the modelling of the flood wave in the urban areas.

Information on flood wave velocity and depth are shared between the two spatial domains and the computational time step is based on Courant criterion and it is adjusted accordingly.


HYDRAULIC MODEL: LISFLOOD, first application

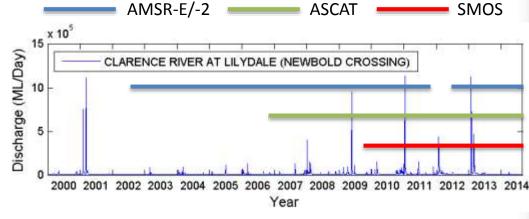
Lower Clarence, flood event January 2011

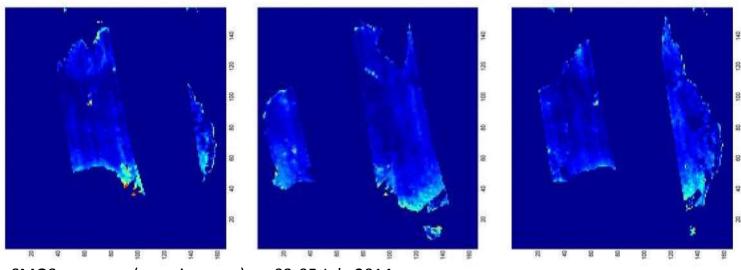

Discharge input hydrograph: Lilydale


<u>Achieved: IMPLEMENTATION OF THE MODEL</u>

- DEM: GA, Clarence Council
- Roughness and Land Use: GA, Clarence Council

Next step: CALIBRATION, VALIDATION using FIELD and REMOTE SENSING data




First, "RAW" results

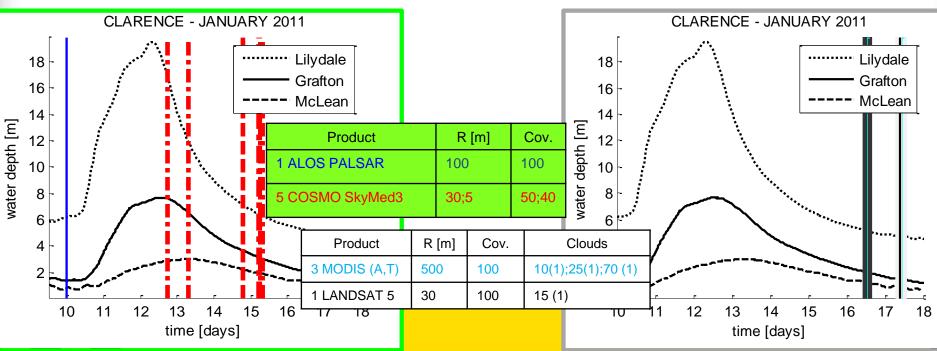
REMOTE SENSING DATA: SOIL MOISTURE

	SMOS	ASCAT	AMSR-E/-2
Period	2/11/2009–	19/10/2006-	18/6/2002– 4/10/2011 & 18/5/2012–
Band	L-band	C-band	C- and X-band
Footprint	~43 km	50 km	50–60 km
Sensor Type	Passive	Active	Passive

Temporal coverage of three SM products

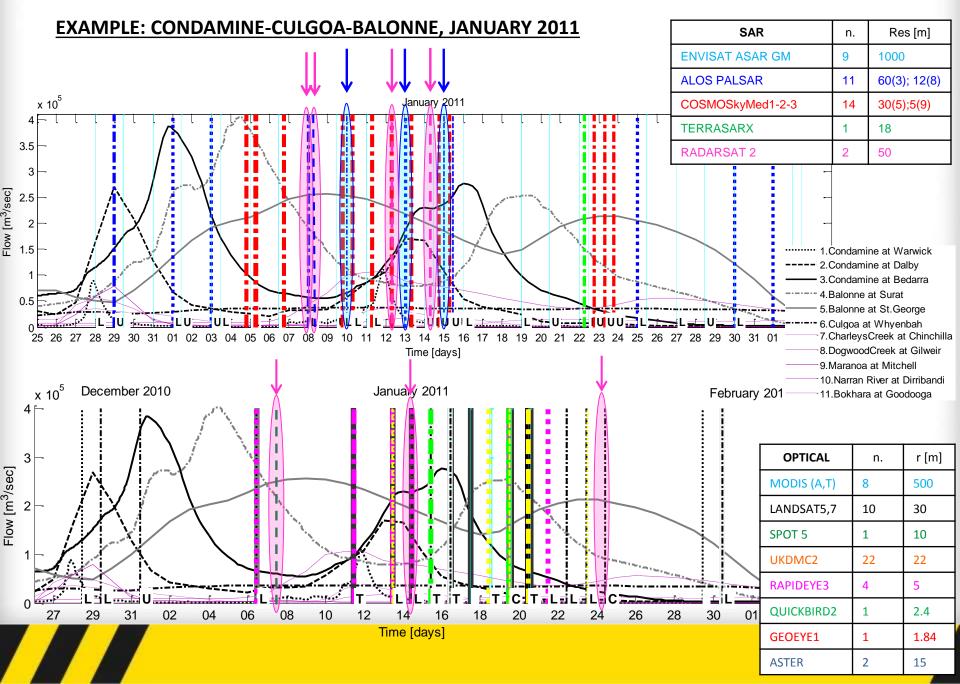
SMOS coverage (morning pass) on 03-05 July 2014

OVERVIEW OF <u>REMOTE SENSING</u> DATA AVAILABILITY FOR THE <u>HYDRAULIC MODEL</u>


Remote sensing data of **FLOOD EXTENT and WATER DEPTH**

are required to calibrate, validate, constrain in real time the hydraulic model.

Satellite or airborne **SAR** are the most suitable source; **optical** instruments can sometimes provide information.


Catalogues of SAR and optical data have been consulted; **GA** provided support and data.

We compiled a list of SAR and optical data availability for <u>each significant flood event occurred in the two selected basins</u>.

EXAMPLE: CLARENCE, JANUARY 2011

OVERVIEW OF <u>REMOTE SENSING</u> DATA FOR THE <u>HYDRAULIC MODEL</u>

END USER INVOLVEMENT

- 1) A project kick-off meeting has been held on July 21.
- 2) Two end-user meetings have been held, on September 24, and December 1.
- 3) Ashley Wright has spent one month at the BoM for training in operational flood forecasting systems.
- 4) Yuan Li has spent time in Bureau of Meteorology to extract the hydrological data.
- 5) Stefania Grimaldi and Yuan Li have spent significant time at Geoscience Australia, to retrieve the required satellite data.
- 6) Informal contacts are maintained throughout the project.

SUMMARY

- 1) The modelling activities of the project are now well underway, with the model choice being made.
- 2) The two test sites have been defined.
- 3) A remote sensing database is being developed.
- 4) The end-users are in close contact with the research team.

5) Overall: the project is well on schedule.