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EXECUTIVE SUMMARY  
Understanding fuel hazard is essential. Effective management of Australia’s fire 
prone landscapes relies on accurate consistent and up-to-date fuel 
characterisation. This project seeks to create a quantitative methodology for 
calculating fuel hazard, in surface and near surface fuel layers, using affordable 
consumer grade equipment. It is hoped that this methodology will enhance and 
supplement existing visual estimation methods used by land management 
agencies across Australia and demonstrate the utility of moving towards new 
approaches capable of creating quantitative outputs. The  method uses a series 
of systematically acquired photographs to create a 3D point cloud that captures 
vegetation elements in the surface and near surface vegetation layers and their 
horizontal and vertical structure. These point clouds are then processed to create 
the metrics for deriving fuel hazard estimates.  

The project methodological tool-chain is divided into five major components:  

• Data Collection; 

• Image and Metadata Upload; 

• Point Cloud Generation; 

• Feature Classification;  

• Hazard Metric Extraction and Quantification.  

Each of these methods are embedded in an AWS workflow. The aim being to 
provide firefighting and land management agencies with an end-to-end semi-
automated methodology for collecting, analysing and visualising fuel hazard 
information.  

Although a viable methodology was developed and implemented, results varied 
by ecosystem. Woodlands, plantations, low open forest, open grasslands and 
low open shrublands systems all had good image matching and end metric 
conversion rates (>90%). In contrast, closed and other grasslands, shrublands and 
tall closed forest fuel types all had sample conversion rates below 65%. The 
explanation of these large variances in success rates were explored with a 
number of image acquisition and processing factors identified. 

There are many benefits to standardising data collection and harmonising 
metrics for reporting fuel hazard. Unlike visual assessments the reference 
photographs and associated point clouds exist in perpetuity and can be re-
processed when new techniques emerge for their analysis. Comparing data 
gathered in different states, territories and jurisdictions also becomes much 
easier.  

Feedback from end users was mixed. While many land managers felt this 
quantitative methodology had much merit others commented it was too time-
consuming to replace current practices. Other (more costly) point cloud 
collection methods (Terrestrial Laser Scanners and Mobile Laser Scanners (LiDAR) 
as well as optical depth camera systems) have presented themselves as 
alternatives during the course of the project. With this in mind the research team 
has enabled the AWS tool chain to ingest other point cloud data into the fourth 
and fifth workflow elements.   
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END-USER PROJECT IMPACT STATEMENT 
Danielle Wright and Thomas Duff, Country Fire Authority, Victoria 

The Fuels3D project identified that the current system of fuel hazard assessment 
has an exceptionally high degree of subjectivity. A key outcome of RMIT’s work 
is the identification of the need to review the overall fuel hazard assessment 
system to ensure it is robust, represents the properties of fuel that influence fire 
behaviour, and is compatible with future technological developments. The 
Fuels3D solution was designed to determine surface and near-surface fuel 
hazard in an objective and repeatable way, that would be available to all CFA 
members. Working with RMIT researchers we were taken through the workflow. 
From the trial we learnt that smartphone cameras did not provide the level of 
quality needed to create a 3D fuel hazard environment, however consumer 
mirrorless cameras could. We also learnt that the Fuels3D method cannot 
capture fuel hazard accurately in grasslands, but can in woody vegetation. 
Overall, the ability of the solution to adapt to different terrestrial sensing 
technologies, and the modular design of the automated processing back-end, 
has created a valuable foundation for future utilisation into fuel hazard 
assessment approaches. 
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PRODUCT USER TESTIMONIALS 
Simeon Telfer, Department for Environment and Water, South Australia 

Fuel3D uses photos collected in field to create 3D models of vegetation which 
can be used to determine bushfire fuel hazard. SA National Parks and Wildlife 
Service have used Fuels3D to collect information before and after prescribed 
burns and bushfires across the state including Mt Lofty Ranges, Kangaroo Island 
and Eyre Peninsula. Using Fuels3D allows us to make quantitative measurements 
of fuel in a variety of vegetation types, from woodlands to semi-arid mallee. Using 
Fuels3D is more repeatable than the subjective fuel hazard estimates which we 
routinely collect, and much faster than destructive sampling of fuel loads. The 
previous version of Fuels3D provided results, but required lots of manual 
intervention in order to process. The new workflow has streamlined the upload, 
processing and results workflows for end users. Future improvements could 
include more fuel metrics, automation of workflow and feedback on photo 
points that weren’t successfully processed. 
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INTRODUCTION 
Fuel hazard assessments inform the management and mitigation of wildfire risk in 
fire-prone landscapes by describing the presence and condition of fuel in the 
environment. Physical characteristics of fuel such as arrangement, volume, 
connectivity, and height above ground play a significant role in the intensity of 
fire events, potential for spread across the landscape, and probability of success 
in suppression efforts [1]. Fuel hazard assessment provides a means for the 
observation of these characteristics and enables land managers to quantify and 
monitor fuel presence in the field over time. Current standards and protocols for 
describing fuel hazard (for example, “Overall Fuel Hazard Assessment Guide”, 
Victorian Department of Sustainability and Environment) and post-burn severity 
(for example, “Fire Severity Assessment Guide”, Victorian Department of 
Sustainability and Environment) are the culmination of decades of work across a 
diverse array of Australian environments, and the metrics described in these 
guides remain the measures of key drivers of fire risk. It is difficult to estimate fuel 
hazard using visual assessments in a repeatable and quantitative way thereby 
limiting the reliability with which the data can be integrated with modern risk 
assessment and fire behaviour tools.  Although, it is acknowledged these guides 
were written to utilise rapid descriptions of the landscape, rather than to facilitate 
the quantitative measurement of fuel metrics [2]. As a result, a misalignment exists 
between the experience and expertise of land managers in monitoring fuel, and 
the collection of data inputs applicable for fire modelling.  Quantitative data-
rich methods of measuring and assessing fuel load and structure are the missing 
link between the knowledge of land management personnel in the field, and the 
model drivers and decision makers at organisational level. 

Remote sensing offers new opportunities for the way in which fuel can be 
measured and characterised.  Whilst technologies such as laser scanners (LiDAR 
systems) are the gold standard for 3D reconstructions of environments, passive 
remote sensing using new algorithms in photogrammetry and computer vision 
yield a new opportunity for image-based approaches to be explored.  Consumer 
grade digital cameras coupled with structure from motion software such as 
Agisoft Metashape Professional and Pix4D Professional can provide a low-cost 
method for the capture, reconstruction, and subsequent extraction of 
quantitative fuel hazard metrics [3]. Images captured provide a permanent 
snapshot of the landscape in time, and when collected using the Fuels3D 
approach, provide a data rich legacy for new structure, allowing for reanalysis 
as new tools are developed, from motion methods and/or fuel hazard 
calculations to be applied.   

This project investigated the use of passive remote sensing and structure from 
motion techniques to improve the quantification and assessment of surface and 
near surface fuel hazard in the field. A sampling method that was optimised for 
repeatability, redundancy, accuracy whilst remaining sympathetic to current 
fuel hazard assessment operational practices evolved through consultation with 
land management agencies. Python code was built to ingest 3D point clouds 
and classify these into fuel categories to derive fuel hazard metrics such as 
percentage cover and height of fuel in surface and near surface fuel layers.  
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BACKGROUND 
Recent advancements in the modelling of fire spread across Australian 
landscapes are enabling increased understanding of fire behaviour before, 
during, and following significant fire events. The Australian Fire Danger Rating 
System trialled in 2019, is designed to categorise locations by expected fire 
behaviour. Forecasts are made through the combination of fire spread models 
developed for eight models across Australia [4, 5, 6, 7, 8, 9, 10] with 
meteorological data from the Bureau of Meteorology to predict fire behaviour 
characteristics such as rate of spread, intensity, flame height, and spotting 
distance. Quantitative metrics describing fuel load and condition at a given 
location are necessary to drive this modelling, generally requiring advanced fuel 
hazard surveys and techniques such as destructive sampling to collect and 
ensure they accurately reflect the landscape. The metrics used to describe the 
fuel in each landscape vary, and are likely to change over time, as older models 
are improved, and newer models replace legacy methods. Indeed, new ways 
to categorise fuel types are evolving and demonstrated in the AFAC bushfire 
classification scheme [11] that bases classes on structural characteristics rather 
than species composition.  Robust modelling requires input metrics that are 
known to be accurate and consistent between sources (and flexible to 
accommodate new classifications) and as such, there is an opportunity to 
create an improved fuel hazard assessment approach that can quantify fuel 
hazard in a repeatable, and objective manner.  

Visual estimation is the standard practice for land management agencies across 
Australia for generating fuel hazard assessments. Visual assessment provides a 
low-cost and efficient method to rapidly describe and estimate the quantity and 
arrangement of fuels within individual fuel layers [12]. In South Eastern Australia, 
this process is often guided by the Overall Fuel Hazard Assessment Guide [1] 
(OFHAG) which provides descriptors to the structure of fuels occurring within the 
surface, near surface, and elevated fuel layers including the canopy and 
requires assessment to be completed in the field using mostly visual estimates. 
The significant rate of utilisation of the OFHAG in Australian land management 
practices is reflective of its practicality in enabling fuel hazard assessment across 
vast geographic space, to occur rapidly, and with minimal economic investment 
required by the user. However, it is well known and documented in the literature 
that visual assessments are subjective and can vary greatly between assessors 
[12, 13, 14, 15]. In addition, visual assessment using the OFHAG is designed only 
for a hazard rating to be determined between five ratings; low, moderate, high, 
very high, and extreme, and not to facilitate the precise capture of various 
quantitative fuel metrics. As such, it cannot easily reconcile with modern hazard 
assessment methods guided by fire spread modelling.  

Remote sensing methods provide an encouraging alternative to visual 
assessments for the non-invasive observation and quantification of fuel hazard in 
the field [2]. Ground based remote sensing methods have proven to be 
successful in accurately capturing the 3D structure of under-storey vegetation in 
the environment at a level of detail that enables fuel metrics to be observed and 
measured when interrogating the corresponding point data [16, 17]. Typically, 
terrestrial laser scanners (TLS) have been used to survey environments in the field, 
however recent advancements in photogrammetric algorithms, in particular 
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structure from motion (SfM), are providing an alternative low-cost approach 
using passive sensors such as digital cameras.  

Terrestrial laser scanners record the time taken for a laser pulse emitted from the 
device to be reflected off an object and back to the sensor to determine the 3D 
geometry of a scene. TLS sensors can provide high resolution, high accuracy 
point clouds of the local environment and have a range between 10 and 1500 
m from the sensor depending on the device. In addition, as an active sensing 
technology, the laser pulses from a TLS platform have some penetrative ability 
through less dense or loosely arranged vegetation. By detecting concurrent 
returns from the scanner, more information is captured from the sensor’s 
surroundings, increasing the detail of resulting point clouds particularly in natural 
environments. TLS derived point clouds are of sufficient detail to facilitate the 
observation of fine scale vegetation characteristics [18, 19, 20] and have a 
demonstrated ability for use in providing accurate estimates of fuel hazard 
properties [16, 17] and detecting changes in near surface fuel [21, 22].  Despite 
the strengths of TLS, the technology remains relatively expensive with sensor costs 
between $10,000 and $100,000 USD [18], delaying its widespread use in fuel 
hazard monitoring. In addition, the expertise required for both the operation of 
equipment while surveying in the field, and for the processing of collected point 
clouds is considerable [23]. As a result, the incorporation of TLS into existing fuel 
hazard assessment practices may prove difficult until such limitations are 
resolved.  

In contrast to TLS, image-based 3D reconstruction is possible using data acquired 
from <$2,000 digital cameras when coupled with Structure from Motion (SfM) 
software.   Structure from Motion is a photogrammetry method used to estimate 
the geometry of a scene in 3D, using the input of multiple highly overlapping 2D 
images of the scene taken from multiple angles [24]. Advances in processing 
algorithms have made this possible using images from the natural environment, 
despite the level of detail and complexity present [3, 25]. Image-based point 
clouds have proven successful in resolving woody [26] and near surface 
vegetation [27, 28, 29], and the results presented by Bright et al. [27], Hillman et 
al. [28], Cooper et al. [29] and Wallace et al. [30] indicate that the collection of 
imagery and use of computer vision to derive dense point clouds could be an 
effective method in quantifying fuel hazards.  

The use of computer vision and photogrammetry to derive geometry is not 
without limitations. Unlike active sensors such as TLS, which detect light rays 
actively generated by the device, passive sensors can only detect light rays from 
other sources. As a result, passive sensors are reliant on a scene being illuminated 
from other potentially less consistent sources such as the sun, demanding 
consideration by the operator to ensure minimum light requirements are met, 
and the effects of shadowing are mitigated [31]. In addition, passive sensors do 
not provide any penetrative ability through less dense objects such as 
vegetation, limiting the potential scene size to reduce possible obscuration of 
features. Fortunately, 3D photogrammetry also offers some advantages over the 
use of TLS for assessing fuel hazard. The ability to use passive sensors allows data 
capture to be completed with off the shelf digital cameras that do not require 
extensive training to operate. Recent advancements in consumer camera 
technology have also improved the affordability and accessibility to devices with 
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high resolution, large format sensors. In addition, image-based point clouds also 
contain the spectral information captured by the camera [32]. Spectral 
reflectance provides a substantial source of data in natural environments that 
can guide processes of object delineation, feature classification, with potential 
to identify whether vegetation is live or dead. This information is not typically 
captured in surveys with laser scanners as additional equipment and surveys are 
required, although recently emerging systems such as the Hovermap now 
provides colourised point clouds.  Still, substantial care must be taken to 
accurately align the spectral and spatial datasets. The combination of low cost, 
easy to use survey equipment, and the ability to collect spectral information from 
the scene provide benefits over the use of TLS and allow for a substantially 
cheaper and simpler incorporation into existing fuel hazard assessment survey 
approaches.  
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RESEARCH APPROACH 
The Fuels3D project has created a suite of scripts, tools, and methods for image 
capture in the field during fuel hazard assessments. 3D point clouds are 
generated using computer vision and photogrammetry techniques as built into 
existing available SfM software. From these 3D point clouds, scale is added and 
decision rules are programmed to calculate quantifiable surface / near-surface 
metrics that replicate those used in current fuel hazard visual assessment guides.  
The key steps in the strategy followed:  

• New opportunities and proof of concept 

• Validation and inter-comparison of point clouds 

• Design and development of Fuels3D methods 

NEW OPPORTUNITIES AND PROOF OF CONCEPT 

Summary  
The research approach employed for the development of Fuels3D began with a 
review of remote sensing technologies suited for capturing vegetation structure. 
Remote sensing captured from airborne and satellite platforms has long been 
used as a viable option for mapping vegetation in the landscape. However, 
estimates of fuel structure and hazard made using remote sensing data still 
requires input at the local, or plot, scale for calibration and validation purposes. 
Terrestrial remote sensing techniques can provide an alternative or 
complementary source of information to traditional field assessments and 
support large scale remote sensing used to quantify and describe vegetation 
properties. Early work using TLS showed the potential for 3D reconstructions of 
landscapes and was the inception to explore low-cost approaches for mapping 
understorey vegetation and fuel hazard. 

Method and Key Findings 
Early work was completed to understand the utility of point cloud products in 
facilitating the accurate observation and quantification of fuel hazard metrics in 
the forest understory [2, 21]. Each study utilised TLS in fixed survey plots prior to, 
and following a planned burn, to measure changes in fuel hazard resulting from 
the fire to provide an indication of measurement sensitivity and precision 
required. In addition, control plots not exposed to fire events were measured to 
allow for a benchmark and to exclude other non-fire drivers of change.  Both 
permanent and temporary field survey markers were used to co-register the 
multitemporal point clouds, and up to eighteen metrics describing different 
elements of fuel structure including fuel height, volume, and 
fragmentation/cover were investigated.   The study demonstrated that TLS and 
the methods used to measure the fuel environment were able to detect changes 
in different fuel hazard metrics, and with no corresponding change occurring 
between control plots indicating that the approach could provide the precision 
required to monitor fire-induced change in fuel hazard. Metrics extracted from 
corresponding point clouds were comparable to those determined via 
synchronous on ground visual assessment.  These results highlight the capabilities 
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and potential of multitemporal TLS data for measuring and mapping changes in 
the 3D structure of vegetation. Metrics from point clouds can be derived to 
provide quantified estimates of surface and near-surface fuel loss and 
accumulation, and inform prescribed burn efficacy and burn severity 
reporting. However, using TLS to create 3D representations is costly, lacks 
portability, and requires user expertise to conduct data capture and pre-
processing of data.   

As a result of identifying the value and utility of point clouds for reconstructing 
and deriving quantitative estimates for fuel hazard assessment an investigation 
into low-cost options for mapping fuel hazard was explored. Using consumer 
grade cameras and smartphones with Structure from Motion software was 
proposed as offering a suitable option. An image collection (photo taking and 
sampling) protocol was designed and tested by researchers and developed into 
a protocol to provide instructions on how to capture an image network with 
strong geometric properties and sufficient overlap to achieve an accurate 
reconstruction of the fuels 3D structure. In parallel, methods to extract fuel layers 
based on simple height thresholds, and calculation of fuel hazard input metrics 
were developed.   

To test the proof-of-concept of the approach, end-users users from SA DEWNR, 
ACT Parks and Wildlife, VIC DELWP, VIC CFA, Melbourne Water and Parks Victoria 
were invited to a testing day in areas of lowland forest at Cardinia Reservoir, 
Victoria, Australia. The field day aimed to introduce end-users to the Fuels3D 
collection protocol and to assess its ease of use and repeatability between data 
collectors in comparison to traditional visual assessment techniques. Participants 
were asked to undertake a visual assessment and collect Fuels3D data at three 
plots as shown in Figure 1. Following, the data collection, participants were asked 
to complete a survey evaluating the Fuels3D data collection workflow. 

The results of the field trial indicated that surface and near-surface metrics 
related to fuel hazard can be measured with greater repeatability between 
different observers. Variability was observed within point cloud estimates but was 
on average two to eight times less than that seen in visual estimates, indicating 
greater consistency and repeatability of this method. This is further demonstrated 
in Figure 2, where the range of surface cover and height is significantly lower 
across all plots than seen in the visual assessment approach.   The results, 
published in Sensors in 2017 [15], indicated that surface and near- surface metrics 
relating to fuel hazard can be measured with greater repeatability between 
observers using the Fuels3D method when compared to the same assessment 
using the OFHAG. Even more critical was the propagation of this error when the 
metrics were combined to calculate hazard ratings. This is demonstrated in Figure 
2, where the range of surface cover and height is significantly lower across all 
plots than seen in the visual assessment approach, spanning across almost four 
hazard rating classes. 
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FIGURE 1. EXAMPLES OF THE THREE SITES FROM WHICH PLOT LEVEL FUEL HAZARD ASSESSMENTS WERE CONDUCTED. 

 

 

FIGURE 2. RANGE OF SURFACE FUEL HAZARD RATINGS ACROSS THREE PLOTS AS ASSESSED VISUALLY (DASHED LINES) AND USING FUELS3D METICS (SOLID 
LINES). 
 

Overall, the survey indicated that the participants found the Fuels3D protocol 
easy to follow. This was further indicated by the collected data of which more 
than 90% of the image sets were able to be used in the Fuels3D processing 
method. From the results of this study several areas of improvement in the data 
collection and processing methods were identified, indicating the potential for 
this approach to have utility in fire management practices where quantitative 
and repeatable data is essential. 
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Outputs 
Gupta V, Reinke KJ, Jones SD, Wallace L, Holden L. Assessing metrics for 
estimating fire induced change in the forest understorey structure using terrestrial 
laser scanning. Remote Sensing. 2015; 7(6): p.8180-201. 

Wallace L, Gupta V, Reinke K, Jones S. An assessment of pre-and post fire near 
surface fuel hazard in an Australian dry sclerophyll forest using point cloud data 
captured using a terrestrial laser scanner. Remote Sensing. 2016; 8(8): p.679. 

Spits C, Wallace L, Reinke K. Investigating surface and near-surface bushfire fuel 
attributes: A comparison between visual assessments and image-based point 
clouds. Sensors. 2017; 17(4): p.910. 

VALIDATION AND INTERCOMPARISON 

Summary  
Initial assessment of the solution demonstrated the repeatability of measures 
possible through the Fuels3D approach. Subsequently, an assessment of the 
accuracy of the solution was conducted by comparing reconstructed 3D point 
clouds to sources of ground-truth, validation against dry weights and through 
intercomparison with other “gold-standard” technologies such as TLS. This 
approach of benchmarking image-based point cloud accuracy and 
performance against TLS was conducted and reported as an ongoing practice 
during the development phase.  

Method and Key Findings 
A critical gap in developing point clouds for estimating fuel hazard metrics was 
the absence of a standard validation method. At the time of the study, no 
standards or methods for the ground truthing of remotely sensed point clouds 
were present in the literature. As such, a validation framework was designed to 
allow point intercept measurements to be co-registered with point cloud data 
enabling a direct validation approach to be applied [17].  Upon applying the 
approach, validation results showed a high correlation of point matching in 
forests with understory vegetation elements of large mass and/or surface area, 
typically consisting of broad leaves, twigs, and bark 0.02 m diameter or greater 
in size (SfM, Matthews Correlation Coefficient (MCC) 0.51–0.66; TLS, MCC 0.37–
0.47) using consumer grade digital cameras with SfM software. In contrast, 
complex environments with understory vegetation elements with low mass and 
low surface area showed lower correlations between validation measurements 
and point clouds (SfM, MCC 0.40 and 0.42; TLS, MCC 0.25 and 0.16). The results 
of the study demonstrated that the validation framework provides a suitable 
method for comparing the relative performance of different point cloud 
generation processes, and for the validation of Fuels3D generated point clouds.  

The second approach for validation used destructive sampling to measure dry 
weight fuel loads. At the same time, data captured using TLS as the gold 
standard was also collected and compared to image-based techniques.  
Accuracy of biomass estimates were assessed using these two techniques.  Case 
study environments are depicted in Figure 3.  Results indicated that both TLS and 
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image-based point clouds accurately estimate surface biomass in the dry grassy 
forest (image-based,  = 0·87, rRMSE = 9·4% and TLS,  = 0·73, rRMSE = 13·4%), 
lowland forest (image-based,  = 0·59, rRMSE = 20·7% and TLS,  = 0·74, rRMSE = 
16·3%) and pasture environments (image-based,  =  0·78, rRMSE = 19·5% and 
TLS,  = 0·81, rRMSE = 17·8%) when compared to their actual biomass. However, 
for the woodland site, the vertical complexity and density of the vegetation 
resulted in less reliable estimates (  = 0·5, rRMSE = 41·2%) for the TLS. Higher 
correlation was found at this site between biomass and image-based point cloud 
estimated volume (  = 0·90, rRMSE = 15·7%), however, this was based on a 
limited number of samples (n = 4).  Generally, with comparable point cloud 
estimations to TLS, image-based techniques show potential as a viable, cost-
effective, non-subjective alternative to techniques currently used to assess 
surface biomass.  Whilst some strong correlations were observed in many of the 
case studies, the use of point clouds to accurately estimate fuel load is 
recognised as being highly dependent upon specific environments, condition, 
and the density and mass of local vegetation.    
 

 

 

 

FIGURE 3. THE LOCATION OF THE STUDY AREA (A) AND THE FIVE PLOTS USED TO DEMONSTRATE THE UTILITY OF IMAGE-BASED POINT CLOUDS FOR 
MEASURING THE 3D PROPERTIES OF NEAR-GROUND VEGETATION IN (B) MANICURED TURF, (C) NATIVE TALL GRASS, (D,E) DRY SCHLEROPHYLL 
FOREST, AND (F) LOW SHRUB ENVIRONMENTS.  
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Outputs 
Wallace L, Hillman S, Reinke K, Hally B. Non‐destructive estimation of above‐
ground surface and near‐surface biomass using 3D terrestrial remote sensing 
techniques. Methods in Ecology and Evolution. 2017; 8(11): p.1607-16. 

Hillman S, Wallace L, Reinke K, Hally B, Jones S, Saldias D. A method for validating 
the structural completeness of understory vegetation models captured with 3D 
remote sensing. Remote Sensing. 2019; 11(18): p.2118. 

DESIGN AND DEVELOPMENT OF FUELS3D SOLUTION 

Summary 
The design and development of Fuels3D covered steps including sampling, 
photo-taking protocol, point cloud generation, fuel layer separation and fuel 
hazard metric calculations. The most recent iteration of the Fuels3D project is 
designed to capture and ingest information from field assessments of fuel hazard 
to provide an augmentation of associated metrics to existing subjective 
assessments of fuel load. The process involves major steps relating to the sampling 
and acquisition of field data in a systematic and consistent manner, and the 
processing of imagery to provide accuracy and consistency in resultant metrics. 
The process and key decisions around method development and 
implementation are described below.  An overview of the data processing chain 
is illustrated in Figure 4. 
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FIGURE 4. OVERVIEW OF PROCESSING STEPS FOR EXTRACTING FUEL HAZARD METRICS FOR SURFACE AND NEAR-SURFACE FUEL LAYERS. 
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Method and Key Findings 

Sampling and Data Capture 
Initially the sampling approach utillised 0.5m x 0.5m samples at 2m intervals 
across the diameter of a 20m diameter plot which were able to produce 3D 
reconstructions of the landscape using such a sampling strategy. To enable 
larger, continuous plots to be supported, and to speed up data collection, a 
linear transect of varying distances (>10m) was used to drive the acquisition of 
images, with marker posts placed at regular 2m intervals along said transect. 
Upon further application and testing, this technique had two shortcomings. Firstly, 
the marker posts or targets were required to be placed at regular measured 
intervals along the transect. This meant operators would have to take extra steps 
to ensure that targets are measured out correctly, regardless of slope and terrain 
conditions. This can prove difficult even with specialist measuring equipment and 
trained operators, and minimising errors of scale in these transects would require 
specialist training. Secondly, the transects themselves resulted in point clouds 
which were less comprehensive than required for accurate estimation. The use 
of image-based techniques prescribes that adjacent photos should have 
sufficient overlap to provide for feature detection between photos. The transect 
method resulted in photo trails that contained sufficient overlap between images 
on each side of the transect but still proved inadequate for point matching 
across the transect – in other words, photos that were adjacent on the opposing 
sides of a transect would not end up with commonly shared features, which is an 
integral part of point cloud reconstruction. Also, the resultant point clouds 
tended to provide planar surfaces on each side of the transect that would not 
match with each other.  In order, to provide accurate and comprehensive 
feature spaces to reconstruct the targeted environment, a circular photo trail 
surrounding a 1m x 1m sample of interest (based upon the initial success using 
0.5m x 1.5m) was decided upon, to maximise the likelihood of photo matching 
and point cloud construction. 

The provision of sufficient coverage within a fuel assessment plot was also a 
consideration for the sampling method. A typical fuel assessment plot as defined 
by the OFHAG is a 10m radius plot, and the subjective analysis of features is 
undertaken across that area. Plot design had to accommodate provision of a 
representative sample of the plot space, bearing in mind that each sample can 
only capture 1% of the plot. Sampling design also had to consider that image 
taking is an invasive process – operators taking photos may disturb/trample 
vegetation, which may lead to under-estimations of volume in areas of 
compacted vegetation. As such the sampling scheme decided upon had to 
also allow for separation between samples, to minimise the disturbance within 
any particular sample, and to minimise the likelihood of adjacent photo taking 
impacting upon samples. This led to the adoption of the nine-sample cross 
pattern for plot capture. Additional samples could be taken to bulk up the 
representative sample space, but this comes at the price of potential 
disturbance of each of those samples before capture. The time constraints of 
adding extra samples were a concern also – skilled operators with training of 
sample capture achieved capture times of five minutes or less, but this 
procedure still must be conducted nine times per plot, resulting in total 
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acquisition times of around an hour per plot. It is difficult to envision how this 
constraint of the method could be overcome – the image sampling 
configuration is already pared back to a minimum number of photos in order to 
still provide comprehensive capture, and the use of still imagery is required to 
ensure that factors that affect video capture such as motion blur and dynamic 
adjustment in response to lighting conditions do not add to the error budget of 
object determination within the point cloud. 

In-field Targets 
To ensure accuracy of resultant point clouds and derived metrics, image-based 
point cloud processing requires a measure of scale within plots and samples. This 
is often provided in the form of custom targets like those used to coordinate 
aerial photography. In cases such as those, extra work is done to provide external 
measurements (survey using GNSS or traditional survey methods) to provide a 
basis for reduction to a coordinate system, which of course has an inherent scale. 
Again, due to the nature of utilising field personnel without specialist training in 
measuring to external coordinate datums, it was decided that samples within 
plots would be coordinated in a local reference frame for ease of use. This per-
sample coordinate system still requires a scale object to be embedded in the 
images, but given the scale of each of the samples, the scale object in this case 
can span far less of the sample to provide sufficient scaling accuracy. Originally, 
designs were put in place to manufacture a custom scaling object specially 
manufactured for the task, with fixed scaling points that could be easily 
discovered by manual control processes, and potentially allowing for the 
automatic detection of target information from images. Ultimately, 
circumstances surrounding the timing of the project halted the development of 
this custom target setup, which would have required extensive calibration to fulfil 
this potential. In lieu of a properly engineered control target, the current design 
of the polytarget used in this project was brought to life. The design needed to 
be simple to construct, yet at the same time be robust and durable with sufficient 
control information inherent to the geometry of the construction to provide 
redundancy of measurements. Testing and trials have shown the the target (see 
Figure 5) as a control source, was able to achieve accuracies of scale in the 
photo matching process typically in the order of < 2mm. Of course, the device is 
not without potential shortcomings – the taped sections that constitute the 
control targets can be torn or moved unwittingly by operators, the target itself 
can be constructed in a non-standard manner, and the whole target is reliant 
on a stable fixing to the ground to maintain coordination integrity (up is up, left is 
left, etc) throughout the image taking process. 

Image-based 3D Point Cloud Creation 
The production of point cloud information using SfM techniques is reliant upon 
the matching of features within adjacent images. This feature matching provides 
a framework for the estimation of camera (image acquisition) locations, and if 
sufficient overlap in feature spaces is found, the process in question can use this 
geometrical representation to refine a more comprehensive depth mapping 
process, over which resultant point clouds are built. The commonly used SfM 
processing software Agisoft Metashape (Professional), was used to construct 
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image-based point clouds for this process. This decision came on the back of 
extended use of this software since the inception of the project to provide 
image-based point clouds throughout other work in similar landscapes and for 
similar applications that the research team had encountered in the past. 
Unfortunately, a shortcoming when using closed-source software, is that not 
much is known about proprietary processes used within the workflow. The 
program appears to be using a form of the SIFT algorithm for provision of feature 
matching between images, but the settings that are available to the user to alter 
this process seem to have limited or counter-intuitive effects given the results 
derived. Without greater knowledge of what occurs internal to the program and 
algorithms used to construct the sparse point cloud matches, it is difficult to 
forsee how improvements could be made to image reconstruction rates through 
tweaking of what few parameters are available to users. Metashape is not the 
only player in this space – other commercial software providers such as Pix4D and 
3DF have applications that can construct point clouds from images, but of 
course use of these would come at the cost of familiarisation of workflows, and 
the adoption of new variables to alter point cloud reconstruction and similar 
issues using commercial closed-source software. One advantage that 
Metashape has over competitors in the field is the integrated Python library, 
which has allowed for the seamless adaptation of the specific Metashape 
processes within our preferred Python workflow; this ability eased development 
and adoption times significantly throughout the life of the project. 

SfM relies on the accurate rendition of feature spaces within images, and the 
subsequent matching of these features to produce a product. The determination 
of a feature space within an image has been the topic of much research within 
the image processing and computer vision communities for decades, but little 
work has done to reconcile errors in more complex feature spaces, such as those 
inherent to images of vegetation as featured in this project. Certain landscapes 
will confound feature detection processes – computer vision and 
photogrammetry techniques were developed in laboratories and built 
environments, where sharp contrasts between surface geometry and reflections 
exist, and prominent features make for strong reconciliation of feature 
importance within image feature spaces. This is not the case in a lot of the natural 
environment – many of the environs and land cover types covered by this project 
encompass regions that for an image feature detection process constitute noise. 
Reconciliation of features in a space such as surface leaf litter of coarse woody 
debris may be relatively easy, as the colour space of images of these types of 
features provide marked contrast between adjacent objects, and this leads to 
high confidence in the resultant matches. (A benefit lacking in non-colorised 
point clouds.)  

Despite these shortcomings, the processes developed have managed to 
construct 3D point clouds in a number of different plots in different landscape 
types. Issues remain regarding occlusion of features and volume 
underestimation, as the SfM technique tends to cluster points upon surfaces, and 
neglects spaces that require penetration below the surface. This is not a problem 
image-based point clouds face by themselves – point clouds derived from active 
light sources also face issues with layering and penetration, and the deeper a 
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layer of material is, the more likely it is to have its volume underestimated by any 
remote sensing technique.  

Fuel Layer Extraction and Metric Calculation 
As per traditional methods for describing overall fuel hazard, and input 
requirements for new fire behaviour models, separating the vegetation into fuel 
layers, or strata, is a key requirement.  For this project, the separation was primed 
for extracting surface and near-surface fuel from the local environment. No clear 
interpretation existed for constituting each of these layers means that simple 
geometry is not enough to provide a clear and consistent delineation. If these 
two layers were treated as one for the purposes of fuel assessment, the 
procedures used to produce measures of fuel would be simplified greatly (noting 
that this follows the fuel layer definitions implemented in Vesta V2.0) but given 
the desire to follow existing protocols within the Overall Fuel Hazard Assessment 
Guide separating these two layers to inform assessment was required.  The 
simplest fuel layer separation approach employs fixed-height thresholds which 
are, of course, flawed by breaking natural connectivity between the fuels.  More 
recent and comprehensive solutions are arising, such as raster pouring [33], that 
maintains both horizontal and vertical connectivity. Other approaches, such as 
the one implemented for Fuels3D, makes use of a machine-learning classification 
technique for separating specific elements from each other in the point cloud 
and is based on indicative positive results of classification accuracy reported in 
[34]. Using a machine-learning approach required point clouds to be segmented 
in a fashion that allowed for systematic classification of vegetation elements, 
and subsequently for a number of samples to be manually classified to provide 
training data.  Finally, these classifications needed to be applied to whole point 
clouds with the use of a Random Forest classifier and verified for accuracy. 

Segmentation of the point clouds was achieved with the use of the SLIC 
segmentation technique, a process where an aggregated voxel space of 
transformed spectral information was carved up into blobs of a specified size. 
The voxel space of each point cloud is a representation of the coverage and 
characteristics at a coarser geometric scale, enabling larger datasets such as 
point clouds to be processed using fewer resources. The median of all points in 
the CIElab colour space in each voxel was the aggregation used, as this 
particular spectral transformation technique provides more depth of resolution 
in the red-green colour space, which of course is our focus when assessing 
vegetation. As with any algorithm there are a number of parameters to adjust in 
order to optimise the results. The compactness of the segmentation dictates the 
potential elongation of resultant segments from the process. There is a trade-off 
here made between providing realistic looking segments of common objects 
and allowing the segmentation to group spatially disparate objects. The 
segment size was determined by the processing capabilities of the hardware 
used to produce results – dropping the segment size further would have 
increased the processing requirements of the hardware used to produce results 
to a point where additional resources would have been required during 
prototyping. Dropping segment size further would have also made validation of 
subsequent classification more difficult - often the segments produced consisted 
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of very few points, requiring the use of a noise class within the classification to 
eliminate segments of this type. 

Once segmentation was achieved, a table of features had to be constructed 
for the simplification of point elements in each segment. A number of features 
was selected, as documented in the code accompanying this document. The 
source code and installation instructions and dependices for the project is hosted 
at: https://gitlab.com/janomecopter/f3d_meta and README file. The metrics 
calculated were a combination of commonly used features and indexes for 
differentiation of RGB and LAB colour spaces, along with texture information, 
structural information, and indices of transformations of both these spaces and 
those of surrounding segments. The nature of using a Random Forest classifier 
means that feature importance is not critical for algorithm outcomes, and as 
such no available features were eliminated from the final classification. Two sets 
of RF classification were undertaken - one with all segments that had textural 
features available, and one classification of all segments with no textural 
information, with the results of that classification only applied to segments not 
attributed in the first instance. In this way, and with a lower bound point cut-off 
designed to capture noise segments, the bulk of segments were classified into 
the determined classes. 

The classification accuracy is affected by a number of factors, not the least 
being the quality of training data used to drive the classifier. Training data 
derivation occurred using a random selection of segments from each of the 
samples assessed – this of course results in heavy weighting of training data to 
predominant classes such as leaf litter and grass, and the sample space for the 
smaller classes is low. Acquisition of training segments to be added to the 
classification library should look to target these fringe classes more readily, in 
order to sure up the accuracy of delineation of features such as woody debris. 
Additionally, classifier accuracy is a major component of success rates in 
subsequent classification tasks. If sufficient care is not taken in the clear 
delineation of classes, or an operator’s definition of what constitutes a particular 
class changes over time, the accuracy of the resultant classification may 
deteriorate. To mitigate this, the training data used in this project is verified as 
correct by two operators – if the operators agree on the class of an assessed 
object, it is used in subsequent classification. This has resulted in a better set of 
segments for training and a more accurate resulting classifier than any one 
operator alone. 

The last step of the process constitutes metric calculation, a simple step 
considering the previous processes outlined. Metrics are generated by 
aggregation of point cloud information in segments classified in the surface and 
near-surface layers, as defined by class in the documentation. The classes used 
in the classification have been identified as those most likely to provide feature 
space separation to aid with classification, whilst also enabling assessment at the 
surface and near-surface level. These metrics are derived from various studies 
into fuel hazard and fuel assessment and are predominantly made up of cover 
and height calculations. Due to occlusion of under-surface material in the 
image-based point clouds, volumetric estimates of material have not been 

https://gitlab.com/janomecopter/f3d_meta
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provided, as they are likely to significantly underestimate fuel load, and other 
issues surrounding differences in density and mass of vegetation albeit with similar 
volumes. 

Outputs 
Wallace L, Hally B, Reinke K, Jones S, Hillman S. Leveraging smart phone 
technology for assessing fuel hazard in fire prone landscapes. In Proceedings of 
the 5th International Fire Behaviour and Fuels Conference, Melbourne, Australia. 
2016: p.11-15 

Wallace L, Saldias D, Reinke K, Hillman S, Hally B, Jones S. Using orthoimages 
generated from oblique terrestrial photography to estimate and monitor 
vegetation cover. Ecological Indicators. 2019; 101: p.91-101. 

Wallace L, Hally B, Hillman S, Jones S, Reinke K. Terrestrial Image-Based Point 
Clouds for Mapping Near-Ground Vegetation Structure: Potential and 
Limitations. Fire. 2020; 3(4): p.59. 

Hillman S, Wallace L, Lucieer A, Reinke K, Turner D, Jones S. A comparison of 
terrestrial and UAS sensors for measuring fuel hazard in a dry sclerophyll 
forest. International Journal of Applied Earth Observation and Geoinformation. 
2021; 95: p.102261. 
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KEY MILESTONES   

2015 – 2016  

Pre and post burn TLS data was collected for three Victorian prescribed burn 
events to investigate the utility of 3D point clouds for observing change in fuel 
hazard.  From this, options for low-cost alternatives were proposed and tested by 
researchers. 

Key milestones and highlights included: 
• Pre and post burn data collected for three Victorian prescribed burn 

events and assessment of TLS utility and operational feasibility.  Low-cost 
options explored. 

• A workshop was held in December 2015 with various project end-users to 
convey findings and propose a low-cost solution using digital cameras 
and smartphones.  Subsequently, end-users have collected close to 100 
Fuels3D samples. This information is being used to refine the processing 
workflow and calibrate an Android app.   

• Research featured in Australia Fire magazine and Asian-Pacific Fire 
magazine. 

• One poster [AFAC 2016]. 

• Three conferences and/or invited presentations [BNH CRC Research 
Advisory Forum 2015; AFAC EMSINA PDP 2016; International Fire Behaviour 
and Fuels Conference 2016]  

• One peer-review paper published [21] 

2016 – 2017  

A field day was held demonstrating the Fuels3D as a proof of concept including 
sampling approach and image taking guidelines in July 2016 with participants 
attending from SA DEWNR, ACT Parks and Wildlife, Vic DELWP, Vic CFA, Parks 
Victoria and Melbourne Water.  DELWP representatives provided a walk-through 
using the Overall Fuel Hazard Assessment guide as a method for later evaluation 
to compare visual versus Fuels3D collected data. Trials with end users identified 
that infield scaling required improvements to enhance accuracy and user 
friendliness, and an automated approach to application of the scale during 
processing.    

Key milestones and highlights included: 
• Develop sampling protocol and image taking methods to support novice 

end users. 

• Field day with end-users to trial Fuels3D data collection methods and 
provide feedback of approach and suggestions for improvements. 

• Field data collection with end-users (to run simultaneously during field day 
trials) to investigate the repeatability or variability in measures that may 
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exist between different data collectors when using Fuels3D, and compare 
the accuracy of Fuels3D outputs and traditional visual assessments. 

• Python script to extract fuel hazard layers from point cloud information. 

• Ongoing evaluation of the accuracy of Fuels3D metrics against TLS data. 

• Testing of a new in-field targets and scaling method. 

• Extension and testing of Fuels3D methods into other landscapes identified 
by end-users as priority landscapes.  

• Development of a Fuels3D android app. 

• One poster [AFAC 2016]. 

• Two conferences and/or invited presentations [BNH CRC Research 
Advisory Forum 2016; GEOSAFE 2016]  

• Three peer-review papers published [2, 15, 30] 

2017 - 2018 

The Fuels3D mobile phone application for in field data collection was created 
for both Android and iOS operating systems, and instructional documentation 
supporting their use was generated. Further development around the in-field 
targets used to apply scale to scenes was trialled. End user trials were completed 
in South Australia, Victoria, and ACT, where users were provided with the Fuels3D 
app, in-field targets, and instructional material to facilitate data collection. 
Feedback on the data collection process and any issues were captured from 
end users.  

Key milestones and highlights included: 
• Fuels3D app adapted for iPhones and distributed for end-user field trials 

commence in Victoria, South Australia and ACT with new field in-field 
sampling targets trialled.   

• Ongoing evaluation of the accuracy of Fuels3D metrics against TLS data 
and destructive sampling validation. 

• One poster [AFAC 2017]. 

• One conferences and/or invited presentations [BNH CRC Research 
Advisory Forum 2017, AFAC 2017]  

• Three peer-review papers published [2, 15, 30] 

• Fuels3D wins the 2017 Victorian Spatial Industries Award for Environment 
and Sustainability.  

2018 - 2019 

End-user trials produced image datasets collected by end-users in their 
nominated priority areas. As part of this process automated processing of target 
identification, fuel hazard layer extraction, and quantification of fuel hazard 
metrics was completed using research-grade Python code. Following the trial, 
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image quality control was completed to assess suitability of smartphones and the 
new transect method for producing 3D point clouds of fuel hazard.  

Key milestones and highlights included: 
• End-user trials using Fuels3D iPhone and app delivered and completed 

across south-eastern Australia and new sampling transect method 
assessed to increase rate of in-field image capture of surface and near- 
surface fuels.  

• Ground-truthing and validation of 3D point clouds. 

• Ongoing evaluation of the accuracy of Fuels3D metrics against TLS data. 

• Determination of existing fuel hazard metrics and burn severity metrics 
used by fire and land managers that can be “measured” using image-
based techniques. 

• One poster [AFAC 2018]. 

• Five conferences and/or invited presentations [BNH CRC Research 
Advisory Forum 2018; AFAC 2018; BNH CRC Bushfire Mitigation Research 
Advisory Forum 2019; NSW FBAn Workshop 2018; AFAC Predictive Services 
Group Meeting 2019]  

• Three peer-review papers published [34, 35, 36] 

2019 - 2020 

Workshops with end users were completed to understand and document 
requirements of Fuels3D system between agencies. Redesign of the in-field 
target, initially planned for manufacture via 3D printing but halted due to COVID-
19, was completed to allow for DIY manufacture using low-cost materials. Test 
deployments completed for image upload portal in an AWS environment, and 
processing of datasets via local machines. 

Key milestones and highlights included: 
• AFAC and Predictive Services Group Workshop with end users to 

determine Fuels3D requirements. 

• Developent and manufacture of redesigned in-field target. 

• Web application build for data handling and notifications to system 
administrator within AWS environment.  

• Three presentations [Silvilaser 2019; BNH CRC Research Advisory Forum 
2019; BNH CRC Northern Australia Research Engagement Forum 2019; 
AFAC 2019]. 

• One peer-review paper published [3]. 

• The International Association of Wildland Fire (IAWF) awarded Sam Hillman 
IAWF 2020 scholarship toward his PhD with the Remote Sensing Centre at 
RMIT University.   
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2020 - 2021 

Additional field trials involving the use of the redesigned in-field target, and the 
newly deployed Fuels3D upload portal was completed by participating end 
users from Queensland, South Australia, Victoria, and ACT. Online surveys and 
interviews were completed to obtain feedback from end users regarding the 
collection of data via the updated approach, and the transfer and utility of 
datasets for processing via the upload portal. As per suggestions within the 
feedback, adjustments were made to the supporting material provided to end 
users, including the creation of two instructional videos as a visual guide to the 
processes. Handling and processing of data was successfully transitioned to AWS 
infrastructure providing a semi-automated workflow.   

Key milestones and highlights included: 
• Distribution of updated in-field targets, digital cameras, and instructional 

material to end users in Queensland, South Australia, Victoria and ACT, for 
trials of updated workflow.  

• Deployment of AWS hosted Fuels3D image upload portal.  Technical 
instructions for replication of AWS implementation prepared as a 
significant body of work (100 page + 50-page document).  

• Workshop with end user agencies from QFES, DEWNR, CFA, DEWLP, ACT 
Parks, presenting initial insights and delivering metrics from processed plots 
submitted during the 2019-2020 end user trials.  

• Migration of data processing from local RMIT equipment to AWS hosted 
infrastructure.  

• Collection of additional datasets from landscapes not captured or under-
represented in the end user trials.  

• Two peer-review papers published [33, 37]. 

• Graduation of PhD student Sam Hillman and awarded a postdoctoral 
Fulbright Future Scholarship (Funded by The Kinghorn Foundation). 
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UTILISATION AND IMPACT 

SUMMARY 

The Fuels3D approach for the assessment of surface and near-surface fuel 
hazard in the field was designed as a series of stages and built in a modular 
fashion to facilitate flexibility in the solution to accommodate different 
assessment requirements, improved techniques and algorithms, and/or 
alternative technologies.  Each stage is described below with the outputs listed 
and is followed by an evaluation of each based on feedback from end-users 
and lessons learnt by researchers.   
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SOLUTION DESCRIPTION AND OUTPUTS 

Data collection 

Stage 1: sampling and image-taking 
Stage 1 of the workflow involves the collection of data in the field by the user.  
Data collection consists of repeated imaging of nine sample locations in the 
field, each sample 1m in diameter, with a digital camera to create an 
overlapping, multi angle view of the sample area. Samples are consecutively 
photographed from multiple angles and heights in a circular manner to 
capture a 360° hemispherical view of the area and when aggregated are 
representative of a single plot of 10m diameter following the Overall Fuel 
Hazard Assessment Guide. Images with respective site metadata are then 
uploaded for processing through the Fuels3D online upload portal.  
Associated Outputs: 

• The following outputs are made available from within the Fuels3D web 
app (www.fuels3d.net). 

• Fuels3D Quick Guide Image Capture  

• Fuels3D Quick Guide Polytarget Assembly 

• Image capture instructional video:  

https://www.youtube.com/watch?v=SA8Pc9sIz9c 

 

 
Data Upload 

FIGURE 5. EXAMPLE IMAGE COLLECTED DURING FIELD SURVEY. IN-FIELD TARGET CENTERED IN FRAME. 

http://www.fuels3d.net/
https://www.youtube.com/watch?v=SA8Pc9sIz9c


FUELS3D – FINAL PROJECT REPORT | REPORT NO. 723.2022 

 

 31 

Stage 2: Data Upload 
The Fuels3D upload portal was created via a static website hosted in an AWS 
S3 bucket to enable user driven submission of collected datasets and 
metadata. Navigation to the Fuels3D website presents the user with a 
HTML/Javascript/Bootstrap form, enabling the registration and login to the 
Fuels3D system, and finally the upload of collected images. Prior to upload, the 
user is prompted to enter information describing the surveyed location, 
including time of data collection, location name and coordinates, and 
landscape description. Data entered in the form’s controls are used to create 
a JSON metadata file, also uploaded to the S3 bucket, which drives some 
functionality of the Fuels3D processing method. Successful upload of imagery 
triggers the subsequent ingestion of data and processing of the plot. Further 
details can be found in the document ‘Fuels3D Uploader Technical 
Overview.doc’. For more detailed specifications see the CloudFormation 
‘fuels3d-website-cf.template’ template.  
Associated Outputs: 

• Technical instructions, architecture, and templates for replicating and 
implementing the image-uploader within an AWS environment. 

• The following user outputs are made available from within the Fuels3D 
web app (www.fuels3d.net). 

• Fuels3D Quick Guide Image Upload  

• Image upload instructional video:  

https://www.youtube.com/watch?v=ibU4oPX1YLU 

 
FIGURE 6. FUELS3D UPLOAD PORTAL WITH PRE-SET FIELDS FOR METADATA CAPTURE. 

http://www.fuels3d.net/
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Point Cloud Creation 

Stage 3: Image matching and point cloud generation 
Stage 3 is the first stage of processing in the Fuels3D workflow and reconstructs 
the sample in 3D from the captured images.  Agisoft’s Metashape Pro is used 
to analyse the images and locate feature points appearing in multiple frames. 
The geometry of these points is then used to estimate the origin and orientation 
of the camera for each image, and generate a dense point cloud of the 
sample. Manual intervention by the user is required at this stage to digitise 
points on the in-field target, providing the scene with a coordinate system for 
scale.  
Associated Outputs: 

• Dense point cloud coordinated in local reference frame internal to 
workflow.  

Associated Fuels3D Python Modules: 

• meta_processing.py – import_and_align() 

• meta_processing.py – build_clouds() 

• For more details see ‘f3d_meta_user_guide.docx’ pages 2 - 3. 

 

Feature Classification 
The feature classification phase encompasses the processing and analysis of 
an output point cloud, to enable the classification and attribution of fuel layers. 
Stages 4 and 5 prepare the dataset for the final classification of features within 
stage 6. This phase is not dependent on the data collection and point cloud 

FIGURE 7. VIEW OF DENSE POINT CLOUD, WITH ASSOCIATED CAMERA GEOMETRY WITHIN METASHAPE PRO. 
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generation phases of the Fuels3D workflow, however, it does require a point 
cloud dataset to contain spectral information.  

Stage 4: 3D voxel space generation 
Stage 4 of the Fuels3D workflow is designed to ingest a point cloud product 
containing RGB spectral information and stratify the points within a 5 mm voxel 
space. This simplifies the dense point cloud, reducing computational demand 
in later processing.  
Associated Outputs: 

• Voxelised dense point cloud coordinated in local reference frame 
internal to workflow.  

Associated Fuels3D Python Modules and Functions: 

• segmentation.py – segment_main_process() 

• For more details see ‘f3d_meta_user_guide.docx’ pages 3 – 4. 
 

 

Stage 5: Segment generation 
Neighbouring voxels with similar spectral and textural characteristics are 
grouped, segmenting the voxel space. Segments typically reflect a portion of 
a feature within the scene and are used to train a random forest classification 
model.   

FIGURE 8. VOXELLISED DENSE POINT CLOUD IN POINT CLOUD PROCESSING SOFTWARE CLOUDCOMPARE. 
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Associated Outputs: 

• Segmented dense point cloud coordinated in local reference frame 
internal to workflow.  

Associated Fuels3D Python Modules and Functions: 

• segmentation.py – segment_main_process() 

• For more details see ‘f3d_meta_user_guide.docx’ pages 3 – 4. 
 

 

Stage 6: Fuel type classification 
Stage 6 involves the classification of each segment defined in stage four into 
representative classes such as leaf litter, grasses, and bare earth, using a 
random forest classification model. Classified segments are allocated to 
surface or near surface fuels based on their class, providing a dense point 
cloud with class attributes.  

Initial training of the classification model requires the manual annotation of 
segments from exemplar environments as training data. Re-training of the 
random forest model is recommended where there is significant variation in 
the visual appearance of fuels between locations. 

FIGURE 9. VOXELLISED DENSE POINT CLOUD FOLLOWING SEGMENTATION IN POINT CLOUD PROCESSING SOFTWARE CLOUDCOMPARE. SEGMENT 
COLOURS USED FOR VISUALISATION PURPOSES ONLY. 
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Associated Outputs: 

• Segmented dense point cloud with associated class attributes internal 
to workflow.   

Associated Fuels3D Python Modules and Functions: 

• classification.py – create_feature_table_from_points() 

• random_forest.py – get_training_labels() 

• random_forest.py – get_classifier() 

• random_forest.py – classify_clouds() 

• For more details see ‘f3d_meta_user_guide.docx’ pages 4 – 6. 
 

 

Hazard Metric Extraction and Quantification. 

Stage 7: Fuel hazard metric extraction 
The final stage of processing involves the analysis of a classified point cloud for 
the quantification of fuel hazard metrics. Classified segments are split into 
surface and near surface fuel layers. Currently, the Fuels3D workflow 
determines the values of two hazard metrics for each fuel layer: fuel height, 
and percentage cover; by calculating the volume and surface area of 
corresponding voxels. Calculation of additional or alternative metrics is 
achieved via modification to the processing code. Fuel hazard metrics are 
output and sent to the user via an automated email service. 

FIGURE 10. CLASSIFIED DENSE POINT CLOUD. COLOURS USED FOR VISUALISATION PURPOSES ONLY.  
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Associated Outputs: 

• Spreadsheet of fuel hazard metric values in .csv format, available as a 
data product for end users. 

Associated Fuels3D Python Modules and Functions: 

• calc_metrics.py – calc_metrics() 

• For more details see ‘f3d_meta_user_guide.docx’ pages 6 - 7 

 

 

FIGURE 11. EXAMPLE FUELS3D OUTPUT CONTAINING FUEL HEIGHT (MM) AND FUEL COVER (%) FOR SURFACE AND NEAR SURFACE FUELS. 
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Evaluation of Utilisation Potential 
Comments, suggestions, and general feedback was collected from volunteers 
representing four government agencies participating in the 2020 Fuels3D end 
user trials. Leading up to this trial, a number of other experimental trials were 
conducted with end-users to investigate proof-of-concept, trialling of smart 
phones and different sampling methods.  It should be noted that issues or 
improvements in the system occurred throughout the trial as bugs or points of 
clarification were raised by end-users.  Identified issues were resolved as part of 
ongoing development and refinement. Upon completion of the completed trial 
additional feedback of the overall process was sought. 
Feedback was completed via a combination of face-to-face interviews, phone 
conversations, online surveys, and group workshops. Participants were 
encouraged to provide any thoughts they considered relevant, in addition to 
answering more specific questions regarding aspects such as:  

• The ease of understanding what was required at the various workflow 
stages.  

• The relevance and effectiveness of instructional material.  

• The operational suitability of Fuels3D.  

Extent of use 
The development of a final Fuels3D workflow for utilisation trials included an 
updated data collection strategy, Fuels3D image upload portal, and semi-
automated processing via AWS infrastructure during 2020 and 2021, with 
participating end users from Queensland Fire and Emergency Services, 
Department for Environment and Water SA, Country Fire Authority Vic, and ACT 
Parks and Conservation.  

Data was captured and uploaded using the AWS Fuels3D uploader app.  
Submitted datasets were categorised based on their corresponding fuel type as 
described in the AFAC Bushfire Classification Overview. Datasets reflecting all top 
tier codes (Forest, Woodland, Plantation, Shrubland, Hummock Grassland, and 
Grassland) were collected throughout the trial both by submission from 
participating end users, and by RMIT researchers.  
 

 

End-user organisation End-user representative Extent of engagement 
Country Fire Authority Victoria (CFA)  
 

Thomas Ellingworth 
Danielle Wright 
Thomas Duff 

Data collection and feedback 
submission. 

Queensland Fire and Emergency 
Services (QFES)  
 

Francis Hines Data collection and feedback 
submission. 

Department or Environment and 
Water South Australia (DEWNR) 

Simeon Telfer 
Ian Colquhoun 
Alex Otterbach 

Data collection and feedback 
submission. 

ACT Parks and Conservation Service  
 

Adam Leavesley 
Bethany Dunne 

Data collection and feedback 
submission. 

TABLE 1. ORGANISATIONS AND REPRESENTATIVES PARTICIPATING IN THE 2020 – 2021 FUELS3D END USER TRIALS. 
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Table 2 reports the success rate of converting different fuel types into quantitative 
fuel hazard metrics.  Conversion rates were reported at the sample scale, and at 
the plot scale (ie up to 9 samples collected for a plot and requiring more than 
60% of the samples to be successfully processed to equate to a successful plot).   
Open grassland, hummock grassland, low open shrubland, low woodland, low 
open forest, and conifer plantation fuel types all had sample conversion rates 
above 65%. In contrast, grassland, closed grassland, low shrubland, low closed 
shrubland, tall open shrubland, tall shrubland, tall closed shrubland, low closed 
forest, open forest, and tall closed forest fuel types all had sample conversion 
rates below 65%, ranging from 0% - 46%.  

Manual interrogation of all datasets was completed in order to identify factors 
which may be influencing conversion rates. This identified that failures in the 
processing of samples was occurring only during the image matching and point 
cloud generation phase within Agisoft Metashape, and commonly as a result of 
factors relating either to the collection of data in the field by the user, 
environmental conditions, and/or the physical characteristics of the features 
within the landscape itself. 

Lessons learned from the utilisation trial and identified limitations include: 

• Poor image capture by end users. 

o Image-based point cloud reconstruction via SfM requires 
significant overlap between images to ensure accurate estimation 
of object geometry. Factors during image capture such as poor 
camera focus and poor framing of the sample quickly resulted in 

AFAC Fuel Type Total Number 
of Samples 

Number of Successfully 
Processed Samples 

  

Sample 
Conversion % 

Total 
Number 
of Plots 

Number of 
Successfully 
Processed 

Plots 

Plot Conversion 
%  

Open Grassland 9 6 67 1 1 100 

Grassland 41 9 22 6 0 0 

Closed Grassland 81 13 16 9 0 0 

Hummock Grassland 12 9 75 2 1 50 

Low Open Shrubland 12 11 92 2 2 100 

Low Shrubland 45 19 42 5 1 20 

Low Closed Shrubland 5 0 0 1 0 0 

Tall Open Shrubland 14 5 36 2 1 50 

Tall Shrubland 39 18 46 5 2 40 

Tall Closed Shrubland 9 0 0 1 0 0 

Low Woodland 80 68 85 10 9 90 

Low Open Forest 27 24 89 3 3 100 

Low Closed Forest 9 1 11 1 0 0 

Open Forest 27 11 41 3 1 33 

Tall Closed Forest 9 0 0 1 0 0 

Conifer Plantation 90 70 78 10 7 70 

TABLE 2. STATISTICS OUTLINING THE SUCCESSFUL EXTRACTION OF FUEL HAZARD METRICS FROM PLOTS SUBMITTED BY END USERS DURING THE 2020 - 2021 END USER 
TRIALS. RESULTS ARE GROUPED BY GROWTH FORM AS DEFINED IN THE AFAC BUSHFIRE CLASSIFICATION OVERVIEW. 



FUELS3D – FINAL PROJECT REPORT | REPORT NO. 723.2022 

 

 39 

images becoming unusable during processing, leaving significant 
gaps in viewpoints. Out of focus images do not provide the detail 
required during processing, and images that are not appropriately 
framed often do not capture the entire sample area, which should 
be fully visible in the foreground of each photo.  This can be 
mitigated by users taking greater care when image taking, noting 
some users commented that they did not read / view instructional 
material. 

• Sample illumination. 

o Between photos, extreme changes in dynamic range of objects 
resulting from the presence and/or movement of shadowing make 
the identification of persistent features difficult during processing. 
The spectral signature of candidate features is one of many 
characteristics that are utilised to determine matching pairs 
between images. Extreme changes in the feature’s appearance 
confounds this approach. Inconsistent shadowing is most extreme 
under conditions of direct sunlight, and is likely to occur as a result 
of factors such as canopy movement under wind, or by the user 
when standing between the sun and the sample.  This can be 
mitigated by specifying particularly favourable conditions for 
capturing images for structure from motion. Recommendation: 
images are collected early or late in the day - after sunrise / just 
before sunset (similar to the LAI2200 plant canopy analyser that 
collects LAI information). 

• Sample obscuration.  

o Data collected from locations with a high vegetation density were 
complicated by the resulting obscuration of features within the 
sample, limiting the capture of information in the centre of the 
sample. Obscuration reduces the visibility of candidate matching 
features between images, in turn reducing their potential to be 
identified. High vegetation density was also identified as a primary 
factor in poorly focused images, with vegetation outside of the 
sample area drawing the attention of the cameras auto-focus 
system.  This is a limitation of hand-held cameras and image-based 
point clouds. 

• Structural characteristics. 

o Objects such as grasses presented such fine features that they 
could not be accurately resolved during reconstruction. Prone to 
movement, even where features could be identified between 
viewpoints, changes in their location / orientation, due to wind for 
example, increased margin of error when estimating camera 
geometry and orientation, reducing the accuracy of the 
reconstruction.  This is a limitation of image-based point clouds. 
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Feedback and Potential of Methodology 
Primary benefits to the Fuels3D method for data collection revolved around the 
consistency of data generated, and the potential for increased understanding 
of site fuel loads and structure/arrangement. In addition, the ability to capture 
and store a larger quantity of quantitative data for use in future applications.   

Three primary drawbacks to the Fuels3D methodology were noted 
by participants. Firstly, method complexity and the amount of time required to 
capture a plot was too great in comparison to that of existing visual 
methods. Users reported that capture of a single plot took on average 60 minutes 
to capture the surface and near-surface layers, compared to an average of 10 
minutes when making a visual assessment (Figure 12).  Secondly, the plot was at 
times not representative of the surrounding environment due to its limitation in 
size (although it is noted that plot size used in this trial follows that of current visual 
assessment guidelines but is easily changed to be samples that are placed along 
a transect of any length). Finally, the indicative low conversion rates observed in 
certain fuel types coupled with the time taken for capture reduces the 
operational applicability where quick assessments are required.  It was noted 
however that the solution offers an approach where data is required for 
calibration and validation with other data sources.    

 

 

 

 

FIGURE 12. CAPTURE AND PROCESSING TIME COMPARISONS BETWEEN FIELD SURVEYS EMPLOYING TLS AND SFM APPROACHES IN PASTURE, 
GRASSY DRY FOREST, AND FLOODPLAIN RIPARIAN WOODLAND SITES. 
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Feedback on Instructional Material 
Several suggestions were provided to improve the image capture quick guide, 
primarily requesting an increase in the clarity of methodological instructions to 
boost user confidence during image capture. Responders indicated the 
required layout of samples within each plot, in addition to the location from 
which each image should be captured from, was well understood however 
could have been aided through the inclusion of additional diagrams or example 
images. Image framing and orientation was not well understood however, with 
responders again noting additional diagrams and/or example images would aid 
understanding. With the feedback in mind, an instructional video was created 
and distributed as a visual guide to supplement the written material (Quick 
Guides). The video received positive response from users, with comments 
primarily noting better understanding of framing and orientation of images 
during capture, or more complex steps such as overheard image capture.    

Feedback and Potential of Equipment 
Short camera battery life was identified as a cause or potential cause of issue 
during data collection. In some instances, this resulted in an incomplete capture 
of a plot, with fewer than the required 9 samples collected. In particular, the 
inability of most users to charge camera batteries in field was flagged as limiting, 
as data collection of multiple plots are often arranged for a single day in the 
field.  

Feedback and Potential of Fuels3D Portal GUI 
Two points of feedback were provided regarding the user experience uploading 
imagery. Firstly, the time required to upload a plot was longer than expected, 
and at times needed to be left to complete overnight. Secondly, in the event 
that an upload was interrupted, previous progress was lost requiring the process 
to be restarted.  

Utilisation potential impact 
Utilisation potential impact has been captured as a SWOT analysis to summarise 
both the advantages and disadvantages of the Fuels3D solution.   
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Phase Stage Strengths Weaknesses Opportunities 

Data 
Collection. 

 

Stage 1: Data 
collection.  

 

Low economic investment 
for equipment.  

Portable. 

Accumulation of site 
imagery over time and a 
permanent snapshot in time.  

Image data includes 
spectral information without 
the need for co-registration 
of multiple datasets.  

Repeatable. 

Data collection of one plot 
took users 1 hour on average, 
to capture surface and near 
surface layers compared to 
an average of 10 minutes for 
an entire visual assessment.   

Successful processing of 
image to point clouds 
significantly influenced by 
errors in data collection such 
as poor focus/image framing.  

Difficult to collect data in 
densely vegetated 
environments (obstructed 
movement). 

Potential for disturbance of 
the surrounding landscape 
during data collection.  

 

Data collection using 
alternative camera 
sensors such as new 
MLS options which 
capture colorised 
point clouds. 

Data collection via 
active sensors.   As this 
stage of the workflow 
has been developed 
with the creation of 
image-based point 
clouds in mind, This 
processing step may 
be switched out if 
other point cloud 
generation methods 
are implemented. 

 

Data Upload Stage 2: Data 
Upload.  

Provides a user driven 
approach to the upload of 
datasets.  

Ease of use. 

Capture of metadata 
provides consistent format.  

Size of datasets can result in 
slow upload depending on 
connection speed.  

Requires user to have stable 
internet access.  

Metadata provided 
by users could be 
used to adjust 
processing, such as 
using specific 
classification models 
for different 
landscapes.   

Point Cloud 
Generation.  

 

Stage 3: 
Image 
matching, 
scaling, and 
point cloud 
generation.  

 

Agisoft Metashape 
supporting Python scripting.  

Fully supported commercial 
software (technical issues). 

 

Limited flexibility of proprietry 
software and inability to 
access information regarding 
processing algorithms used.  

Use of Agisoft Metashape 
creates a break in the 
automation of the Fuels3 
workflow, requiring manual 
user intervention to provide 
scale.   

Agisoft Metashape created 
to map built environments 
and may not be optimised to 
natural environments.   

Successful point cloud 
generation strongly 
influenced by image 
quality/characteristics such as 
focus and image framing.  

Successful point cluod 
generation strongly 
influenced by obscuration of 
sample centre in densely 
vegetated environments.   

 

Assessment of 
alternative software 
solutions for image-
based point cloud 
generation.  

Can be replaced by 
alternative methods 
of generating point 
clouds (active 
sensors/depth 
cameras) removing 
need for this step.   

(Potential) for 
automated 
registration of in-field 
target if mm accuracy 
can be attained.   

Feature 
Classification.  

 

Stage 4: 3D 
voxel space 
generation. 

 

Capable of ingesting any 
point cloud dataset and is 
not dependent on previous 
stages or data capture 
technologies.  

 

  

Stage 5: 
Segment 
generation.  

 

 Processing requires substantial 
CPU and GPU resources,, 
however, no AWS instances 
are currently able to provide 
both.   

Optimisation of 
Python code to 
reduce processing 
times and to better 
utilise AWS instance 
specifications further 
reducing processing 
times and costs..  
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Stage 6: Fuel 
type 
classification.  

 

Machine learning training 
samples can be tailored for 
specific landscapes and 
features of interest to 
increase classification 
accuracy.  

Trained models can be 
shared between users.  

Requires collection of spectral 
information to drive 
classification.  

Classification accuracy 
influenced by variable 
lighting effects such as 
shadowing.   

 

 

Hazard Metric 
Extraction and 
Quantification. 

Stage 7: Fuel 
hazard 
metric 
extraction. 

Potential to calculate 
alternative metrics where 
required.  

Ability to extract alternative 
hazard metrics from legacy 
datasets accumulated over 
time.  

 

Accuracy of metrics 
dependent on the 
performance of segment 
classification.  

Extration of data such 
as live/dead ratio 
possible using spectral 
information.  

 

TABLE 3. SUMMARY OF THE STRENGTHS, WEAKNESSES, AND OPPORTUNITIES RELATING TO EACH STAGE OF THE FUELS3D WORKFLOW. 

Utilisation and impact evidence 
The development of Fuels3D moved from concept to end-user trials with the first 
end-user field day workshop held in July 2016. Participants included staff from SA 
DEWNR, ACT Parks and Wildlife, VIC DELWP, VIC CFA, Melbourne Water and Parks 
Victoria. The field day aimed to introduce end-users to the Fuels3D collection 
protocol and to assess its ease of use and repeatability between data collectors 
in comparison to traditional visual assessment techniques. Participants were 
asked to undertake a visual assessment as well as use the Fuels3D app. At the 
completion of the day, the data collection participants were asked to complete 
a survey evaluating the Fuels3D data collection workflow providing an early 
insight into the potential for uptake by end-users.    

The survey indicated that the participants found the Fuels3D protocol easy to 
follow. This was further indicated by the collected data of which more than 90% 
of the image sets were able to be used in the Fuels3D processing method for the 
study environment. From the results of this study several areas of improvement in 
the data collection and processing methods were identified and incorporated 
into the ongoing development of the Fuels3D solution.  

Since the first workshop, various in-field scaling methods have been assessed for 
accuracy, reliability and user friendliness. Initially the team developed a 
smartphone Fuels3D app to provide a complete in-field mapping approach for 
surface and near-surface fuels. The Fuels3D app was made available for both 
Android and iPhone devices and extensive in-field trials were conducted with 
end-users from Victorian CFA, Victorian Department of Environment, Land, Water 
and Planning, South Australian Department for Environment and Water, and ACT 
Parks and Conservation. End users are provided with access to the Fuels3D app 
and provided with portable vertical targets necessary for image scaling. Quick 
Guide documents have been provided to instruct end-users through the solution, 
and an open spreadsheet for end-user feedback and issue reporting is also 
given.  

This second set of trials demonstrated a lack of consistency in reconstructing 
image-based point clouds using smartphones. This was due at least in part to the 
new generation smartphones moving towards increasing the number of camera 
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sensors rather than increasing camera sensor spatial resolution.  As such, a move 
was made to replace phone cameras with off-the-shelf digital cameras.  

Ongoing research investigations into improving image-matching continued to 
run in parallel to the development of the other workflow components. A modular 
workflow allowed for elements to be “switched out” as new and improved 
solutions would come to hand.  Whilst the Fuels3D workflow has been developed 
with the creation of image-based point clouds in mind, it is possible to replace 
this step with other point cloud generation technologies and methods (TLS and 
MLS LiDAR), effectively being ingested into stage 4 of the workflow. At the same 
time, samples across different fuel types were captured for assessment of utility. 
Table 2 in this document reports the success rate of converting different fuel types 
into quantitative fuel hazard metrics.   

Utilisation and impact evidence of the approach has been communicated 
throughout the life of the project via: 

• BNH CRC Research Advisory Forums (annually) 

• BNH CRC reports (e.g. Wallace L, Reinke K, Jones S. Emerging technologies 
for estimating fuel hazard. Melbourne: Bushfire and Natural Hazards CRC. 
2017.) 

• AFAC conferences (e.g. Wallace, L, Reinke, K., Jones, S. Hillman, 
Leavesley, A., Telfer, S., Bessel, R. and Thomas, I Experiences in the in-field 
utilisation of Fuels3D. AFAC, September 5-8, 2018, Perth, Australia. 

• International Fire Behaviour and Fuels Conference (e.g. Wallace, L., Hally, 
B., Reinke, J.K., Jones, D.S. and Hillman, S., 2016, April. Leveraging smart 
phone technology for assessing fuel hazard in fire prone landscapes. 
In Proceedings of the 5th International Fire Behaviour and Fuels 
Conference, Melbourne, Australia (pp. 11-15).) 

• Peer-review publications (e.g. Wallace L, Hally B, Hillman S, Jones S, Reinke 
K. Terrestrial Image-Based Point Clouds for Mapping Near-Ground 
Vegetation Structure: Potential and Limitations. Fire. 2020; 3(4): p.59.) 
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CONCLUSION 
This report summarises the inception, design, and development of the Fuels3D 
project. This work considers the lack of repeatability and reliability with current 
field fuel hazard assessments and looks to opportunities in photogrammetry and 
computer vision to create an affordable yet accurate alternative and package 
this in an end-to-end workflow and scaleable solution. A tool chain and suite of 
computer vision and photogrammetric algorithms that use images captured in 
the field to produce 3D point clouds from which fuel hazard metrics are 
calculated. The developed technique is adaptive to 3D point clouds captured 
from other terrestrial technologies and can allow for changes in data collection 
technologies. 

Due to time constraints and issues revolving around COVID and associated 
impacts, the utilisation model saw development and utilisation conducted in 
parallel rather than sequentially.  During the project, adaptions were made to 
the site capture procedure to work towards the reliability of site reconstruction 
and accuracy of fuel metrics extracted.  For the majority of 2020 and 2021, a 
comprehensive evaluation of fuel types that were a priority or a landscape of 
interest to end-users was conducted.  Under-represented fuel types were also 
collected by researchers to provide a clear and comprehensive picture of the 
performance of the solution.   

Factors such as poor image capture, and inconsistent sample illumination can 
be resolved through additional information and direction within the instructional 
materials guiding image capture, such as specifications to appropriate data 
capture times throughout the day, or the use of manual camera controls. 
Evolution of instructional materials throughout the development of Fuels3D has 
proven effective in mitigating similar limitations by increasing understanding of 
end users to the problem. For other factors such as fuel obscuration and fine 
features such as those found in grasslands the solution is compromised and 
alternative but significantly more costly technologies will need to fill in these gaps.   
The time taken to capture a plot (using a nine-sample method) was considered 
too time consuming an investment to warrant capture of the surface and near-
surface layers only.  This was identified by all end-users as a distinct barrier to 
operational uptake.   
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NEXT STEPS 

Evaluation of the Fuels3D workflow has highlighted several limitations and 
opportunities for further development.  It also emphasised the need for 
quantitative measures of fuel to be able to be collected operationally, and 
across the landscape for all fuel layers.    

Structure from Motion as the primary method of 3D point generation for Fuels3D 
image reconstruction is a stress-point in the solution.  Around half of the sample 
landscapes were reconstructed successfully and a number of others could be 
mitigated by for example increased training and user care in acquiring images. 
Other issues such as obscuration or very fine and complex fuel features require 
exploration of alternative software packages and/or point cloud capture 
technologies. Investigation into alternative software packages or open-source 
offerings of image-based point cloud reconstructions tailored for vegetation may 
enhance the low-cost point of the solution to proposed here.  From a technology 
perspective more expensive LiDAR-derived point clouds (incl. MLS) containing 
spectral information may prove effective in circumventing some of the shortfalls 
of image-based only solutions whilst still retaining the benefits associated with 
having spectral information for fuel attribution.   However, these technologies 
come at a significant jump in price point.   

Another conceptual challenge remaining is the identification of a consistent 
definition and decision tree to identify the different vertical fuel layers across 
landscapes and jurisdictions.    These are needed to consistently program and 
compute hazard metrics from 3D point clouds.  The options range from the simple 
(using fixed height thresholds) through to the more complex such as 
implemented here using machine-learning approaches or through 3D network 
analysis based on vertical and horizontal connectivity constraints.  

Decreases to the total processing times of datasets is recommended to improve 
the viability of the Fuels3D approach at larger scales. End to end processing of 
imagery from the field to the quantification of fuel hazard metrics also demands 
substantial CPU and GPU processing performance. Currently, no AWS computing 
instances offer hardware that can support both, with individual instances geared 
towards one or the other. As such, further development of the Fuels3D Python 
code to support parallel processing across multiple instances could reduce 
processing times dramatically. In addition, optimisation of the code to support 
multi-threaded processing and faster Python libraries is recommended.   
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