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Abstract	

Wildfires	affect	ecological	processes,	threaten	human	lives	and	cause	economic	losses.	

Understanding	of	fire	patterns	is	required	to	better	support	the	planning	of	sustainable	

fire	management	 and	 risk	 reduction	 activities.	 Fire	 occurrence	 and	 fire	 size	 are	 two	

essential	 fire	 pattern	 components	 that	 describe	 the	 distribution	 of	 fires	 and	 the	

impacts	 of	 fires	 on	 landscapes	 and	 ecosystems.	 They	 vary	 substantially	 within	 and	

between	regions	due	to	variation	in	weather,	fuel,	topography	and	ignition	sources.	In	

Australia,	 understanding	of	 fire	occurrence	patterns	 in	 the	 south-eastern	part	of	 the	

continent	 is	 important	 since	 fires	 can	 cause	massive	 life	 and	 property	 losses	 in	 this	

densely	populated	area.	Knowledge	on	 the	occurrence	and	size	of	 fires	 in	 the	 inland	

semi-arid	 riverine	 area	 of	 the	 south-eastern	 Australia	 is	 also	 required	 because	 fires	

have	 distinctive	 impacts	 on	 this	 particular	 environment.	 The	 main	 purpose	 of	 this	

thesis	 is	 to	explore	 fire	patterns	and	their	 regulating	 factors	 in	 the	above-mentioned	

two	 landscapes.	 Insights	 obtained	 from	 this	 study	 are	 expected	 to	 support	 strategic	

and	 tactical	 levels	 of	 decision-making	 in	 terms	 of	 fire	 management	 in	 the	 south-

eastern	Australia.	

This	thesis	investigated	the	relationships	between	fire	patterns	and	their	determinants	

using	Generalised	 Linear	Models	 and	Generalised	Additive	Models.	 Remotely	 sensed	

and	administrative	records	have	been	used	as	sources	of	fire	observations.	The	results	

of	 the	 broad-scale	 fire	 activity	 analysis	 reveal	 that	 in	 New	 South	 Wales	 (NSW),	

Australian	Capital	Territory	(ACT)	and	Victoria	(VIC),	wildfires	are	more	likely	to	occur	

in	mountainous	areas,	forests,	savannas,	and	in	areas	with	high	Normalized	Difference	

Vegetation	Index	(NDVI)	and	near	human	infrastructures,	while	they	are	 less	 likely	to	

occur	 on	 grasslands	 and	 shrublands.	 Environmental	 variables	 are	 strong	 individual	

predictors	 while	 anthropogenic	 variables	 contribute	 more	 to	 the	 final	 model.	 The	

ecoregion-based	 fire	 ignition	 analysis	 suggests	 that	 the	 fire-ignition	drivers	 and	 their	

effects	 vary	 across	 regions	 of	 NSW	 and	 ACT.	 Findings	 throughout	 this	 study	 include	
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that	spatial	effects	are	key	regulators	of	fire	 ignition	 in	all	 the	ecoregions,	vegetation	

factors	 drive	 fire	 ignition	 in	 most	 of	 the	 ecoregions,	 climate	 gradients	 affect	 fire	

ignition	 in	ecoregions	with	relatively	broad	areas,	and	anthropogenic	factors	are	fire-

ignition	regulators	in	the	most	populated	and	two	sparsely	populated	ecoregions.	Fires	

tend	 to	 start	 from	 areas	 with	 low	 annual	 precipitation	 and	 high	 mean	 January	

maximum	or	July	minimum	temperature.	They	are	less	likely	to	ignite	from	rainforests	

or	 wet	 sclerophyll	 forests	 than	 in	 dry	 sclerophyll	 forests.	 There	 is	 a	 non-linear	

relationship	between	NDVI	and	the	ignition	probability,	with	small	to	medium	levels	of	

NDVI	 showing	a	positive	effect	on	 the	chance	of	a	 fire	getting	 started.	Fires	are	also	

likely	 to	occur	near	human	 facilities	and	at	non-protected	areas	 in	 some	ecoregions,	

but	away	from	roads	in	one	ecoregion.		

The	 study	on	 the	 ignition	of	 fires	 on	 the	NSW	side	of	 the	Riverina	bioregion	 reveals	

that	 the	 largest	 number	 of	 fires	 occur	 in	 summer,	 with	 human-caused	 fires	 mostly	

occur	 in	 spring	 and	 summer	 while	 natural	 fires	 are	 clustered	 in	 summer.	 Forested	

wetlands	 and	 dry	 lands	 experience	 summer	 and	 spring-summer	 fire	 regime,	

respectively.	 Fire	 probabilities	 are	 higher	 under	 severe	weather	 conditions,	 in	 areas	

with	higher	annual	rainfall,	 in	forested	wetlands	than	in	dry	lands,	as	well	as	 in	areas	

with	 intermediate	 inundation	 frequencies.	 The	 ignition	 of	 human-caused	 fires	 is	

strongly	 associated	with	 the	 human	 accessibility	 to	 the	 natural	 landscape.	Weather,	

fuel	 and	 ignition	 sources	 are	 comparably	 important	 in	 regulating	 the	 ignition	 of	

human-caused	fires,	while	weather	contributes	more	than	fuel	in	driving	the	ignition	of	

the	natural	fires.	In	terms	of	fire	size,	higher	cumulative	rainfall	conditions	of	the	6th,	

13-14th	and	17-18th	months	before	 fires	are	associated	with	 larger	size	of	Fires	 that	

burned	 Entirely	 in	 forested	Wetlands	 (FEW),	 while	 the	 cumulative	 rainfall	 after	 the	

18th	month	before	fires	positively	affect	the	size	of	 fires	when	Fires	burned	Partly	 in	

forested	Wetlands	(FPW)	and	Fires	that	did	Not	burn	in	forested	Wetlands	(FNW)	are	

incorporated.	A	larger	fire	extent	is	also	driven	by	severer	ambient	weather	conditions,	

with	 fire	 danger	 index	more	 powerful	 in	 explaining	 the	 size	 of	 FEW,	while	 the	 daily	

temperature	becomes	more	effective	when	FPW	and	FNW	are	gradually	incorporated.
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Chapter	1 Introduction	

1.1 Background	

Wildfires	have	occurred	across	the	globe,	especially	during	the	past	decade	(Bradstock	

et	 al.	 2012).	 Wildfires	 affect	 ecological	 processes	 such	 as	 vegetation	 and	 animal	

community	 structures,	 biogeochemical	 cycles	 and	 the	 climate	 (Bowman	 et	 al.	 2009),	

threaten	 human	 lives	 and	 cause	 substantial	 economic	 loss	 (Gill	 2005;	 Taylor	 et	 al.	

2013).	 Understanding	 wildfire	 patterns	 is	 essential	 for	 planning	 risk	 reduction	 and	

ecologically	 friendly	 fire	 management.	 Fire	 occurrence	 and	 size	 have	 been	 used	 to	

describe	fire	patterns.	Fire	occurrence	depicts	the	ignition	or	activity	of	fires	within	a	

particular	spatial	and	temporal	unit	(Romme	1980;	Finney	2005;	Plucinski	2011)	and	is	

a	key	concept	in	understanding	the	distribution	of	fires.	Fire	size	describes	the	pattern	

and	extent	of	a	fire	that	has	spread	within	a	landscape	(Ryan	2002)	and	is	an	essential	

component	of	fire	regime	that	determines	the	impact	of	fires	on	landscape	dynamics	

and	 ecosystem	 processes	 (Turner	 et	 al.	 1997;	 Turner	 2010).	 Both	 measures	 are	

important	 for	 fire	management	planning	and	risk	reduction	activities	 (Chuvieco	et	al.	

2010;	Price	and	Bradstock	2011;	Fang	et	al.	2015).		

Australia	 is	 recognised	 as	 one	 of	 the	most	 flammable	 continents	 in	 the	world.	 Fires	

that	occur	in	the	south-eastern	part	of	Australia	are	major	concerns	because	they	can	

result	in	massive	life	and	property	losses	in	this	densely	populated	area	(Russell-Smith	

et	 al.	 2007).	 In	 particular,	 New	 South	Wales	 (NSW),	 the	 Australian	 Capital	 Territory	

(ACT)	and	Victoria	(VIC)	have	been	identified	as	three	of	the	most	fire-prone	regions	in	

Australia	(e.g.	Collins	et	al.	2015).	Therefore,	broad-scale	fire	patterns	that	cover	these	

three	 regions	 are	 worthy	 of	 exploration.	 In	 the	 semi-arid	 riverine	 plain	 of	 south-

eastern	Australia,	fires	are	known	to	be	beneficial	 for	some	native	species	(Gill	1975;	

Bond	 and	 Keeley	 2005),	 however	 they	 also	 threaten	 fire-sensitive	 species	 such	 as	

Eucalyptus	 camaldulensis	 (river	 red	 gum),	 which	 is	 an	 iconic	 vegetation	 species	 in	

inland	riverine	areas	 (Dexter	1978,	as	cited	 in	CSIRO	2004).	Fires	 in	this	environment	
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may	 also	 lead	 to	 soil	 degradation,	 bank	 erosion,	 channel	migration,	 increased	weed	

invasion	and	the	loss	of	timber	(Allen	2000;	Owens	et	al.	2013).	The	impact	of	wildfires	

on	 the	wetland	 environment	 and	 local	 communities	may	 be	 exacerbated	 by	 climate	

change	 and	 urban	 expansion	 (Schneider	 and	 Sutherland	 undated).	 Therefore,	 the	

regional	scale	fire	pattern	in	the	semi-arid	riverine	environment	of	Australia	warrants	

special	attention.		

Wildfire	patterns	are	generally	controlled	by	top-down	and	bottom-up	processes	that	

reflect	 variations	 in	 weather,	 fuel,	 topography	 and	 ignition	 sources	 across	 multiple	

scales	(Moritz	et	al.	2005;	Gill	and	Taylor	2009;	Parisien	and	Moritz	2009;	Parks	et	al.	

2012).	Weather-related	factors	regulate	wildfire	patterns	by	affecting	short-term	and	

long-term	 fuel	 moisture	 and	 availability	 (Sullivan	 et	 al.	 2012).	 These	 factors	 include	

ambient	and	antecedent	weather/climatic	conditions	that	affect	the	distribution	of	fire	

occurrence	and	the	overall	area	burned	(Bradstock	2010;	Turner	et	al.	2011;	Cary	et	al.	

2012);	 the	area	burned	 is	positively	correlated	with	the	size	of	an	 individual	 fire	 (Gill	

and	Allan	2008).	Ambient	weather	conditions	such	as	temperature,	relative	humidity,	

precipitation	 and	 derived	 indices	 such	 as	 the	 moisture	 content	 of	 fuels,	 drought	

conditions	 and	 level	 of	 fire	 danger	 regulate	 the	 chance	 of	 a	 fire	 by	 providing	 the	

moisture	condition	suitable	for	a	fire	to	ignite	(Chou	1992;	Bradstock	et	al.	2009;	Vilar	

et	al.	 2010a;	 Taylor	 et	al.	 2013).	 They	also	affect	 fire	 activity	 and	 size	by	 influencing	

spread	 rate,	 fire	 intensity	 and	 the	 probability	 of	 containment	 (McArthur	 1967;	

McCarthy	and	Tolhurst	1998;	Catchpole	2002).	Antecedent	climatic	conditions	such	as	

antecedent	rainfall	and	temperature,	as	well	as	the	seasonal	rainfall,	affect	the	rate	of	

fuel	 accumulation	 by	 influencing	 biomass	 growth	 and	 litter	 fall,	 and	 consequently	

affect	the	fire	pattern	(e.g.	Veblen	et	al.	2000;	Heinl	et	al.	2006;	Orians	and	Milewski	

2007;	Littell	et	al.	2009;	Price	and	Bradstock	2011;	Turner	et	al.	2011).	 In	addition	to	

weather/climate	factors,	fire	patterns	are	also	regulated	by	the	type	of	fuel/vegetation	

present	 (Gumming	 2001;	Moreira	 et	 al.	 2009;	Oliveira	 et	 al.	 2014),	 the	 proximity	 to	

water	(Penman	et	al.	2013),	as	well	as	the	frequency	of	inundation	(Pettit	and	Naiman	

2007;	Douglas	 et	al.	2016)	because	of	 their	 connections	with	 the	 load,	moisture	and	
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flammability	of	fuels.	Vegetation	indices	have	also	been	used	as	indicators	of	biomass	

or	fuel	load	in	the	practice	of	fire	danger	prediction	(Russell-Smith	et	al.	2007;	Turner	

et	al.	2011).	Topography	influences	fire	patterns	by	affecting	general	weather	patterns,	

fuel	availability	and	conditions,	creating	microclimates,	and	affecting	the	probability	of	

lightning	 (McRae	 1992;	 Pyne	 et	 al.	 1996;	 Heyerdahl	 et	 al.	 2001;	 Podur	 et	 al.	 2003;	

Sharples	 2009).	 Fires	 have	 different	 sources	 of	 ignition,	with	 humans	 accidentally	 or	

deliberately	causing	some	fires	and	lightning	being	the	common	cause	of	natural	fires	

(Kourtz	 and	 Todd	 1991;	 McRae	 1992;	 Anderson	 et	 al.	 2000;	 Pew	 and	 Larsen	 2001;	

Syphard	 et	 al.	 2008;	 Vilar	 et	 al.	 2010b;	Magnussen	 and	 Taylor	 2012;	 Penman	 et	 al.	

2013).	Human	activities	also	affect	 fire	 size	by	 influencing	 the	 chance	of	a	 fire	being	

controlled	(Catchpole	2002).		

Patterns	of	wildfires	have	been	studied	with	the	support	of	data	sources	and	modelling	

methods.	These	studies	primarily	relied	on	administrative	fire	records	and	on	remotely	

sensed	 observations.	 Administrative	 records	 commonly	 contain	 detailed	 information	

on	ignitions	and	causes	of	fires.	They	have	been	used	in	both	regional	(e.g.	Preisler	et	

al.	2004;	Bradstock	et	al.	2009)	and	broad-scale	(e.g.	Littell	et	al.	2009;	Fernandes	et	al.	

2016b)	studies.	The	satellite-based	products,	such	as	the	Moderate	Resolution	Imaging	

Spectroradiometer	(MODIS)	active	fire	product	(Giglio	et	al.	2003),	provide	precise	and	

reliable	 historical	 information	 on	 fire	 activity,	 and	 have	 been	 used	 in	 understanding	

broad-scale	 patterns	 of	 fires	 (e.g.	 Hawbaker	 et	 al.	 2013;	 McRae	 and	 Featherstone	

2015).	The	Generalised	Linear	Model	 (GLM,	Nelder	and	Baker	1972)	and	Generalised	

Additive	Model	(GAM,	Hastie	and	Tibshirani	1986)	are	two	empirical	models	that	have	

been	widely	used	 in	 fire	pattern	analyses.	GLM	is	a	parametric	model	that	quantifies	

the	 linear	 relationship	between	variables,	whereas	GAM	is	an	extension	of	GLM	that	

allows	 for	 non-linear	 relationships	 between	 variables.	 When	 using	 fine	 spatial	 and	

temporal	 units,	 fire	 activity	 and	 ignition	 are	 Bernoulli	 processes	 in	 that	 their	

probabilities	 can	 be	modelled	 using	 GLM	 or	 GAM	with	 a	 logic	 link	 (e.g.	 Chou	 1992;	

Preisler	 et	 al.	 2004).	 These	models	 have	 also	 been	 used	 to	 investigate	 relationships	
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between	 fire	 sizes	 and	 their	 determinants	 (e.g.	 Viedma	 et	 al.	 2009;	 Hantson	 et	 al.	

2015).	

Studies	 on	 fire	 occurrence	have	been	 conducted	 in	many	 countries,	mainly	 in	North	

America	(Brillinger	et	al.	2003;	Preisler	et	al.	2004;	Syphard	et	al.	2008;	Parisien	et	al.	

2012;	Curt	 et	al.	 2015),	Europe	 (Chuvieco	 et	al.	 2010;	Oliveira	 et	al.	 2012a;	Fuentes-

Santos	 et	 al.	 2013),	 and	 Australia—where	 some	 fire	 occurrence	 studies	 specifically	

addressed	relatively	small	areas	such	as	the	ACT	(McRae	1992),	the	Mallee	woodlands	

and	heathlands	of	VIC	 (Krusel	 et	al.	1993),	 the	Sydney	 region	 (Bradstock	 et	al.	2009;	

Penman	et	al.	2013)	and	the	south-west	Western	Australia	(Plucinski	2014;	Plucinski	et	

al.	2014).	Other	studies	have	looked	at	larger	regions	such	as	the	whole	of	VIC	(Dowdy	

and	Mills	 2012a;	Dowdy	 and	Mills	 2012b)	 and	 south-eastern	Australia,	which	 covers	

three	 fire-prone	 states	 (Collins	 et	al.	 2015).	 These	 studies	 investigated	 the	effects	of	

environmental	and	anthropogenic	factors	on	the	spatial	(e.g.	Penman	et	al.	2013)	and	

temporal	patterns	 (e.g.	Plucinski	2014)	of	 fire	occurrence.	Studies	on	 fire	occurrence	

patterns	 at	 a	 broad	 scale	 that	 cover	 fire-prone	 states	 in	 south-eastern	 Australia	 are	

relatively	 rare.	 Also,	 the	 differences	 of	 fire	 occurrence	 drivers	 across	 ecoregions	 of	

south-eastern	Australia	are	not	well	understood.	

Studies	aiming	to	model	relationships	between	fire	sizes	and	their	driving	factors	have	

also	been	 conducted	worldwide	 (Russell-Smith	 et	 al.	 2007;	 Slocum	 et	 al.	 2010;	 Price	

and	Bradstock	2011;	Turner	et	al.	2011;	Loepfe	et	al.	2014;	Fang	et	al.	2015;	Fernandes	

et	al.	2016b).	In	Australia,	Russell-Smith	et	al.	(2007)	conducted	a	continental-scale	fire	

pattern	 analysis	 and	 quantified	 the	 role	 of	 biophysical	 variables,	 especially	 rainfall	

seasonality,	 to	 explain	 fire	 extent	 in	 each	 climate	 region.	 Nicholls	 and	 Lucas	 (2007)	

found	relationships	between	the	current	and	prior	climate	conditions	and	the	annual	

area	burned	in	Tasmania.	Price	and	Bradstock	(2011)	quantified	the	effect	of	fuel	age	

and	weather	on	fire	extent	in	four	subregions	of	the	Sydney	region.	Turner	et	al.	(2011)	

specifically	 looked	 at	 drivers	 of	 fire	 extent	 in	 arid	 and	 semi-arid	 areas	 of	 Australia,	

whereas	 King	 et	 al.	 (2013)	 compared	 climate	 drivers	 of	 fires	 in	 a	mesic	 and	 an	 arid	
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ecosystem	 in	Australia.	 The	 complexity	 and	 variations	 in	 climate-fire	 relationships	 in	

different	 regions	 suggest	 the	 need	 for	 localised	 analyses	 rather	 than	 generalising	

results	from	other	studies	(Nicholls	and	Lucas	2007).	

Forested	wetlands	differ	 from	neighbouring	 landscapes	 in	 their	vegetation	 types	and	

moisture	 regimes,	 therefore	 fire	 characteristic,	 the	 driving	 factors	 of	 fire	 occurrence	

and	size,	as	well	 as	 their	 relative	 importance	are	expected	 to	be	different	 than	 their	

adjacent	 areas.	 This	may	 lead	 to	 the	 need	 for	 different	 forest	 and	 fire	management	

efforts	at	different	landscapes	and	under	different	climate	scenarios.	A	few	published	

studies	 have	 investigated	 the	 properties	 of	 wetland	 fires	 and	 their	 determinants	

around	 the	 world	 (Dwire	 and	 Kauffman	 2003;	 Heinl	 et	 al.	 2006;	 Pettit	 and	 Naiman	

2007).	Dwire	and	Kauffman	(2003)	summarised	the	fire	regimes	in	riparian	areas	and	

the	 characteristics	 of	 riparian	 zones	 that	 influence	 fire	 properties	 in	 western	 North	

America.	 Heinl	 et	 al.	 (2006)	 compared	 fire	 characteristics	 on	 floodplains	 and	 their	

adjacent	 dry	 lands	 in	 southern	 Africa.	 Pettit	 and	 Naiman	 (2007)	 reviewed	

characteristics	of	riparian	fires	and	their	ecological	consequences.	However,	there	are	

very	few	scientific	publications	and	government	reports	that	systemically	characterise	

wildfires	in	Australian	wetland	ecosystems	(Douglas	et	al.	2003;	Country	Fire	Authority	

[CFA],	2014;	Douglas	et	al.	2016;	Schneider	and	Sutherland	undated).	This	is	a	concern	

given	the	risk	that	wetland	wildfires	pose	to	rural	communities,	their	role	as	a	natural	

disturbance	 that	 can	 affect	 ecological	 processes,	 and	 their	 importance	 in	 timber	

production,	water	 supply	 and	 regulation.	 Specifically,	 there	 is	 very	 little	 information	

regarding	the	patterns	of	fire	occurrence	and	size	and	their	driving	factors	in	the	inland	

semi-arid	 riverine	 area	 of	 south-eastern	 Australia.	 These	 issues	 therefore	 require	

further	exploration.	

1.2 Aims	and	Objectives	

This	 thesis	aims	 to	provide	knowledge	on	 fire	patterns	across	 two	different	 scales	 in	

south-eastern	 Australia.	 Specifically,	 it	 will	 explore	 patterns	 of	 wildfire	 activity	 and	

ignition	 on	 a	 broad	 scale	 that	 covers	 fire-prone	 states,	 whereas	 patterns	 in	 wildfire	
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ignition	and	size	will	be	investigated	at	a	regional	scale	that	covers	the	NSW	side	of	the	

Riverina	 Bioregion.	 These	 patterns	 will	 be	modelled	 by	 incorporating	 satellite-based	

and	 administrative	 fire	 records	 and	 factors	 such	 as	 weather	 conditions,	 fuel,	

topography	and	ignition	sources	within	the	framework	of	statistical	modelling	methods	

i.e.,	GLM	and	GAM.	This	study	hypothesises	that	there	are	significant	variations	in	fire	

patterns,	and	in	the	effects	and	relative	importance	of	fire-pattern	drivers,	in	different	

landscapes.	This	thesis	will	provide	a	comprehensive	understanding	of	fire	patterns	in	

the	 target	 areas	 to	 support	 agencies	 as	 they	 prepare	 and	 plan	 for	 fire	 and	 land	

management	activities	in	south-eastern	Australia.		

This	thesis	specifically	addresses	the	following	questions:	

(1) What	are	the	broad-scale	wildfire	activity	patterns	in	South-Eastern	Australia;	what	

are	 the	 effects	 and	 relative	 contributions	 of	 environmental	 and	 anthropogenic	

factors	that	regulate	these	patterns;	and	how	can	the	MODIS	active	fire	product	be	

incorporated	into	wildfire	modelling?	

(2) What	are	the	wildfire	ignition	patterns	across	different	ecoregions	of	South-Eastern	

Australia;	are	there	any	non-linear	relationships	between	these	patterns	and	their	

determinants;	and	how	do	the	relationships	vary	spatially?	

(3) What	 are	 the	 spatial	 and	 temporal	 patterns	 of	 fires	 with	 different	 causes	 and	

different	 vegetation	 types	 in	 the	 inland	 semi-arid	 riverine	 environments;	 how	do	

their	determinants	affect	these	patterns;	and	what	are	the	relative	contributions	of	

different	factor	groups	to	fire	ignition?		

(4) What	are	the	properties	of	wildfires	and	their	sizes	in	inland	forested	wetlands	and	

adjacent	dry	lands;	how	do	ambient	weather	and	antecedent	rainfall	affect	the	size	

of	 these	 fires;	and	which	are	 the	most	 important	 factors	 that	govern	 fire	 sizes	 in	

these	environments?		

Corresponding	to	these	questions,	the	main	objectives	of	this	thesis	are:	
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(1) To	develop	spatial	models	incorporating	the	MODIS	active	fire	product	in	order	to	

better	 understand	 wildfire	 activity	 patterns,	 their	 regulating	 factors,	 and	 the	

relative	contributions	of	these	factors	in	NSW,	ACT	and	VIC;	

(2) To	model	spatial	patterns	of	wildfire	ignition	in	relation	to	their	determinants	over	

five	ecoregions	of	NSW	and	ACT;	

(3) To	develop	spatiotemporal	models	for	understanding	factors	that	regulate	patterns	

of	human-caused	and	natural	fire	ignitions	in	forested	wetlands	and	their	adjacent	

dry	lands	in	the	NSW	part	of	the	Riverina	bioregion;	and	

(4) To	 identify	 the	 ambient	weather	 and	 antecedent	 rainfall	 factors	which	 are	most	

effective	in	explaining	the	wildfire	size,	and	to	evaluate	their	relative	importance	in	

two	diverse	environments	in	the	NSW	part	of	the	Riverina	bioregion.	

1.3 Research	Significance	

The	 significance	 of	 this	 study	 is	 three-fold.	 First,	 this	 thesis	 provides	 information	 on	

broad-scale	 fire	 occurrence	 patterns	 in	 south-eastern	 Australia.	 It	 identifies	

environmental	 and	 anthropogenic	 factors	 driving	 the	 spatial	 distributions	 of	 fire	

activity	 and	 ignition;	 it	 also	 demonstrates	 differences	 in	 the	 contributions	 of	 these	

factors	 and	 variation	 in	 their	 effects	 across	 different	 ecoregions.	 These	 issues	 have	

rarely	 been	 systematically	 explored.	 Second,	 the	 thesis	 provides	 knowledge	 about	

patterns	 of	 fire	 ignition	 and	 size	 in	 the	 inland	 semi-arid	 riverine	 environment	 of	

Australia,	which	 are	 understudied	 (Douglas	 et	 al.	 2016).	 This	 study	 identifies	 factors	

regulating	the	ignition	and	size	of	fires	and	demonstrates	the	differences	in	effects	of	

these	factors	 in	forested	wetlands	and	dry	 lands.	Third,	this	thesis	contributes	to	the	

understanding	of	 fire	 regime	and	risk,	and	 its	 results	have	clear	 implications	 for	 land	

and	fire	management	practices.	 It	 is	envisaged	that	 findings	from	this	study	can	help	

fire	managers	target	suppression	efforts,	plan	fire	risk	reduction	practices,	and	develop	

more	effective	regional	conservation	plans	and	management	strategies.		
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1.4 Thesis	Structure	

The	thesis	comprises	eight	chapters.	Chapter	1	provides	an	overview	of	the	context	of	

the	thesis,	including	a	general	introduction	on	the	background,	as	well	as	the	main	aim,	

objectives,	significance	and	structure	of	the	thesis.	Chapter	2	reviews	the	key	concepts	

of	 wildfires	 related	 to	 the	 thesis,	 including	 the	 environmental	 and	 socio-economic	

impacts	 of	 fires	 and	 management	 options,	 the	 concept	 of	 fire	 patterns—especially	

those	of	fire	occurrence	and	size,	the	determinants	of	fire	patterns,	and	the	means	of	

obtaining	 fire	 relevant	 observations.	 Chapter	 3	 briefly	 describes	 the	 study	 area,	 the	

methods	 used	 for	 fire	 modelling	 and	 the	 conceptual	 framework.	 Chapters	 4	 to	 7	

present	 the	 four	major	 findings	 regarding	 the	 fire	patterns	at	 two	different	 scales	 in	

south-eastern	 Australia,	 including	 patterns	 of	 fire	 activity	 and	 ignition	 and	 their	

determinants	 on	 a	 broad	 scale	 in	 south-eastern	Australia,	 as	well	 as	 patterns	 of	 fire	

ignition	 and	 size	 and	 their	 driving	 factors	 in	 the	 semiarid	 riverine	 environment	 of	

Australia.	Chapter	8	draws	together	the	conclusions	of	each	chapter	and	discusses	the	

contributions,	limitations	and	directions	for	future	research.		
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Chapter	2 Review	of	Wildfire	Ecology	and	Management	

2.1 Fire	Impacts	and	Management	

Wildfires	 affect	 ecosystems,	 threaten	 human	 lives,	 and	 cause	 socio-economic	 loss	

(Bowman	 et	 al.	 2009).	 In	 this	 section,	 the	 importance	 of	 wildfires	 as	 an	 ecological	

disturbance	and	their	effects	on	human	societies	and	economies,	as	well	as	the	aims	

and	objectives	of	fire	management	activities,	are	reviewed.		

2.1.1 Environmental	and	Ecological	Impacts	

Fires	 are	 natural	 disturbances	 that	 have	 profound	 effects	 on	 the	 distribution	 and	

structure	of	flora	and	fauna,	soil	and	water	(Pyne	et	al.	1996;	Bowman	et	al.	2009;	Gill	

et	 al.	 2012).	 The	 effect	 of	 fires	 on	 plant	 communities	 can	 be	 positive	 or	 negative,	

depending	on	the	species,	fire	characteristics	and	environmental	conditions	(Australian	

State	of	the	Environment	Committee	[ASEC]	2006).	Fires	can	assist	some	native	species	

with	regeneration,	germination	and	establishment	(Gill	1975;	Bond	and	Keeley	2005).	

For	example,	Eucalyptus	regnans	(mountain	ash),	a	valuable	Eucalyptus	forest	species	

normally	 grown	 in	 south-eastern	 Australia,	 is	 dependent	 on	 fire	 for	 its	 regeneration	

(Gill	 1975).	 On	 the	 other	 hand,	 wildfires	 may	 injure	 or	 kill	 fire-sensitive	 vegetation	

species	such	as	the	river	red	gum	(Dexter	1978,	as	cited	in	CSIRO	2004).	They	threaten	

animal	species	directly	by	causing	deaths	during	fire	events,	or	 indirectly	by	reducing	

feeding	 resources	 (Gill	 et	 al.	 2012).	 Wildfires	 affect	 soil	 through	 changes	 in	 soil	

temperature,	 structure,	 as	well	 as	 the	 ability	 to	 absorb	 and	 store	water	 (Pyne	 et	 al.	

1996),	and	affect	water	via	changes	in	water	flow,	temperature,	acidity/alkalinity	(pH),	

chemistry	and	bottom	sediments	(Lyon	and	O’Connor	2008).		

At	the	global	scale,	fires	influence	carbon	cycle	and	the	global	climate	by	affecting	the	

exchange	 of	 carbon	 between	 the	 land	 and	 the	 atmosphere	 (Bowman	 et	 al.	 2009).	

Carbon	transfer	and	stock	are	affected	by	fires	via	three	basic	mechanisms:	the	carbon	
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transfer	 from	 biosphere	 to	 atmosphere,	 between	 terrestrial	 pools	 and	 from	

atmosphere	to	the	biosphere	 (Williams	et	al.	2012).	Biomass	burnings	accelerate	the	

decomposition	and	respiration	(Bowman	et	al.	2009)	and	emit	trace	gases	and	aerosols	

that	contribute	to	the	variation	in	atmospheric	chemistry	(Andreae	and	Merlet	2001),	

including	 the	 variability	 of	 greenhouse	 gases	 and	 the	 associated	 global	 warming	

(Marston	 et	 al.	 1991).	 Biomass	 burnings,	 together	with	 domestic	 and	 industrial	 fires	

and	 fossil-fuel	 combustions,	 also	 generate	 black	 carbon	 aerosols	 that	 absorb	 solar	

radiation	and	contribute	to	the	global	warming	(Bond	et	al.	2013).	

2.1.2 Socio-economic	Impacts	

Wildfires	 also	 have	 a	 significant	 socio-economic	 impact.	 The	 impact	 of	 wildfires	 can	

result	from	direct	contact	with	the	event	such	as	asset	damages,	deaths	and	injuries,	

smoke-related	 diseases,	 culture	 and	 heritage	 damages,	 ecological	 services,	 loss	 of	

water	 supply,	 and	 greenhouse	 gas	 emissions;	 whereas	 indirect	 impacts	 are	 those	

induced	 as	 a	 consequence	of	 the	 event	 such	 as	 business	 disruptions,	 fire	 responses,	

and	 relief	 to	 the	 regional	 area	 (Stephenson	 et	 al.	 2013).	 For	 example,	 a	 number	 of	

catastrophic	 wildfires	 related	 to	 the	 1997-1998	 El	 Niño-Southern	 Oscillation	 (ENSO)	

event	swept	through	most	regions	around	the	world	(Moore	2001).	In	South	East	Asia,	

fires	 damaged	 hundreds	 of	 thousands	 of	 hectares	 of	 land,	 of	 which	 more	 than	 9.5	

million	ha	were	burned	 in	 Indonesia,	with	 an	estimated	economic	 loss	of	 $U.S.	 5-10	

billion.	 Additionally,	 the	 health	 of	 70	 million	 people	 was	 adversely	 affected	 by	 the	

smoke	from	the	fires	(Moore	2001).	In	Latin	America,	70	Mexican	firefighters	and	700	

Brazilian	Amazon	people	were	killed	by	the	smoke,	and	at	least	9.2	million	ha	of	land	

was	burned,	causing	an	estimated	damage	of	$U.S.	10	to	15	billion	(Cochrane	2002).		

In	Australia,	the	majority	of	socio-economic	impacts	of	fires	occur	in	the	south-eastern	

part	 of	 the	 continent	 where	 the	 majority	 of	 infrequent,	 high-intensity	 and	 large	

wildfires	occurred	(Cheney	1976;	Murphy	et	al.	2013)	and	the	population	density	is	the	

highest.	For	 instance,	one	of	 the	most	devastating	wildfires,	 the	2009	Black	Saturday	

Fires	 in	 VIC,	 burned	 a	 total	 area	 of	 more	 than	 400,000	 ha,	 caused	 173	 deaths,	
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destroyed	more	 than	2,030	houses,	 and	displaced	over	7,562	people,	 resulting	 in	an	

estimated	cost	of	more	than	$4	billion	(Teague	et	al.	2010).	Generally,	periods	of	high	

fire	danger	 are	predicted	 to	be	more	 frequent	under	 the	 scenarios	of	 global	 change	

(Cary	 et	 al.	 2012).	 The	 expansion	 of	 cities	 and	 human	 communities	 into	 rural	 areas	

increases	the	potential	impact	of	fires	across	Australia.	

2.1.3 Fire	Management	

Although	fires	are	destructive	and	therefore	a	significant	concern	in	terms	of	 life	and	

property	 protection,	 they	 are	 also	 an	 essential	 and	 irreplaceable	 ecological	 process	

(Ellis	 et	 al.	 2004).	 The	 adverse	 impact	 of	 wildfires	 needs	 to	 be	 mitigated	 through	

effective	 actions.	 In	 some	 cases,	 fires	 can	 be	 a	 valuable	 tool	 in	 achieving	 land	

management	objectives.	 Consequently,	 the	management	of	 fires	must	be	 integrated	

into	land	management	activities	to	meet	the	desirable	goals	(Barney	1975,	as	cited	in	

Conedera	2009).		

The	meaning	 of	 “fire	management”	 has	 been	 changing	 and	 is	 not	 uniformly	 used	 in	

different	 contexts	 (Hardy	 2005;	 Conedera	 2009).	 In	 the	National	 Inquiry	 on	 Bushfire	

Mitigation	 and	 Management	 prepared	 for	 the	 Council	 of	 Australian	 Governments	

(COAG),	fire	management	is	defined	as	“all	activities	associated	with	the	management	

of	 fire-prone	 lands,	 including	 the	 use	 of	 fires	 to	 meet	 land	 management	 goals	 and	

objectives”	(Ellis	et	al.	2004	p.388).	According	to	National	Bushfire	Management	Policy	

Statement	for	Forests	and	Rangelands	(Forest	Fire	Management	Group	[FFMG]	2014),	

the	 management	 of	 fires	 has	 a	 number	 of	 strategic	 objectives,	 such	 as	 effectively	

managing	the	lands	with	fires	to	reduce	fire	risk	and	enhance	the	health,	biodiversity	

and	resilience	of	ecosystems;	improving	community	involvement	and	public	education;	

enhancing	 partnerships	 of	 management	 agencies	 and	 capacities	 of	 risk	 mitigation;	

developing	 active	 and	 adaptive	 risk	 management	 approaches	 and	 knowledge.	

Specifically,	 the	objectives	of	 fire	risk	reduction	and	mitigation,	as	well	as	minimising	

the	adverse	ecological	impact	of	fires,	can	be	partially	achieved	by	employing	some	of	

fire	 control	 activities/treatments	 such	 as	 restriction	 of	 unwanted	 fire	 starts	 (e.g.,	
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human	access),	and	effective	 fire	suppression	and	fuel	management	 (e.g.,	prescribed	

burning	or	non-fire	treatments)	(Ellis	et	al.	2004;	Gill	et	al.	2012;	NSW	OEH2015).			

2.2 Fire	Occurrence	and	Size	

Fire	risk	mitigation	and	ecologically	sustainable	fire	management	cannot	be	effectively	

achieved	 without	 a	 solid	 understanding	 of	 fire	 behaviour	 and	 regime.	 This	 section	

reviews	existing	knowledge	on	the	property	and	behaviour	of	 individual	 fires,	as	well	

as	concepts	of	fire	regime	and	risk.		

2.2.1 Fire	Behaviour,	Regime	and	Risk	

The	 knowledge	 of	 the	 property	 of	 an	 individual	 wildfire	 and	 its	 behaviour	 in	 a	

landscape	is	fundamental.	“Fire	behaviour”	refers	to	“the	manner	in	which	a	fire	reacts	

to	 the	 variables	 of	 fuel,	 weather	 and	 topography”	 (FFMG	 2014).	 A	 wildfire	 can	 go	

through	several	phases,	including	ignition,	development,	spread	at	a	steady-state	rate,	

potential	 exhibition	 extreme	 fire	 behaviour	 (e.g.,	 high-intensity	 crown	 fire	 and	

spotting),	and	extinction	(Pyne	et	al.	1996;	Sullivan	2014).	The	fire	“imprint”,	which	is	

dependent	on	the	behaviour	of	a	particular	fire	event,	can	be	characterized	by	the	fire	

probability,	fire	shape	and	size,	the	horizontal	and	vertical	burning	pattern,	as	well	as	

the	spotting	pattern	(Catchpole	2002).	

“Fire	regime”	describes	the	characteristics	of	sequences	of	fire	events	(Gill	et	al.	2012).	

Therefore	the	behaviour	of	an	individual	fire	and	the	landscape	fire	regime	are	closely	

related	(Cary	2002).	The	concept	of	fire	regime	was	introduced	by	Gill	(1975)	to	gain	a	

better	 understanding	 of	 the	 long-term	 effects	 of	 fire	 on	 ecosystems.	 Gill	 (1975)	

identified	fire	regime	components	as	intensity,	frequency,	seasonality	and	type	(above-

ground	or	below-ground).	Heinselman	(1981)	summarised	fire	regime	elements	as	type	

and	intensity	(crown/severe	surface	fires	vs.	light	surface	fires),	size	(area),	frequency	

or	 return	 interval	 and	 seasonality.	 Bond	 and	 Keeley	 (2005)	modified	 the	 fire	 regime	

concept	 defined	 by	Gill	 (1975)	 to	 include	 fuel	 consumption	 and	 fire	 spread	 patterns	
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(ground/surface/crown	 fires	 and	 fire	 size/patchiness),	 intensity,	 severity,	 frequency	

and	seasonality.	The	inclusions	of	severity	and	size	distinguish	Bond	and	Keeley’s	(2005)	

fire	regime	definition	from	that	of	Gill	(1975).	Fire	regime	provides	an	integrated	way	

of	 describing	 diverse	 spatial	 and	 temporal	 patterns	 of	 fires	 and	 their	 impacts	 on	 an	

ecosystem	 or	 landscape	 (Gill	 1975;	 Bradstock	 et	 al.	 2002;	 Bond	 and	 Keeley	 2005;	

Keeley	2009)	and	 is	also	an	 important	concept	 in	supporting	decision-making	 for	risk	

mitigation	and	management	(Keeley	2009;	Gill	et	al.	2012).	For	example,	fire	frequency	

is	 the	 incidents	 of	 fires	 for	 a	 given	 time	 and	 region	 (Bond	 and	 Keeley	 2005);	 high-

frequency	fires	may	result	 in	the	 loss	of	plant	 (especially	shrub)	species,	reduction	 in	

vegetation	structure	and	subsequent	loss	of	animal	species	(Gill	1975;	Bradstock	et	al.	

1997).	Fire	intensity	is	energy	output	of	the	fire	line	(Byram	1959)	or	energy	released	

from	 organic	matter	 during	 the	 combustion	 process	 (Bond	 and	 Keeley	 2005;	 Keeley	

2009).	Intensity	is	expected	to	be	related	to	the	short-term	effects	on	vegetation	types	

(especially	forests)	because	 low-intensity	fires	may	only	consume	litter	fuels	whereas	

high-intensity	fires	are	more	likely	to	affect	the	tree	canopy,	the	understorey	and	the	

soil	organic	 layers	(Gill	1975).	The	loss	and	damage	of	socio-economic	assets	are	also	

expected	to	be	related	to	fire	intensity	because	of	its	connection	with	flame	radiation,	

firebrand	 density	 and	 flame	 contact,	 which	 influence	 the	 potential	 for	 structure	

ignition	(Wilson	and	Ferguson	1986;	Blanchi	and	Leonard	2008;	Gill	et	al.	2012).		

In	this	thesis,	the	term	“fire	pattern”	is	used	to	describe	the	behaviour	and	regime	of	

fire	 across	 multiple	 scales.	 The	 understanding	 of	 fire	 pattern	 is	 important	 to	

systematically	consider	a	wide	range	of	environmental,	ecological	and	socio-economic	

values	 in	 the	management	of	 fire	 risk.	 	 Fire	 risk	has	been	defined	by	Chuvieco	 et	al.	

(2010)	 as	 the	 combination	 of	 two	 components—the	 fire	 occurrence	 probability	 and	

the	potential	damage.	The	former	component	is	constituted	by	the	probability	of	a	fire	

igniting	 in	 a	 given	 place	 and	 the	 potential	 for	 a	 fire	 to	 propagate	 over	 an	 area.	 The	

latter	 component	 describes	 the	 probable	 outcome	 of	 a	 fire,	 including	 the	 negative	

effects	 of	 fires	 on	 the	 socio-economic	 value	 and	 the	 ecological	 value.	 Taylor	 et	 al.	

(2013)	 reviewed	 a	 number	 of	 fire	 risk	 components	 to	 inform	 fire	 management,	
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including	fire	ignition	and	occurrence,	growth,	size,	area	burned	and	frequency,	over	a	

range	of	 spatial	 and	 temporal	 scales.	 In	 Section	2.2.2,	 knowledge	on	 fire	occurrence	

and	size	is	reviewed.		

2.2.2 Fire	Occurrence	and	Size	

The	 term	 “fire	 occurrence”	 is	 not	 uniformly	 used	 throughout	 time	 and	 by	 different	

organisations/authors.	 For	 example,	 US	 Department	 of	 Agriculture	 (Romme	 1980	

p.135)	 defined	 it	 as	 “one	 fire	 event	 taking	 place	 within	 a	 designated	 area	 during	 a	

designated	time	(Boolean;	either	yes,	a	fire	occurs,	or	no,	a	fire	does	not	occur)”,	which	

is	similar	to	the	description	of	Flannigan	et	al.	(2009	p.495)	who	sees	fire	occurrence	as		

“a	relatively	simple	measure	of	fire	activity	that	quantifies	the	presence	or	absence	of	

an	 event”.	 	 Finney	 (2005	p.98)	 used	 the	 definition	 “the	 frequency	 of	 fires	 that	 have	

been	 reported	 and	 recorded	within	 a	 finite	 area	 and	 historical	 period	 of	 time	 (e.g.,	

number	 of	 fires/ha/year)”.	 Plucinski	 (2011	 p.2)	 used	 a	 more	 general	 definition	 that	

“fire	occurrence	is	used	to	describe	the	presence	and	frequency	of	fires	within	a	finite	

time	and	space”.		

According	 to	 these	 definitions,	 the	 occurrence	 of	 fire	 is,	 at	 times,	 considered	 the	

ignition	 of	 fire	 within	 a	 certain	 spatiotemporal	 unit	 (Cunningham	 and	Martell	 1973;	

Preisler	et	al.	2004;	Syphard	et	al.	2008;	Wotton	et	al.	2010;	Penman	et	al.	2013);	while	

in	other	cases,	 it	 is	referred	to	as	the	activity/burning	of	fire	within	a	spatiotemporal	

unit	 (Krawchuk	 et	al.	 2009;	Chuvieco	 et	al.	 2010;	Oliveira	 et	al.	 2012a;	Renard	 et	al.	

2012;	Hawbaker	et	al.	2013).	For	the	former,	fire	occurrence	has	the	same	meaning	as	

the	 (detected)	 fire	 ignition;	 in	 the	 latter	 case,	 it	 includes	 both	 the	 ignition	 and	 the	

propagation	of	a	fire	(Chuvieco	et	al.	2010).	The	definition	of	fire	occurrence	is	largely	

dependent	on	the	specific	context	and	purpose	of	a	study,	as	well	as	the	quality	of	the	

fire	 dataset	 (accuracy,	 completeness,	 consistency,	 form,	 source	 e.g.,	 agency-	 or	

satellite-based	observation).		
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Fire	occurrence	 is	 a	 fundamental	 concept	 in	understanding	 the	 spatial	 and	 temporal	

distribution	of	fires.	It	is	also	an	essential	component	of	fire	risk	(Chuvieco	et	al.	2010;	

Taylor	et	al.	2013)	and	is	an	attribute	of	a	fire	regime	(Cary	et	al.	2012).	Understanding	

fire	 occurrence	 patterns	 is	 critical	 for	 fire	 and	 land	 managers	 in	 planning	 for	

sustainable	land	management	strategies	and	fire	prevention	activities	(e.g.,	the	timing	

and	allocation	of	fuel	treatment),	setting	up	fire	suppression	resources,	as	well	as	the	

restoration	of	burned	areas	(McRae	1992;	San-Miguel-Ayanz	et	al.	2003;	Finney	2005;	

Syphard	et	al.	2008;	Oliveira	et	al.	2012a;	Chuvieco	et	al.	2014).	Therefore,	despite	the	

varying	definitions	of	fire	occurrence	definitions	in	different	contexts,	both	ignition	and	

activity	 are	 important	 from	 the	 perspective	 of	 risk	 mitigation	 and	 sustainable	 land	

management,	and	are	worthy	of	exploration.		

Fire	size	(area)	describes	the	extent	of	a	fire	as	it	spreads	in	a	landscape	(Ryan	2002).	It	

is	an	essential	component	of	both	fire	risk	(Taylor	et	al.	2013)	and	fire	regime	(Turner	

et	al.	1997;	Turner	2010).	Fire	size	is	driven	by	spread	rate	and	the	probability	of	timely	

containment,	and	the	latter	is	determined	by	the	intensity,	remoteness	and	the	spread	

rate	 of	 fire	 (Catchpole	 2002).	 This	 suggests	 the	 association	 between	 fire	 sizes	 and	

suppression	effectiveness	(Taylor	et	al.	2013).	The	ecological	consequence	of	a	fire	 is	

directly	affected	by	the	fire	size	through	area	related	effects	(Turner	et	al.	1997;	Bond	

and	Keeley	2005).	For	example,	the	size	of	a	fire	fundamentally	determines	how	much	

a	vegetation	type	or	species	is	influenced	by	fire	(Turner	et	al.	1997).		The	area	burned	

is	positively	correlated	with	the	size	of	individual	fire	effects	on	the	carbon	cycling	and	

emissions	 at	 broader	 scales	 (Conard	 et	 al.	 2002;	 Turetsky	 et	 al.	 2011).	 From	 this	

perspective,	understanding	the	property	of	fire	size	and	its	driving	factors	is	important	

for	 planning	 ecologically	 sustainable	 fire	 management	 and	 risk	 reduction	 activities	

(Price	and	Bradstock	2011;	Fang	et	al.	2015).		

2.3 Fire	Determinants	

Wildfires	are	 regulated	by	 top-down	and	bottom-up	 factors	across	a	 range	of	 spatial	

and	 temporal	 scales	 (Bowman	et	al.	2009;	Flannigan	et	al.	2009;	Parisien	and	Moritz	
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2009;	Bradstock	2010).	Weather	is	considered	as	a	‘top-down’	control	on	fire	because	

it	 affects	 fire	 patterns	 across	 large	 areas,	 whereas	 fuel,	 topography	 and	 ignition	

sources	 are	 ‘bottom-up’	 controls	 because	 they	 are	 spatially	 more	 variable	 and	 are	

associated	with	local	fire	patterns	(Gill	and	Taylor	2009;	Parks	et	al.	2011).	These	fire	

determinants	are	described	in	the	following	sections.	

2.3.1 Fire	Triangles		

The	relationships	between	fire	and	its	determinants	may	vary	with	the	spatial	scales	i.e.	

these	relationships	are	scale-dependent	(Moritz	et	al.	2005;	Falk	et	al.	2007;	Parks	et	al.	

2011).	The	influence	of	bottom-up	factors	is	site-specific	while	top-down	(weather-	or	

climate-	related)	factors	prevail	regionally	(Pearson	et	al.	2004).	This	is	because	bottom-

up	 factors	 (e.g.,	 topography)	 are	 spatially	 more	 heterogeneous	 i.e.,	 they	 affect	 the	 type,	

arrangement,	moisture,	and	connectivity	of	 fuels	 (Gill	and	Taylor	2009),	and	 therefore	affect	

local	 fire	 patterns	 (Turner	 2005).	 One	 example	 of	 this	 is	 that	 the	 association	 between	 the	

wildfire	pattern	and	one	bottom-up	factor	i.e.	aspect	becomes	unobvious	as	the	scale	becomes	

coarser	 (Parks	 2011).	 The	 scale-dependent	 fire	 controls	 highlight	 the	 need	 of	 conducting	

analysis	at	multiple	scales.	

A	 number	 of	 conceptual	 frameworks,	 notably	 the	 fire	 triangles,	 have	 been	 proposed	 to	

describe	 the	 change	 of	 fire	 pattern	 determinants	 across	 scales.	 Moritz	 et	 al.	 (2005)	

presented	a	 fire	 triangle	 conceptual	model	 that	describes	dominant	 factors	affecting	

fire	 behaviour	 and	 regime	 at	 multiple	 spatial	 and	 temporal	 scales,	 which	 is	 an	

extension	of	the	traditional	fire	environment	triangle	concept	(Countryman	1972;	Pyne	

et	al.	 1996).	At	 finer	 scales,	physical-based	knowledge	 is	 important	 in	understanding	

the	 fire	 fundamental	 (Rothermel	 1972).	 The	 fire	 fundamental	 triangle	 includes	 three	

interacting	factors	(heat,	oxygen	and	fuel)	that	control	the	fire	flame	(Pyne	et	al.	1996).	

When	a	fire	starts,	it	will	continue	burning	only	if	all	these	three	legs	are	available	and	

adequate.	 At	 landscape	 and	 subregional	 scales,	 knowledge	 of	 fire	 behaviour	 that	

explains	 the	 way	 fuel	 ignites,	 develops	 and	 spreads	 is	 important.	 The	 three	

components	 of	 fire	 environment	 triangle	 (topography,	 fuel	 and	weather)	 collectively	
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regulate	and	 interact	with	 the	behaviour	of	 fire,	 such	as	 the	spread	 rate	and	 fireline	

intensity	(Countryman	1972;	Pyne	et	al.	1996).	At	regional	and	continental	scales,	the	

understanding	 of	 fire	 regime,	 which	 describes	 the	 broad-scale	 and	 long-term	 fire	

activity	 pattern,	 is	 vital	 (Moritz	 et	 al.	 2005;	 Parisien	 and	 Moritz	 2009).	 The	 three	

components	 of	 the	 fire	 regime	 triangle	 (climate/atmospheric	 conditions,	

vegetation/resources	to	burn	and	ignition	patterns)	are	the	dominant	factors	affecting	

the	fire	pattern	at	coarse	scales	(Krawchuk	and	Moritz	2011;	Moritz	et	al.	2012).		

Similar	 with	 the	 fire	 triangle	model	 stated	 by	Moritz	 et	 al.	 (2005)	 and	 Parisien	 and	

Moritz	 (2009),	 Bradstock	 (2010)	 proposed	 that	 the	 biogeographical	 variation	 of	 fire	

regime	 patterns	 in	 Australia	 is	 regulated	 by	 four	 processes.	 Bradstock	 described	 the	

fire	regime	triangle	in	the	form	of	four	“switches”:	biomass	growth	(B),	availability	for	

burning	(A),	ambient	fire	weather	and	its	affected	fire	spread	(S)	and	ignitions	(I),	with	

“B”	 denoting	 the	 vegetation	 leg	 and	 “A”	 and	 “S”	 collectively	 corresponding	 to	 the	

weather	leg	in	the	fire	regime	triangle	(Cary	et	al.	2012).	This	concept	model	has	been	

intensively	discussed	in	fire	pattern	studies,	especially	those	conducted	in	 landscapes	

of	Australia	(e.g.	Penman	et	al.	2013,	Bradstock	et	al.	2014,	Gibson	et	al.	2015).		

Although	the	above	discussed	models	are	well-defined	and	conceptually	useful,	finding	

out	the	true	fire	determinants	of	a	given	environment	has	not	been	easy,	especially	at	

intermediate	 spatial	 scales.	 This	 is	 because	 at	 these	 scales	 interactions	 between	

bottom-up	 and	 top-down	 controls	 are	 complex	 and	 variable	 (Meyn	 et	 al.	 2007;	

Bradstock	2010;	McKenzie	et	al.	2011;	Moritz	et	al.	2012;	Parks	et	al.	2012).	In	addition,	

the	relationships	between	fire	and	its	determinants	not	only	vary	with	scales,	but	also	

by	region	(Littell	et	al.	2009).	These	all	make	site-specific	case	studies	necessary.	

2.3.2 Weather/Climate	

The	weather	or	climate	factors	are	top-down	controls	on	fire	that	has	been	highlighted	

in	a	number	of	regional	and	continental	studies	(Russell-Smith	et	al.	2007;	Bradstock	et	

al.	2009;	Littell	et	al.	2009).	They	 include	the	ambient	weather	(or	 fire	weather)	that	
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depicts	atmospheric	 conditions	on	a	particular	day	or	during	a	 short	period,	and	 the	

antecedent	weather	or	climate	that	depicts	the	climatic	conditions	that	synthesise	the	

weather	conditions	over	a	longer	period	(Pyne	et	al.	1996;	Bradstock	2010;	Sullivan	et	

al.	 2012).	 Ambient	 weather	 elements	 include	 temperature,	 relative	 humidity,	

precipitation,	 wind	 speed	 and	 direction.	 They	 affect	 the	 flammability/availability	 of	

fuels	(“A”),	the	behaviour	of	fire	such	as	the	spread	rate	(“S”),	as	well	as	the	probability	

of	 containment	 and	 therefore	 influence	 the	 ease	 of	 ignition	 and	 fire	 size	 (Flannigan	

and	 Harrington	 1988;	 Pyne	 et	 al.	 1996;	 Catchpole	 2002;	 Bradstock	 et	 al.	 2009;	

Bradstock	2010).	For	example,	wind	speed	strongly	affects	the	propagation	of	 fire	by	

increasing	 the	 radiative	 heat	 transfer	 (McArthur	 1967;	 Catchpole	 2002).	 The	

antecedent	weather	 conditions,	e.g.,	 antecedent	 rainfall	 and	 temperature,	affect	 the	

rate	of	biomass	accumulation	(“B”)	by	affecting	the	rate	of	natural	vegetation	growth	

and	the	amount	of	litter	fall,	and	therefore	affects	the	occurrence	and	extent	of	fire	in	

following	 seasons	 (Heinl	 et	 al.	 2006;	 Orians	 and	Milewski	 2007;	 Russell-Smith	 et	 al.	

2007;	Littell	et	al.	2009;	Price	and	Bradstock	2011;	Turner	et	al.	2011).	For	example,	in	

the	American	 Southwest,	 above-average	 rainfall	 and/or	 cooler	 temperature	 leads	 to	

higher	 fine	 fuel	production	and	continuity	 that	 results	 in	high	 fire	activity	during	 the	

subsequent	 year(s)	 (Swetnam	 and	 Betancourt	 1998;	 Veblen	 et	 al.	 2000;	 Littell	 et	 al.	

2009).	The	most	effective	rainfall	accumulation	period	that	drive	fires	can	be	different	

for	different	regions	(Russell-Smith	et	al.	2007;	Littell	et	al.	2009;	Turner	et	al.	2011).	

Seasonal	rainfall	patterns	can	also	regulate	the	process	of	fuel	accumulation.		

There	 are	 several	 fire	 danger	 indexes	 that	 have	 been	 used	 to	 integrate	 weather	

information	 to	 predict	 fire	 behaviour	 and	 inform	 fire	 potential.	 In	 Australia,	 the	

McArthur	 Fire	 Danger	 Index	 (FDI)	 is	 the	most	 widely	 used.	 It	 includes	 two	 types	 of	

indexes:	the	Forest	Fire	Danger	Index	(FFDI)	for	forests	and	the	Grass	Fire	Danger	Index	

(GFDI)	for	grasslands	(McArthur	1967;	Luke	and	McArthur	1978).	Temperature,	relative	

humidity	and	wind	speed	are	factored	into	FFDI	directly	or	via	calculations	of	Keetch-

Byram	 Drought	 Index	 (KBDI,	 Keetch	 and	 Byram	 1968),	 a	 soil	 moisture	 deficit	

measurement	reflecting	the	amount	of	effective	rainfall	needed	to	saturate	200	mm	of	
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soil,	and	Drought	Factor	(DF)	that	quantifies	how	ready	fine	fuels	are	to	ignite	(Noble	

et	 al.	 1980).	 These	 indexes	 provide	 qualitative	 (low,	 medium,	 high,	 extreme)	

predictions	 of	 fire	 risk	 and	 are	 representatives	 of	 ambient	 weather	 conditions	 to	 a	

large	extent.	

2.3.3 Fuel/Vegetation	

“Fuel	is	the	burnable	live	and	dead	vegetation	that	may	be	consumed	in	the	passage	of	

the	fire”	(Sullivan	et	al.	2012	p.55).	Fuel	or	vegetation	factors	are	bottom-up	controls	

on	 fire	 patterns	 (Russell-Smith	 et	 al.	 2007;	 Syphard	 et	 al.	 2008;	 Parks	 et	 al.	 2012;	

Fernandes	 et	 al.	 2016b).	 Fuel	 type	 and	 fuel	 load	 vary	 at	 small	 scales	 and	 are	 two	

primary	considerations	that	affect	a	number	of	fire	pattern	properties	(Catchpole	2002;	

Cary	 et	 al.	 2012).	 The	 type	 of	 fuel	 influences	 the	 ease	 of	 ignition,	 the	 spread	 and	

intensity	 of	 fire	 (Catchpole	 2002).	 The	 behaviours	 of	 fires	 that	 burn	 in	 forests	 and	

grasslands	 are	 considerably	 different	 and	 thus	 are	 often	 described	 separately.	

Grassland	 fires	 have	 higher	 rates	 of	 spread	 and	 combustion	 and	 they	 are	 more	

sensitive	 to	wind	 speed	 change,	 whereas	 forest	 fires	 tend	 to	 burn	more	 intensively	

especially	 under	 extreme	 weather	 conditions	 (Sullivan	 et	 al.	 2012).	 The	 amount	 of	

fuels	affects	flame	height	and	depth,	fire	intensity	and	sometimes	the	fire	spread.		

Fuel	moisture	content	 (i.e.,	 the	amount	of	moisture	present	 in	 fuels)	also	affects	 the	

ignition	probability	 and	 the	 spread	of	 fire	 (Pyne	 et	 al.	 1996;	 Catchpole	 2002).	 It	 is	 a	

highly	dynamic	measurement	that	varies	throughout	the	day.	The	higher	the	moisture	

content,	 the	 less	 likely	 a	 fire	 ignites	 from	or	 spread	 through	 the	 fuel.	 Fuel	moisture	

content	depends	on	a	number	of	 factors	 such	as	weather	 conditions	and	vegetation	

types.	 Sharples	 et	al.	 (2009)	derived	a	 simple	 index,	namely	 the	Fuel	Moisture	 Index	

(FMI),	that	can	be	easily	calculated	using	temperature	and	relative	humidity	obtained	

from	 weather	 stations.	 Other	 sources	 of	 information	 on	 fuel	 moisture	 content	 are	

satellite-based	 products	 such	 as	 the	 Normalised	 Difference	 Vegetation	 Index	 (NDVI,	

Hardy	and	Burgan	1999;	Chuvieco	et	al.	2004;	Caccamo	et	al.	2012).			
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The	relationship	between	fire	activity/pattern	and	aridity/moisture	(and	its	associated	

primary	productivity/biomass)	is	non-linear	(Bond	and	Keeley	2005;	Meyn	et	al.	2007;	

Littell	 et	 al.	 2009;	 Bradstock	 2010;	 Krawchuk	 and	Moritz	 2011;	Murphy	 et	 al.	 2011;	

Moritz	 et	 al.	 2012).	 In	 arid	 areas	where	productivity	 is	 low,	 factors	 that	 support	 the	

biomass	 growth	 (e.g.,	 high	 level	 of	 antecedent	 rainfall)	 are	 the	 primary	 contributing	

factors,	whereas	 in	mesic	areas	where	biomass	 is	abundant,	severe	ambient	weather	

(e.g.,	high	temperature,	low	moisture	content,	high	wind	speed)	primarily	governs	the	

fire	pattern.	For	example,	Littell	et	al.	(2009)	found	that	the	summer	drought	in	(mesic)	

forested	 ecosystems	 and	 antecedent	 winter	 rainfall	 in	 (arid/semi-arid)	 shrub	 and	

grassland	ecosystems	are	 important	 in	 regulating	area	burned	 in	 the	western	United	

States.		

There	 are	 other	 factors	 that	 regulate	 fire	 patterns	 indirectly	 by	 affecting	 fuel	

conditions	and	dynamics.	For	example,	the	proximity	to	water	influences	fuel	moisture,	

which	consequently	affects	the	likelihood	of	a	fire	(Penman	et	al.	2013)	and	the	spread	

of	 fire	across	 landscape.	 In	wetland	or	 riverine	areas,	 fire	activities	are	 influenced	by	

the	patterns	of	disturbance	events	such	as	flooding,	which	also	contribute	to	relative	

humidity,	fuel	moisture	and	biomass	accumulation	dynamics	(Pettit	and	Naiman	2007;	

Douglas	et	al.	2016).	

In	 riparian	 areas,	 the	 fuel	 accumulation	 and	 drying	 out	mechanisms	 are	 not	 always	

equivalent	to	those	in	uplands	because	of	the	interactive	relationship	between	fire	and	

flooding.	 The	 high	 availability	 of	 water	 in	 riparian	 areas	 results	 in	 high	 net	 primary	

productivity	 and	 the	 associated	 fuel	 load	 (Dwire	 and	 Kauffman	 2003).	What’s	more,	

the	uprooting	and	deposit	of	riparian	trees	during	large	flood	events	contribute	to	the	

subsequent	accumulation	of	woody	 fuels	 and	 thus	 increase	 the	 fire	 risk	 in	 the	 semi-

arid	Sabie	River	of	South	Africa	 (Pettit	et	al.	2005).	The	destruction	of	 trees	by	 flood	

also	exposes	fuels	to	greater	radiant	heat	that	accelerates	the	drying-out	procedure	of	

fuels	(Cochrane	2003).	The	higher	load	and	faster	drying-out	of	fuels	will	lead	to	higher	

fire	risk,	however	frequent	flooding	will	inhibit	vegetation	growth	and	the	build-up	of	
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fuel,	 thus	 reducing	 the	 risk	 of	 fire,	 therefore	 Pettit	 and	 Naiman	 (2007)	 suspected	 a	

non-linear	 relationship	 between	 fire	 and	 flood	 frequency,	 with	 fire	 frequency	 being	

highest	at	intermediate	flooding	frequencies.		

2.3.4 Topography	

Topographic	factors	are	complex	and	highly	variable	controls	that	exert	their	influence	

on	 site-specific	 fire	 patterns	 (Hawbaker	 et	 al.	 2013).	 They	 influence	 fire	 behaviour	

directly	 by	 affecting	 the	 rate	 and	 direction	 of	 fire	 spread	 (Rothermel	 1983)	 and	

indirectly	 by	 modifying	 general	 weather	 patterns	 and	 creating	 localised	 weather	

conditions	that	consequently	affect	fuel	type	and	moisture	content	(Pyne	et	al.	1996;	

Heyerdahl	et	al.	2001;	Sharples	2009).	They	have	also	been	used	to	predict	areas	prone	

to	 lightning	 ignitions	 (McRae	 1992).	 Topographic	 factors	 normally	 include	 elevation,	

slope	and	aspect.	Higher	or	moderate	elevations	contribute	to	higher	probabilities	of	

storm	occurrence,	which	leads	to	higher	probability	of	lightning	fire	incidence	(McRae	

1992;	Podur	et	al.	2003);	slope	affects	flame	length	and	spread	rate	of	fire	(Rothermel	

1984);	aspect	 influences	the	reception	of	solar	exposure	and	wind,	and	consequently	

affects	fuel	moisture	content	and	its	flammability	(Mouillot	et	al.	2003;	Mermoz	et	al.	

2005).	

2.3.5 Ignition	and	Suppression	

Wildfires	can	be	caused	by	natural	and	human	activities.	Natural	fires	may	be	ignited	

by	lightning	strikes,	volcanicity,	rock	fall	sparks	and	spontaneous	ignitions	(Scott	2000).	

Lightning	is	the	most	common	source	of	natural	ignition	in	forest	and	remote	regions	

(McRae	 1992;	 Anderson	 et	 al.	 2000).	 Dry	 lightning	 (lightning	 that	 occurs	 without	

accompanying	 significant	 precipitation)	 is	 especially	 important	 (Pyne	 et	 al.	 1996)	

because	of	the	strong	relationship	between	ignition	survival	and	fuel	moisture	(Dowdy	

and	 Mills	 2012a).	 Human-caused	 fires	 are	 dominant	 in	 Mediterranean	 Europe	

(Romero-Calcerrada	 et	 al.	 2008)	 and	 south-eastern	 Australia	 (Collins	 et	 al.	 2015).	

Anthropogenic	 sources	 of	 ignition	 include	 equipment	 sparks,	 arcing	 from	 electrical	
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lines,	escaped	campfire	brands,	arson,	etc.	 (Pyne	et	al.	1996;	Taylor	et	al.	2013).	The	

proximity	 to	 human	 activities,	 as	 represented	 by	 distance	 to	 roads,	 is	 found	 to	 be	

significant	 in	 predicting	 fire	 locations	 (Romero-Calcerrada	 et	 al.	 2008;	 Vilar	 et	 al.	

2010b).	Land	use	also	affects	wildfire	activities	because	of	its	relationship	with	fire	use	

or	control	(Russell-Smith	et	al.	2007).		

Human	 activities	 affect	 not	 only	 the	 incidence	 and	 activity	 of	 fire	 but	 also	 fire	 size	

through	their	influence	on	the	chance	of	a	fire	being	controlled	(Catchpole	2002).	For	

example,	 Fernandes	 et	 al.	 (2016b)	 found	 out	 that	 fire	 suppression-related	 metrics	

(building	density	+	road	density)	govern	fire	size,	although	their	overall	contribution	is	

not	 as	 great	 as	 those	 of	 weather	 and	 fuel,	 but	 is	 greater	 than	 that	 of	 topography.	

Hantson	 et	 al.	 (2015)	 found	 that	 the	 spatial	 trend	of	 fire	 size	distribution	across	 the	

globe	 is	 driven	 primarily	 by	 climate	 and	 human	 activities	 (i.e.,	 cropland	 cover	 and	

population	density).		

2.4 Fire	Observations	

Fire	 datasets	 are	 essential	 in	 studies	 exploring	 fire	 patterns.	 Taylor	 et	 al.	 (2013)	

summarised	 eight	 major	 sources	 of	 fire	 datasets,	 including	 records	 maintained	 by	

management	agencies	(administrative	records),	historically	reported	records,	outdoor	

experiments,	 case	 studies,	 laboratory	 experiments,	 numerical	 modelling,	 remote	

sensing	and	vegetation	proxies.	In	this	section,	the	usage	of	administrative	records	and	

remote	 sensing	 observations	 in	 fire	 pattern	 modelling	 is	 described	 because	 such	

information	 is	 relevant	 to	 the	 spatial	 and	 temporal	 scales	 of	work	 presented	 in	 this	

thesis.	

2.4.1 Administrative	Records	

Fires	can	be	reported,	investigated	and	recorded	by	fire	management	agencies.	These	

administrative	records	are	the	most	widely	used	data	source	in	modelling	fire	patterns	

(e.g.	Stocks	et	al.	2002;	Brillinger	et	al.	2003;	Preisler	et	al.	2004;	Bradstock	et	al.	2009;	
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Littell	et	al.	2009;	Slocum	et	al.	2010;	Martínez-Fernández	et	al.	2013;	Penman	et	al.	

2013;	Plucinski	et	al.	2014;	Collins	et	al.	2015;	Fernandes	et	al.	2016a).	For	example,	

Littell	 et	 al.	 (2009)	 utilized	 three	 sources	 of	 wildfire-area-burned	 datasets,	 including	

annual	 fire	 statistics	 reports	 obtained	 from	 USDA	 Forest	 Service,	 a	 1°×1°	 gridded	

dataset	 developed	 by	 Westerling	 et	 al.	 (2003)	 and	 a	 large	 fire	 dataset	 to	 quantify	

climatic	controls	on	 the	area	burned	 in	 the	western	United	States	ecoprovinces.	The	

second	dataset	was	compiled	from	fire	reports	maintained	by	the	U.S.	Department	of	

Agriculture’s	 Forest	 Service,	 the	 U.S.	 Department	 of	 the	 Interior’s	 Bureau	 of	 Land	

Management,	 the	 National	 Park	 Service,	 and	 the	 Bureau	 of	 Indian	 Affairs.	 In	 south-

eastern	 Australia,	 which	 covers	 NSW,	 ACT	 and	 VIC,	 the	majority	 of	 fire	 records	 are	

maintained	by	the	NSW	Rural	Fire	Service	 (RFS),	 the	NSW	Office	of	Environment	and	

Heritage	(OEH),	the	ACT	Rural	Fire	Service,	as	well	as	the	CFA	and	the	Department	of	

Environment,	 Land,	 Water	 and	 Planning	 (DELWP)	 in	 VIC.	 The	 advantage	 of	 using	

administrative	records	is	obvious:	They	normally	contain	detailed	information	such	as	

the	ignition	(location	and	timing)	and	cause	(e.g.,	natural	or	arson)	of	a	fire.	However,	

there	are	limitations	such	as	the	limited	accuracy	of	older	records	(Taylor	et	al.	2013),	

the	difficulty	of	collection	and	compilation	of	data	from	multiple	agencies	and	the	lack	

of	reported/investigated	fires	in	less	populated	areas.	For	example,	in	the	rangeland	of	

Australia,	many	fires	are	not	attended	or	reported	to	the	agency	(Turner	et	al.	2011),	

which	affects	the	results	of	fire	occurrence	studies	in	these	sparsely	settled	areas.	

2.4.2 Remotely	Sensed	Observations	

In	 the	 past	 a	 few	 decades,	 the	 remote	 sensing	 technique	 has	 become	 an	 important	

tool	for	fire	management	because	of	its	capacity	in	assessing	uniformly	environmental	

conditions	 before,	 during	 and	 after	 fires	 across	 various	 spatial	 and	 temporal	 scales	

(Lentile	et	al.	2006).	It	has	been	used	in	detecting	actively	burning	fires	(e.g.	Giglio	et	al.	

2003),	mapping	fire	propagation,	extent	(e.g.	Loboda	and	Csiszar	2007;	Veraverbeke	et	

al.	 2014)	and	burned	area	 (e.g.	Riaño	 et	al.	 2007;	Giglio	 et	al.	 2013),	estimating	 fuel	

load	 and	 structure	 (e.g.	 Skowronski	 et	 al.	 2007),	 curing	 (e.g.	 Allan	 et	 al.	 2003)	 and	
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moisture	content	 (e.g.	Danson	and	Bowyer	2004;	Yebra	et	al.	2013),	examining	post-

fire	 responses	 (e.g.	 Kokaly	 et	 al.	 2007)	 and	 emissions	 from	 biomass	 burning	 (e.g.	

Kaufman	 et	al.	 1990),	etc.	There	are	 two	primary	methods	 for	obtaining	 fire	pattern	

information	from	remote	sensing	imagery:	1)	the	detection	of	active	fires	from	optical	

and/or	thermal	bands	and	2)	the	assessment	of	post-fire	effect	via	the	mapping	of	area	

burned	 /surface	 change	 as	 interpreted	 from	 a	 wide	 variety	 of	 aerial	 and	 satellite	

sensors	 (Lentile	 et	 al.	 2006;	Maier	 and	 Russell-Smith	 2012).	 Fire	 patterns	 that	 cover	

board	 spatial	 scales	 (e.g.	 a	 continent)	 are	normally	 detected	by	Advanced	Very	High	

Resolution	 Radiometers	 (AVHRR)	 on	 the	 National	 Oceanic	 and	 Atmospheric	

Administration	 (NOAA)	 satellites	 (Flannigan	 and	 Haar	 1986)	 and	 the	 Moderate	

Resolution	 Imaging	 Spectroradiometer	 (MODIS)	 on	 the	NASA	 Terra	 (1999)	 and	Aqua	

(2002)	 (Justice	 et	 al.	 2002a)	 etc.,	 while	 the	 Thematic	Mapper	 (TM)	 on	 Landsat,	 the	

Satellite	 Pour	 l’Observation	 de	 la	 Terre	 (SPOT),	 etc.	 are	 commonly	 used	 to	 detect	

regional-scale	(e.g.	a	state)	fire	patterns.	MODIS	has	been	found	to	be	the	most	precise	

and	reliable	system	in	terms	of	accuracy	and	completeness	of	target	detection	(Justice	

et	al.	2002b).		

A	 number	 of	 studies	 have	 been	 conducted	 to	monitor	 and	 subsequently	model	 fire	

patterns	with	 the	 support	of	 satellite	 imagery	 (e.g.	Chafer	 et	al.	 2004;	Oliveira	 et	al.	

2012b;	 Liu	 et	al.	 2013;	Fang	 et	al.	 2015).	 In	 some	cases,	 satellite-based	observations	

and	administrative	records	were	used	collectively.	For	example,	Craig	et	al.	(2002)	and	

Russell-Smith	 et	 al.	 (2007)	 evaluated	 the	 continental-scale	 fire	 patterns	 of	 Australia	

using	 images	 extracted	 from	 Advanced	 Very	 High	 Resolution	 Radiometer	 (AVHRR).	

Oliveira	 et	al.	 (2012b)	derived	a	digital	 fire	atlas	containing	annual	 fire	perimeters	 in	

Portugal	 from	Landsat	TM	and	Enhanced	TM	Plus.	Fernandes	et	al.	 (2016a)	used	the	

official	 database	 of	 individual	 fires	 together	with	 the	 digital	 fire	 atlas	 to	 explore	 the	

characteristics	of	extremely	 large	 fires	and	 their	 sizes	 in	 response	 to	 the	variation	of	

concomitant	 fuel	 and	weather	 conditions	 in	Portugal.	 Chafer	 et	 al.	 (2004)	 computed	

the	NDVI	from	pre-	and	post-fire	images	from	SPOT-2	to	map	the	severity	and	intensity	

of	the	Christmas	2001	wildfires	in	the	greater	Sydney	Basin,	Australia.	This	dataset	was	



	

25	

	

then	used	by	Collins	et	al.	(2014)	to	quantify	how	relationships	between	environmental	

variables	and	fire	severity	vary	with	gradients	of	moisture.	Liu	et	al.	(2013)	mapped	fire	

boundaries	 according	 to	 both	 the	 fire	 dataset	 obtained	 from	 forest	 fire	 prevention	

agency	and	the	Landsat	TM	imagery,	and	modelled	the	pattern	of	burned	patch	size	in	

a	 boreal	 forest	 landscape	 in	 the	 Great	 Xing’an	 Mountains	 of	 North-eastern	 China.	

Renard	et	al.	(2012)	used	MODIS	active	fire	observations	(Giglio	et	al.	2003)	from	2003-

2007	 to	quantify	 the	environmental	 factors	 that	 govern	 the	 spatial	 pattern	of	 forest	

fires	in	parts	of	India.	This	product	has	also	been	used	in	other	fire	pattern	studies	(e.g.	

Hawbaker	et	al.	2013;	Curt	et	al.	2015;	McRae	and	Featherstone	2015).		
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Chapter	3 Methodology	

In	 this	 chapter,	 the	 study	 area	 and	 the	 modelling	 methods	 are	 described	 and	 a	

conceptual	framework	regarding	how	each	chapter	is	linked	is	presented.	

3.1 Study	Area	

In	Australia,	more	than	300,000	km2	are	affected	by	fire	annually,	making	it	one	of	the	

most	 fire-prone	continents	 in	the	world	 (Craig	et	al.	2002;	Russell-Smith	et	al.	2007).	

The	activities	of	 fire	differ	with	variations	 in	environments	and	vegetation	 types	 (Gill	

1975;	 Luke	 and	 McArthur	 1978).	 The	 hazardous	 fires	 occur	 most	 frequently	 in	 the	

south-eastern	part	of	the	continent	(Commonwealth	of	Australia	1996).	NSW,	ACT	and	

VIC	 are	 three	 fire-prone	 and	 densely	 settled	 regions	 where	 wildfires	 result	 in	

tremendous	 losses	of	 life	and	property.	During	 the	period	of	1939-2007,	 these	 three	

states	experienced	house	losses	of	1,530,	521	and	6,861,	respectively,	accounting	for	

80%	of	the	total	house	loss	caused	by	fires	in	Australia	during	that	period	(calculated	

from	Table	1	of	Blanchi	et	al.	2010).	Fires	 in	 these	states	also	resulted	 in	80%	of	 the	

total	life	loss	caused	by	fires	during	1901-2011	(calculated	from	Fig.1	of	Blanchi	et	al.	

2014).		

The	Riverina	bioregion	(Department	of	Sustainability,	Environment,	Water,	Population	

and	 Communities	 [DSEWPaC],	 2012)	 covers	 an	 area	 of	 around	 90,000	 km2,	 77%	 of	

which	is	located	in	NSW	and	the	rest	lies	in	Victoria	(Eardley	1999).	Maintaining	forest	

health	 through	 management	 activities	 (e.g.,	 protection	 from	 wildfire)	 is	 one	 of	 the	

objectives	 of	 the	 ecologically	 sustainable	 forest	management	 in	 this	 region	 (Forests	

NSW	 2008).	 This	 can	 be	 achieved	 by	 conducting	 strategic	 fire	management	 through	

fuel	management	and	wildfire	suppression	programs.		

Chapters	4	and	5	 look	at	 fire	patterns	at	relatively	broad	scales	that	cover	fire-prone	

states	of	south-eastern	Australia	--	the	study	area	of	Chapter	4	covers	NSW,	ACT	and	
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VIC	(Figure	3.1	(b)),	while	Chapter	5	covers	NSW	and	ACT.	The	scale	of	Chapters	6	and	

7	is	relatively	small	that	covers	a	bioregion	of	south-eastern	Australia:	the	NSW	side	of	

the	 Riverina	 bioregion	 (Figure	 3.1	 (c)).	Nevertheless,	 both	 scales	 are	 intermediate	 in	

view	of	the	effects	of	top-down	and	bottom-up	controls	on	fire	patterns	(Moritz	et	al.	

2005;	Parisien	and	Moritz	2009;	Bradstock	2010;	McKenzie	et	al.	2011).	Details	on	the	

selection,	 the	 geographical	 and	 environmental	 conditions	 of	 each	 study	 area	will	 be	

specified	in	each	individual	chapter.		

	

Figure	3.1	Maps	showing	boundaries	of	(a)	Australia;	(b)	the	south-eastern	Australia	and	(c)	the	New	South	Wales	
side	of	the	Riverina	bioregion.	



	 	

28	

	

3.2 Modelling	Methods	

3.2.1 A	Review	of	Wildfire	Modelling	Methods	

Preisler	 and	Weise	 (2013)	 summarised	 three	 types	 of	 wildfire	 models,	 i.e.,	 fire	 risk	

models	used	for	pre-fire	planning,	fire	behaviour	models	for	fire	suppression,	as	well	as	

fire	effects	and	economy	models	for	post-fire	evaluation.	Fire	risk	models	can	include	

indexes	qualifying	levels	of	fire	danger	(Section	2.3.2),	or	empirical	models	quantifying	

fire	risks	(e.g.	Brillinger	et	al.	2006;	Turner	et	al.	2011;	Price	and	Bradstock	2013;	Ager	

et	 al.	 2014;	 Hernandez	 et	 al.	 2015).	 Fire	 behaviour	 models	 are	 most	 commonly	

classified	 as	 empirical	models,	 semi-physical	 (or	 semi-empirical)	models	 and	physical	

models.	Empirical	models	used	regression	methods	and	environmental	conditions	(e.g.,	

wind	speed)	to	predict	the	rate	of	spread,	such	as	that	used	in	the	Canadian	Forest	Fire	

Behaviour	Prediction	 (FBP)	 System	 (Forestry	Canada	 Fire	Danger	Group	1992).	 Semi-

physical	 models	 incorporate	 physical	 knowledge	 into	 mathematical	 equations.	 For	

example,	 the	 fire	 spread	 rate	 formulas	 developed	 by	 Rothermel	 (1972)	 are	

subsequently	 used	 in	 BehavePlus	 (Andrews	 2007),	 Fire	 Area	 Simulator	 (FARSITE)	

(Finney	2004),	Prometheus	(Tymstra	et	al.	2010),	and	others.	Physical	models	are	more	

complex,	 computational	 fluid	 dynamic	 and	 combustion	 models	 that	 allow	 for	 the	

dynamic	 simulation	 of	 fire	 spread	 and	 growth	 in	 a	 three-dimensional	 lattice.	 These	

models	 include	FIRETEC	 (Linn	 et	al.	 2002),	 Fire	Dynamic	Simulator	 (Mell	 et	al.	 2007),	

and	 a	 fire-behavior	module	based	on	Weather	Research	 and	 Forecasting	 (WRF-FIRE)	

(Mandel	 et	 al.	 2011).	 Fire	 effect	 models	 estimate	 effects	 of	 fire	 on	 ecosystem	

processes	using	mathematical	 equations	 (Campbell	 et	 al.	 1995)	or	 statistical	 analysis	

(e.g.	Bradstock	et	al.	1997).		

There	 are	 primarily	 three	methods	 used	 in	 empirical-based	 fire	 risk/pattern	 studies:	

the	 traditional	 statistics	 (including	 Bayesian	 statistics),	 spatial	 statistics	 and	machine	

learning	algorithms.	The	selection	of	a	model	is	largely	dependent	on	the	nature	of	the	

dataset	and	the	objective	of	a	study.	In	Sections	3.2.1	and	3.2.2,	the	empirical	models	

for	two	fire	risk	components—fire	occurrence	and	size—are	described.		
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Fire	Occurrence	Models	

The	 occurrence	 of	 fire	 is	 a	 stochastic	 process	 that	 can	 be	 modelled	 using	 a	 point	

process	 framework	 with	 a	 conditional	 intensity	 function	 (Taylor	 et	 al.	 2013).	 The	

framework	 is	 commonly	used	 to	model	 the	probability	or	number	of	 fire	occurrence	

per	 period	 (e.g.,	 day)	 and	 per	 spatial	 unit	 (e.g.,	 grid	 or	 region),	 as	 a	 function	 of	

explanatory	 variables.	 A	 number	 of	 models	 such	 as	 Bernoulli,	 Poisson,	 negative	

binomial	 process	 models	 have	 been	 used	 in	 fire	 occurrence	 modelling	 in	 different	

situations.	 On	 a	 very	 fine	 spatial	 and	 temporal	 unit,	 a	 Bernoulli	 process	 can	 be	

modelled	 using	 a	 GLM	 with	 a	 logit	 link,	 which	 is	 mostly	 referred	 to	 as	 the	 logistic	

regression.	 The	 dependent	 variable	 of	 a	 logistic	 regression	 is	 either	 1	 or	 0,	meaning	

that	 the	 probability	 of	 the	 presence	 of	 a	 fire	 is	 being	modelled.	 For	 example,	 Chou	

(1992)	 developed	 a	 logistic	 regression	 model	 to	 generate	 the	 distribution	 of	 the	

probability	 of	 fire	 occurrence	 in	 California.	 Syphard	 et	 al.	 (2008)	 used	 logistic	

regression	 to	 model	 and	 map	 spatial	 patterns	 of	 fire	 ignition	 in	 the	 Santa	 Monica	

Mountains.	 Krawchuk	 et	 al.	 (2006)	 employed	 logistic	 regression	 to	 quantify	 the	

independent	 effects	 of	 weather	 and	 forest	 composition	 on	 fire	 ignition	 patterns	 in	

Alberta,	 Canada.	 A	 Poisson-based	 model,	 which	 is	 a	 GLM	 model	 with	 a	 log	 link,	 is	

commonly	used	 to	model	 the	 fire	count	 in	 relation	with	 its	determinants.	Compared	

with	logistic	regression	models	that	connect	local	covariates	with	each	individual	fire,	

Poisson	models	relate	counts	of	fires	with	averaged	values	of	covariates	over	a	larger	

region	 (Taylor	 et	 al.	 2013).	 For	 example,	 Mandallaz	 and	 Ye	 (1997)	 presented	 the	

application	of	Poisson	models	in	forest	fire	occurrence	predictions	and	illustrated	the	

theory	via	case	studies	in	France,	Italy,	Portugal,	and	Switzerland.	Wotton	et	al.	(2010)	

developed	 a	 number	 of	 Poisson-based	models	 to	 connect	 the	 daily	 number	 of	 fires	

with	weather	information	within	ecoregions	of	Canada.	Negative	binomial	regression	is	

a	 generalisation	 of	 Poisson-based	 model	 but	 adds	 a	 parameter	 to	 model	 over-

dispersion	 in	 order	 to	 assume	 that	 the	 equality	 of	 the	mean	 and	 variance	made	 by	

Poisson-based	models	 is	 loosened.	For	example,	Plucinski	et	al.	 (2014)	used	negative	

binomial	 regression	 to	 model	 the	 number	 of	 daily	 human-caused	 fires	 within	 10	
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management	areas	of	Western	Australia,	assuming	the	variance	to	be	a	function	of	the	

square	 of	 the	 mean.	 Bayesian	 modelling	 methods	 have	 also	 been	 employed	 in	 fire	

occurrence	studies.	For	example,	Bradstock	et	al.	(2009)	employed	a	Bayesian	logistic	

regression	with	uninformed	prior	knowledge	to	explore	the	association	between	large-

fire	 ignition	day	probability	and	its	driving	weather	factors	 in	Sydney	Basin,	Australia.	

Dilts	 et	 al.	 (2009)	 used	 weights	 of	 evidence,	 a	 data-driven	 approach	 from	 Bayesian	

statistics,	 to	 derive	 fire	 occurrence	 probabilities	 based	 on	 the	 association	 between	

occurrence	and	landscape-scale	evidence	layers	in	Nevada.		

GLM	is	a	parametric	model	that	quantifies	the	linear	relationship	between	covariates	

and	the	probability	or	number	of	fire	occurrence.	GAM	(Hastie	and	Tibshirani	1986)	is	

an	 extension	 of	 GLM	 that	 allows	 for	 non-linear	 relationships	 for	 covariates.	 Logistic	

GAM	is	the	dominant	GAM	that	has	been	used	in	a	number	of	fire	occurrence	analyses.	

These	models	can	be	spatiotemporal-based.	For	example,	Brillinger	et	al.	(2003)	used	a	

spatiotemporal	 GAM	 with	 a	 logit	 link	 to	 estimate	 forest	 fire	 occurrence	 as	

(nonparametric)	smooth	functions	of	the	spatial	effect	(location),	seasonal	effect	(day	

of	 the	 year)	 and	elevation	 in	 federal	 lands	 in	Oregon.	Preisler	 et	 al.	 (2004)	used	 the	

same	technique	to	build	 logistic	GAMs	in	estimating	three	probabilities	regarding	fire	

risk	and	produced	probability	maps	for	the	entire	state	of	Oregon.	This	technique	has	

been	subsequently	used	in	many	spatiotemporal	fire	occurrence	studies	(e.g.	Vilar	et	al.	

2010b;	Woolford	 et	 al.	 2014).	 Logistic	 GAM	 has	 also	 been	 used	 to	 build	 spatial	 fire	

occurrence	models	without	considering	the	temporal	effects	(e.g.	Braun	et	al.	2010)	or	

to	 model	 long-term	 trends	 of	 fire	 occurrence,	 mostly	 at	 board	 spatial	 scales	 (e.g.	

Woolford	et	al.	2014).		

Spatial	 statistics	 such	 as	 the	 spatial	 point	 process	 (SPP)	 models	 (Turner	 2009)	 and	

geographically	 weighted	 regression	 (GWR)	 models	 (Fotheringham	 et	 al.	 2003)	 have	

been	 used	 to	 model	 fire	 occurrence.	 SPP	 models	 commonly	 include	 two	 types	 of	

analysis:	 the	 explanatory	 data	 analysis	 that	 assesses	 patterns	 to	 determine	whether	

they	exhibit	patterns	of	complete	spatial	randomness,	and	the	parametric	model	used	
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to	model	relationships	between	covariates	and	fire	patterns,	considering	the	(possibly)	

inhomogeneous	process.	For	the	first	type	of	analysis,	Wang	and	Anderson	(2010)	used	

K-function	 and	 kernel	 estimation	 to	 evaluate	 the	 spatial	 and	 temporal	 patterns	 of	

lightning-	 and	 human-caused	 ignitions	 in	 forested	 areas	 of	 Alberta,	 Canada.	 For	 the	

second	 type	 of	 analysis,	 Yang	 et	 al.	 (2007)	 employed	 an	 inhomogeneous	 Poisson	

process	 model	 to	 model	 quantify	 the	 effects	 of	 land	 cover,	 topography,	 roads,	

municipalities,	 ownership,	 and	population	density	on	 fire	occurrence	 in	 the	Missouri	

Ozark	Highland	forests,	 in	the	United	States.	Another	spatial	statistical	method	is	the	

GWR,	which	allows	for	the	analysis	of	spatial	variation	of	the	driving	factors	associated	

with	 wildfire	 patterns.	 For	 example,	Martínez-Fernández	 et	 al.	 (2013)	 identified	 the	

driving	factors	of	human-caused	fire	occurrence	in	Spain	using	two	statistical	methods:	

the	GWR	to	model	fire	presence/absence,	as	well	as	ordinary	least	squares	regression	

and	 binary	 logistic	 regression	 to	 model	 fire	 density.	 Rodrigues	 et	 al.	 (2014)	 used	

geographically	weighted	 logistic	 regression	 (GWLR)	 to	analyse	 the	spatial	variation	 in	

the	explanatory	factors	of	human-caused	wildfires	in	continental	Spain.		

Except	 for	 statistical	methods,	 a	 number	 of	machine	 learning	 algorithms	 have	 been	

applied	 in	 fire	 occurrence	 modelling.	 For	 example,	 Oliveira	 et	 al.	 (2012a)	 applied	

random	 forest	 and	 multiple	 linear	 regression	 to	 model	 spatial	 patterns	 of	 fire	

occurrence	in	Mediterranean	Europe.	Müller	et	al.	(2013)	estimated	the	probability	of	

a	forest	fire	being	ignited	by	relevant	lightning	flashes	using	a	decision	tree	and	related	

decision	 matrices.	 Rodrigues	 and	 de	 la	 Riva	 (2014)	 compared	 the	 performance	 of	

logistic	 regression	 with	 that	 of	 three	 machine-learning	 algorithms—random	 forest,	

boosting	regression	trees,	and	support	vector	machines—in	modelling	human-caused	

wildfire	occurrences	 in	 Spain.	Bar	Massada	 et	al.	 (2013)	 compared	 the	performance,	

variable	 importance	 and	 spatial	 patterns	 of	 predicted	 occurrence	 probabilities	 of	

logistic	 regression,	 random	 forests	 and	 Maximum	 Entropy	 (MaxEnt)	 in	 the	 Huron-

Manistee	National	Forest	of	Michigan.	Data-mining	techniques	are	principally	superior	

to	 parametric	 methods	 because	 of	 their	 greater	 accuracies;	 however,	 they	 have	
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obvious	 limitations	 such	 as	 the	 lack	 of	 transparency	 and	 the	 possible	 problem	 of	

overfitting	(Magnussen	and	Taylor	2012).	

Natural	 or	 human-caused	 fires	 are	 caused	 by	 different	 processes	 (Section	 2.3.5),	

therefore	 spatial	 patterns	 of	 their	 occurrence	 in	 relation	 to	 their	 driving	 factors	 are	

usually	modelled	 separately.	 For	 natural	 fires,	Wotton	 and	Martell	 (2005)	 employed	

logistic	regression	to	model	the	probability	that	a	lightning	strike	causes	a	sustainable	

ignition	 on	 the	 forest	 floor	 and	 the	 probability	 of	 an	 ignition	 being	 detected	 and	

reported	to	the	fire	management	agency	for	each	ecoregion	in	the	province	of	Ontario,	

Canada.	 Ordóñez	 et	 al.	 (2012)	 used	 generalised	 spatial	 linear	 models	 to	 predict	

spatially	 distributed	 probabilities	 for	 fire	 occurrence	 in	 locations	 where	 storms	

featuring	 lightning	occurred	 in	 northwest	 Spain.	Woolford	 et	 al.	 (2014)	 assessed	 the	

long-term	 trend	 of	 natural	 fire	 occurrence	 and	 its	 associations	with	 air	 temperature	

and	 duff	moisture	 anomalies	 using	 logistic	 GAM	 in	 a	 part	 of	 north-western	Ontario,	

Canada.	 Pew	 and	 Larsen	 (2001)	 examined	 spatial	 and	 temporal	 patterns	 of	 human-

caused	wildfires	 in	 the	 temperate	rainforest	of	Vancouver	 Island,	Canada.	Vilar	et	al.	

(2010b)	 developed	 a	 spatiotemporal	 model	 for	 human-caused	 wildfire	 occurrence	

prediction	in	central	Spain	by	using	logistic	GAM.	Romero-Calcerrada	et	al.	(2008)	used	

weights	of	evidence	model	to	model	socio-economic	data	to	produce	predictive	maps	

in	central	Spain.		

Fire	Size	Models	

Fire	size	has	been	studied	from	several	aspects,	including	its	distribution	as	well	as	the	

effects	and	 relative	 importance	of	 its	 regulating	 factors.	The	distribution	of	 fire	 sizes	

has	 been	 characterised	by	 empirical	models	 as	 exponential	 (Baker	 1989),	 power-law	

(Lin	and	Rinaldi	2009;	Jiang	et	al.	2010;	Slocum	et	al.	2010;	Dowdy	and	Mills	2012b),	

truncated	Pareto	(Cumming	2001;	Holmes	et	al.	2008)	and	log-normal	(Hantson	et	al.	

2016).	 For	 example,	 Slocum	 et	 al.	 (2010)	 conducted	 power-law	 statistics	 to	

characterise	the	fire	size	frequency	distribution	in	south-central	Florida.	Hantson	et	al.	

(2015)	used	the	same	statistics	and	concluded	that	power-law	gave	a	good	fit	globally.	
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They	 then	 systematically	 tested	 the	 distribution	 of	 fire	 sizes	 in	 eight	 selected	 areas	

over	 the	globe	and	 found	 that	 fire	 size	data	was	better	 fitted	by	 log-normal	 in	most	

cases,	while	in	only	two	of	eight	cases	power-law	(a	particular	case	of	the	log-normal)	

was	not	rejected	(Hantson	et	al.	2016).		

The	 influence	of	factors	such	as	weather/climate,	topography,	and	vegetation	on	fire	

size	has	been	quantified	in	a	number	of	regions	and	across	multiple	scales	(e.g.	Viedma	

et	al.	 2009;	Slocum	 et	al.	 2010;	 Liu	 et	al.	 2013;	 Loepfe	 et	al.	 2014;	Fang	 et	al.	 2015;	

Hantson	 et	 al.	 2015;	 Fernandes	 et	 al.	 2016a;	 Fernandes	 et	 al.	 2016b).	 These	

relationships	have	been	built	with	traditional	statistics	or	machine	learning	algorithms.	

For	example,	Viedma	 et	al.	 (2009)	used	GLM	to	 find	 relationships	between	 fire	 sizes	

(log	ha)	and	landscape	properties	and	weather	conditions	in	central	Spain.	Hantson	et	

al.	(2015)	used	GAM	to	find	relationships	between	the	distribution	of	global	individual	

fire	sizes	and	the	climate	and	human	activity.	Slocum	et	al.	(2010)	conducted	a	cross-

scale	analysis	using	quantile	regression	to	quantify	effects	of	climatic	conditions	on	fire	

sizes	at	different	spatial	scales.	Liu	et	al.	(2013)	used	boosted	regression	trees,	which	

combine	 the	 strengths	 of	 regression	 trees	 and	 boosting,	 to	 quantify	 the	 relative	

importance	of	factors	regulating	fire	sizes	at	continuous	spatial	scales.	Fernandes	et	al.	

(2016b)	used	the	same	method	to	 identify	effects	of	bottom-up	variables	on	a	 large-

size	 fires	 in	Portugal	 and	evaluated	 their	 relative	 importance	globally	 and	across	 the	

fire-size	range.	

3.2.2 Methods	used	in	this	Thesis	

Since	the	present	thesis	aims	to	provide	knowledge	on	fire	patterns	of	the	study	area,	

the	 empirical-based	 fire	 risk	 models	 are	 most	 appropriate.	 Among	 all	 the	 above-

reviewed	 fire	 risk	 models,	 GLM	 and	 GAM	 are	 selected	 as	 the	 modelling	 methods.	

Although	 other	 methods,	 e.g.,	 machine	 learning	 techniques,	 may	 be	 theoretically	

superior,	 the	 lack	 of	 transparency	 is	 a	 drawback	 (Magnussen	 and	 Taylor	 2012).	

Specifically,	 the	probability	of	 fire	occurrence	 is	modelled	using	GLM	or	GAM	with	a	

logit	 link,	 depending	 on	 whether	 non-linear	 relationships	 between	 the	 dependent	
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variable	and	 the	explanatory	 variables	 are	expected,	 and	whether	 the	 sample	 size	 is	

large	 enough	 to	 support	 non-linear	 regressions.	 The	 relationships	 between	 fire	 size	

and	its	determinants	are	modelled	with	GLM	using	natural-log	transformed	fire	size	as	

the	 dependent	 variable.	 Details	 on	 the	 modelling	 approach	 will	 be	 specified	 in	

Chapters	 4-7.	 All	 the	 variables	 were	 constructed	 within	 a	 Geographical	 Information	

System	 (GIS)	 framework.	 All	 statistical	 analyses	 were	 conducted	 using	 R	 packages	

version	3.1.1	(R	Development	Core	Team	2014)	or	version	3.2.3	(R	Development	Core	

Team	2015).		

3.3 Conceptual	Framework	

The	 conceptual	 framework	 of	 this	 thesis	 is	 presented	 in	 Figure	 3.2.	 This	 thesis	

examines	 fire	 patterns	 and	 their	 determinants	 by	 conducting	 four	 individual	 case	

studies,	 each	 of	 which	 targets	 one	 objective	 specified	 in	 Section	 1.2.	 Since	 these	

studies	 look	at	 fire	patterns	across	 two	 intermediate	 spatial	 scales	 (see	Section	3.1),	

both	 top-down	and	bottom-up	controls	 that	exert	 complex	and	 interactive	 influence	

on	fire	patterns	(see	Section	2.3)	have	been	evaluated	using	GLM	and	GAM	in	all	the	

case	 studies.	 These	 factors	 include	weather	 (ambient	 and	 antecedent	weather),	 fuel	

(fuel	moisture,	fuel	type,	biomass,	etc.),	topography	(elevation,	slope,	aspect,	etc.)	and	

ignition	sources	(road	network,	population,	protection,	etc.).	The	inclusion	of	a	specific	

factor	 is	 also	 subject	 to	 the	 availability	 of	 data	 in	 each	 individual	 study.	 Remotely	

sensed	fire	observations,	 i.e.	 the	MODIS	active	fire	detections	and	the	administrative	

fire	 observations	 sourced	 from	 fire	 management	 agencies,	 are	 used	 as	 dependent	

variables	 in	 the	modelling	 processes	 of	 the	 broad-scale	 and	 the	 small-scale	 studies,	

respectively.	This	framework	allows	the	thesis	to	assess	the	scale-dependent	and	site-

specific	effects	of	top-down	and	bottom-up	factors	on	fire	patterns	within	each	study	

area.	
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Figure	3.2	Conceptual	framework	of	the	thesis.	

This	thesis	first	describes	the	development	and	validation	of	spatial	models	for	wildfire	

activity	at	a	broad	scale	that	covers	NSW,	ACT	and	VIC	(Chapter	4).	The	objective	is	to	

quantify	 the	 effects	 of	 environmental	 and	 anthropogenic	 factors	 on	 the	 spatial	

distribution	of	fire	activities	and	their	relative	contributions	for	the	prediction	of	future	

fires.	To	achieve	these	objectives,	the	probability	of	at	least	one	fire	within	a	1	km2	grid	

cell	 over	 an	11-year	period	 (2003-2013)	has	been	estimated	using	MODIS	 active	 fire	

product	 and	 logistic	 GLM.	 Land	 cover,	 vegetation	 indexes,	 elevation,	 slope,	 aspect,	

distance	 to	 zero	 residual	 contours,	 distance	 to	 road,	 distance	 to	 railway,	 distance	 to	

Wildland-Urban	Interface	(WUI)	and	population	density	are	considered	as	contributing	

factors.	 Univariate	 and	 multiple	 regression	 analyses	 have	 been	 conducted	 for	 the	

evaluation	of	independent	and	partial	effects	of	these	factors	on	fire	activity	pattern.	

The	 contribution	 of	 each	 factor	 has	 been	 evaluated,	 and	 a	 resulting	 fire	 probability	

map	has	been	generated.		
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The	previous	study	assumes	no	difference	among	fire	drivers	of	different	regions	and	

linear	relationships	between	response	and	explanatory	variables.	The	work	presented	

in	 Chapter	 5	 aims	 to	 provide	 localised	 and	 more	 precise	 information	 on	 fire	 risk	

assessment,	and	so	can	be	viewed	as	an	extension	of	the	work	of	the	previous	chapter.	

The	primary	objective	is	to	quantify	the	regional	variation	in	the	effects	of	factors	on	

fire	 ignition	 pattern	 in	 NSW	 and	 ACT,	 Australia.	 Ecoregions	 are	 selected	 as	 the	

landscape	 segmentation	 system.	 This	 is	 because	 (1)	 an	 ecoregion	 is	 identified	 to	 be	

biologically	 coherent,	 so	 that	 fire	 management	 suggestions	 are	 ecologically	 and	

strategically	meaningful;	and	(2)	each	ecoregion	covers	a	 large	area	of	the	 landscape	

with	 enough	 samples,	 so	 that	 statistically	 significant	 results	 can	be	obtained.	 Rather	

than	using	all	the	MODIS	active	fire	detections,	fire	ignition	points	were	identified	from	

the	dataset	using	a	Fire	Spread	Reconstruction	(FSR)	algorithm.	These	ignition	points,	

together	with	environmental	and	anthropogenic	factors,	were	used	to	build	ecoregion-

based	models	 to	 estimate	 probabilities	 of	 at	 least	 one	 fire	within	 a	 1	 km2	 grid	 cell.	

Logistic	GAMs	are	used	to	model	non-linear	relationships	between	fire	probability	and	

its	explanatory	variables.	

As	stated	in	Section	1.1,	a	better	understanding	of	fire	regime	pattern	is	required	given	

the	dense	population	of	fire-sensitive	species	such	as	Eucalyptus	camaldulensis	 in	the	

riverine	environment	of	south-eastern	Australia.	The	objective	of	the	study	of	Chapter	

6	 is	 to	 characterise	 wildfire	 occurrence	 patterns	 in	 inland	 wetlands	 and	 their	

neighbouring	dry	lands,	and	to	identify	effects	and	relative	contributions	of	these	fire-

occurrence	drivers	 in	 the	NSW	side	of	 the	Riverina	Bioregion.	Administrative	wildfire	

records	from	1970-2016	sourced	from	several	fire	management	agencies	are	used	for	

the	construction	of	 the	dependent	variable.	A	number	of	human-caused	and	natural	

wildfires	 occurred	 in	 this	 area	 each	 year,	 allowing	 for	 quantitative	 analysis	 on	 a	

causality	basis.	The	distributions	of	Fires	burned	Entirely	 in	forested	Wetlands	(FEW),	

Fires	burned	Partly	in	forested	Wetlands	(FPW)	and	Fires	that	did	Not	burn	in	forested	

Wetlands	 (FNW)	 are	 explored	 separately	 in	 the	 descriptive	 analysis.	 Univariate	 and	

multiple	logistic	GLMs	have	been	built	to	understand	weather,	vegetation	(e.g.,	FEW	or	
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FNW)	and	ignition	sources	acting	on	the	occurrence	of	both	human-caused	and	natural	

fires.		

The	study	presented	 in	Chapter	7	subsequently	models	the	driving	factors	of	wildfire	

size	 in	 the	 same	 area	 as	 Chapter	 6.	 The	 objective	 is	 to	 investigate	 wildfire	

characteristics	 and	 the	 effects	 and	 relative	 contributions	 of	 ambient	 weather	 and	

antecedent	rainfall	on	fire	size	in	forested	wetlands	and	the	surrounding	dry	lands.	As	

in	the	previous	step,	descriptive	analysis	has	been	conducted	to	explore	distributions	

of	 sizes	 of	 FEW,	 FPW	 and	 FNW.	 Univariate	 and	multiple	 GLM	was	 used	 to	 quantify	

relationships	between	fire	size	and	its	determinants,	with	natural-log	transformed	fire	

size	being	used	as	the	dependent	variable.	The	three	fire	categories	are	progressively	

incorporated	 into	 the	 modelling	 process	 to	 explore	 the	 change	 of	 effects	 and	

contributions	 of	 factors	 as	 the	 fuel	 type	 changes	 from	 litter/grass	 to	 shrub/grass.	

Chapters	6	and	7	collectively	provide	information	on	fire	occurrence	and	size	in	in	the	

riverine	 environment	 of	 south-eastern	 Australia.	 Information	 obtained	 from	 both	

studies	are	vital	to	fire	risk	reduction	and	sustainable	land	and	fire	management.	They	

may	also	be	extended	and	compared	with	knowledge	on	fire	patterns	in	wetlands	and	

their	neighbouring	dry	lands	in	arid	or	semi-arid	areas	across	the	world.	
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Chapter	4 Wildfire	Activity	Patterns	in	South-Eastern	Australia	

In	 this	 chapter,	 the	 term	 “fire	 occurrence”	 refers	 to	 the	 activities	 of	 fire	 within	 a	

spatiotemporal	 unit	 (see	 definition	 in	 Section	 2.2.2).	 The	 spatial	 patterns	 of	wildfire	

occurrence	 in	an	area	that	covers	NSW,	ACT,	and	VIC	are	explored	by	estimating	the	

probability	 of	 at	 least	 one	 fire	within	 a	 1	 km	 x	 1	 km	 grid	 cell	 under	 specific	 sets	 of	

environmental	and	anthropogenic	conditions.	Fire	occurrence	points	are	sourced	from	

the	 MODIS	 active	 fire	 product.	 Univariate	 and	 multiple	 logistic	 GLMs	 are	 used	 to	

predict	where	fires	are	likely	to	occur	in	South-Eastern	Australia	on	a	broad	scale.		

4.1 Study	Area	

	

Figure	4.1	Location	and	land	cover	types	of	South-Eastern	Australia.	



	 	

39	

	

As	defined	in	this	section,	South-Eastern	Australia	contains	the	mainland	states	of	NSW,	

VIC,	and	ACT,	covering	an	area	of	1,030,000	km2	(Figure	4.1).	The	dominant	land	cover	

types	in	this	region	are	open	shrublands	(39%),	croplands	(26%),	evergreen	broadleaf	

forests	(13%),	and	woody	savannas	(10%),	as	calculated	by	the	authors.	The	climate	in	

this	 region	 is	 temperate:	 cold	 and	 damp	 in	 winter,	 hot	 and	 dry	 in	 summer.	 Low	

frequency,	 high	 intensity	 fires	 occur	 in	 this	 area	 due	 to	 the	 latitudinal	 gradient	 in	

summer	monsoon	rainfall	activity	(Murphy	et	al.	2013).		

4.2 Data	Description	

A	 range	 of	 datasets	were	 collected	 and	 transformed	 for	 the	 purposes	 of	 this	 study.	

Some	were	used	 for	 statistical	 analysis	 (Table	4.1)	while	others,	 e.g.	 the	Catchment-

scale	 Land	 Use	 of	 Australia	 Map	 (CLUM)	 (Department	 of	 Agriculture	 and	 Water	

Resources	 [DAWR]	 2014)	 (Section	 4.2.1),	 were	 used	 as	 filters	 for	 identifying	 fire	

occurrence	points.	

4.2.1 Land	Use	

The	 CLUM	 dataset	 was	 collected	 by	 state	 and	 territory	 partners	 of	 the	 Australian	

Collaborative	 Land	 Use	 and	 Management	 Program	 (ACLUMP),	 published	 by	 the	

Department	 of	 Agriculture	 (DA),	 and	 updated	 in	 March	 2014.	 Land	 use	 in	 CLUM	 is	

mapped	 at	 the	 detailed	 catchment	 scale	 (1:25,000-1:100,000).	 This	 data	 is	 classified	

according	to	the	Australian	Land	Use	and	Management	(ALUM)	Classification	version	7	

(DAWR	2010),	 and	 shows	 a	 single	 dominant	 land	 use	 for	 a	 given	 area	 based	 on	 the	

major	 management	 objective.	 There	 are	 six	 primary	 classes	 of	 land	 use:	 (1)	

conservation,	 natural	 environments;	 (2)	 production	 from	 relatively	 natural	

environments;	(3)	production	from	dryland	agriculture	and	plantations;	(4)	production	

from	 irrigated	 agriculture	 and	 plantations;	 (5)	 intensive	 uses;	 (6)	 water.	 The	 50	 m	

resolution	CLUM	dataset	was	resampled	to	1	km	for	consistency	with	the	resolution	of	

MODIS	 hotspots	 and	 to	 reduce	 the	 size	 of	 the	 dataset	 needed	 to	 cover	 an	 area	 of	

1,030,000	km2.	Resampling	was	performed	using	the	majority	algorithm.		
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Table	4.1	Sources	and	descriptions	for	variables	included	in	regression	models	explaining	fire	occurrence	in	South-Eastern	Australia.	All	variables	were	generated	or	resampled	at	a	
resolution	of	1	km.	

Variable	 Source	 Description	of	Original	Data	

Explanatory	variables	 	 	

Land	cover	 NASA	 MODIS	500	m	MCD12Q1,	2003	

Six	primary	classes	(forests;	shrublands;	savannas;	grasslands;	permanent	wetlands;	croplands,	

water	bodies	and	others)	

NDVI	 NASA	 MODIS	1	km	MYD13A3	NDVI,	Collection	5,	January	2003	

EVI	 NASA	 MODIS	1	km	MYD13A3	EVI,	Collection	5,	January	2003	

Elevation	 NASA	 ASTER	30	m	GDEM,	V2	

Slope	 NASA	 Derived	from	elevation	grid	

Northwestness	 NASA	 Derived	from	elevation	grid	

NW	=	con	(	[aspect]	==	-	1	,	0	,	cos	(	(	[aspect]	+	45	)	*	π	/	180))	

Distance	to	zero	residual	contours	 NASA	 Derived	from	elevation	grid,	m	

Distance	to	primary	road	 OSM	 Mean	Euclidean	distance,	m	

Distance	to	secondary	road	 OSM	 Mean	Euclidean	distance,	m	

Distance	to	railway	 OSM	 Mean	Euclidean	distance,	m	

Distance	to	WUI	 OSM	 WUI,	m;	wildland–urban	interface	Derived	from	CLUM	land	use	

Population	density	 ABS	 LGA	units,	2003	

Dependent	variable	 	 	

Fire	occurrence	 NASA	 Derived	from	MODIS	1	km	MCD14ML,	Collection	5	
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4.2.2 Land	Cover		

The	MODIS	500	m	Land	Cover	Type	product	(MCD12Q1)	(NASA	LP	DAAC	2003a)	based	

on	 the	 classification	 system	 defined	 by	 the	 International	 Geosphere	 Biosphere	

Program	 (IGBP)	 was	 used	 for	 filtering	 of	 fire	 occurrence	 points	 and	 subsequent	

statistical	 analysis.	 The	 classification	 system	 consists	 of	 17	 classes	 (11	 natural	

vegetation	classes,	three	developed	and	mosaic	land	classes,	and	three	non-vegetated	

land	 classes)	 at	 a	 global	 scale.	 These	 were	 reclassified	 into	 six	 primary	 classes	 to	

consider	the	influence	of	primary	vegetation	types	on	fire	occurrence	in	the	study	area:	

(1)	 forests;	 (2)	 shrublands;	 (3)	 savannas;	 (4)	 grasslands;	 (5)	 permanent	wetlands;	 (6)	

croplands,	water	 bodies	 and	others.	MCD12Q1	data	 from	2003	was	 chosen	because	

that	 year	 had	 the	 highest	 number	 of	 fires	 in	 the	 study	 area.	 The	 data	 was	 also	

resampled	 from	 a	 resolution	 of	 500	 m	 to	 1	 km	 using	 the	 majority	 algorithm	 for	

consistency	with	the	resolution	of	MODIS	hotspots.		

4.2.3 Vegetation	

The	 2003	 Collection	 5	 MODIS	 global	 monthly	 Vegetation	 Index	 product	 series	

(MYD13A3)	(NASA	LP	DAAC	2003b)	was	used	as	an	indicator	of	fuel	 load	in	the	study	

area.	 This	data	 is	 provided	monthly	 at	 a	 1	 km	 spatial	 resolution	as	 a	 gridded	 level-3	

product.	 Two	 types	 of	 vegetation	 index	 were	 used:	 NDVI	 and	 a	 new	 Enhanced	

Vegetation	 Index	 (EVI).	 NDVI	 is	 the	 index	 most	 commonly	 used	 to	 assess	 live	 fuel	

moisture	content	(Hardy	and	Burgan	1999;	Chuvieco	et	al.	2004;	Caccamo	et	al.	2012);	

however,	 it	 can	 experience	 saturation	 under	 high-density	 vegetation	 conditions	

(Sellers	1985).	EVI	minimizes	canopy	background	variation	and	has	improved	accuracy	

in	high	biomass	regions.		

4.2.4 Topography		

Topographical	 variables	 considered	 included	 elevation,	 slope,	 transformed	 aspect	

index	(northwestness),	and	distance	to	zero	residual	contours.	The	elevation	layer	was	
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resampled	at	1	 km	 resolution	 from	 the	Advanced	Spaceborne	Thermal	 Emission	and	

Reflection	Radiometer	(ASTER)	Global	Digital	Elevation	Model	Version	2	(GDEM	V2)	30	

m	data	(NASA	LP	DAAC	2011).	Resampling	was	carried	out	by	calculating	the	mean	of	

the	cell	values	within	each	1	km2	rectangular	block.	Slope	(in	percentage)	and	aspect	

(in	 degrees)	 maps	 were	 derived	 from	 elevation	 data.	 Because	 aspect	 is	 a	 circular	

variable	that	cannot	be	used	 in	 linear	statistics,	that	 layer	was	cosine-transformed	to	

obtain	a	 linear	 index	of	 ‘northwestness’	which	can	better	distinguish	xeric	exposures	

(high	 index	 values)	 from	 mesic	 exposures	 (low	 index	 values)	 (Franklin	 et	 al.	 2000).	

Another	 topographical	 variable	 tested	 in	 this	 study	 was	 the	 distance	 to	 zero	meso-

scale	elevation	residual	contours,	as	suggested	by	McRae	(1992).	These	contours	were	

produced	by	generating	a	macro-scale	surface	using	an	ordinary	kriging	 interpolation	

method	and	then	subtracting	it	from	a	finer-resolution	elevation	surface,	producing	a	

zero	meso-scale	elevation	surface.	Because	the	resolution	of	the	explanatory	variable	

in	this	study	should	not	be	finer	than	1	km,	the	meso-scale	contours	are	coarser	than	

those	used	in	McRae’s	study.	

4.2.5 Anthropogenic	Data	

Most	 wildfires	 are	 of	 anthropogenic	 origin,	 either	 deliberate	 or	 accidental,	 which	

indicates	a	potential	 relationship	between	 fire	occurrence	and	anthropogenic	 factors	

such	as	WUI	(Section	3.3	and	Table	4.1),	distance	to	roads	and	railways,	and	population	

density.	In	this	study,	WUI	was	defined	as	the	boundary	between	wildlands	and	urban	

areas.	Wildland	(Section	4.2.6)	and	urban	residential	areas	were	derived	from	the	50	m	

resolution	CLUM	map.	A	raster	map	representing	the	distance	to	the	nearest	WUI	was	

generated	 at	 a	 1-km	 resolution.	 Primary	 roads,	 secondary	 roads,	 and	 railways	 were	

extracted	from	OpenStreetMap	(OSM),	a	collaborative	project	to	provide	open,	freely	

available,	 and	 worldwide	 geographic	 data	 (Neis	 et	 al.	 2011),	 and	 1	 km	 resolution	

distance	 maps	 were	 generated	 based	 on	 Euclidean	 distance	 to	 the	 nearest	 road.	 A	

population	density	 layer	with	spatial	units	corresponding	 to	Local	Government	Areas	

(LGAs)	(Australian	Bureau	of	Statistics	[ABS]	2003)	was	used	in	this	analysis.	
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4.2.6 Fire	Occurrence	

The	 dependent	 variable	 –	 wildfire	 occurrence	 –	 was	 originally	 derived	 from	 the	

Collection	 5	 MODIS	 global	 monthly	 fire	 location	 product	 (MCD14ML)	 (NASA	 LANCE	

FIRMS	 2003-2013)	 using	 a	 contextual	 algorithm	 (Giglio	 et	 al.	 2003).	 This	 data	 is	 the	

combination	of	the	Terra	and	Aqua	MODIS	Level	2	swath	5	min	MOD14	/	MYD14	active	

fire	products,	hence	it	contains	precise	dates	and	times	for	those	fires	that	are	active	

(hotspots)	when	MODIS	passes	over.	The	spatial	resolution	of	the	dataset	is	1	km.		

Validation	 of	 the	 MODIS	 active	 fire	 product	 against	 the	 ASTER	 imagery	 shows	 a	

commission	error	of	between	2%	and	3%	globally	(Morisette	et	al.	2005;	Csiszar	et	al.	

2006;	Schroeder	et	al.	2008),	though	high	commission	errors	are	generally	found	in	low	

fire	activity	areas	such	as	urban	sites	and	agricultural	 locations	(Hantson	et	al.	2013).	

Each	 fire	 activity	 data	 point	 has	 a	 corresponding	 detection	 confidence	 level	 (low,	

medium	or	high);	this	study	included	data	of	all	confidence	levels	because	while	low-

confidence	 hotspots	 have	 slightly	 higher	 commission	 errors,	 they	 provide	 useful	

additional	information	(Hantson	et	al.	2013).		

In	addition	to	commission	errors,	the	MODIS	active	fire	product	has	other	limitations.	

First,	it	does	not	distinguish	between	fire	causes	(lightning	or	human),	which	makes	it	

impossible	 to	 analyse	 each	 explanatory	 variable	 in	 the	 context	 of	 its	 causality.	

Furthermore,	it	has	been	shown	to	have	an	omission	error	of	18%	related	to	fire	patch	

size	 (Hawbaker	 et	al.	2008);	namely,	 the	majority	of	human-caused	 fires	may	not	be	

large	 enough	 to	 be	 detected	 by	MODIS	 sensors,	 and	 so	 a	 bias	 toward	 natural	 fires	

should	 be	 expected.	 Moreover,	 the	 fact	 that	 prescribed	 burning	 and	 other	 non-

wildfires	were	also	recorded	makes	it	necessary	to	filter	the	data.		

The	study	period	covered	from	January	2003	to	December	2013,	including	all	years	for	

which	 both	 MODIS	 Aqua	 and	 Terra	 data	 products	 are	 available.	 There	 were	 data	

missing	in	2007	from	mid-August	through	the	end	of	the	year,	on	part	of	21	April	2009,	

and	on	22	April	2009.	The	total	number	of	MODIS	hotspots	in	this	dataset	was	176,884.		



	 	

44	

	

As	mentioned	 above,	 it	 was	 inappropriate	 to	 use	 all	MODIS	 hotspots	 in	 the	models	

because	 the	 dataset	 included	 fires	 that	 occurred	 on	 non-wildland	 areas.	 A	 mask	

representing	wildland	areas	was	generated	using	both	CLUM	Land	use	and	MODIS	land	

cover	data,	then	applied	to	filter	out	hotspots	in	non-wildland	areas.	The	pixel	value	of	

the	binary	raster	was	0	if	located	in	land	cover	class	(6),	as	well	as	at	land	use	classes	

(3),	(4),	(5),	and	(6)	except	for	plantation	forestry;	it	was	1	if	located	somewhere	else.	

This	process	additionally	minimized	the	influence	of	commission	errors.		

A	histogram	representing	the	monthly	distribution	of	fire	hotspots	 is	shown	in	Figure	

4.2.	The	majority	of	fires	occurred	from	November	to	February,	when	fire	danger	levels	

are	highest.	 Slight	 fluctuations	are	evident	across	 spring	and	autumn	months	due	 to	

the	 influence	of	prescribed	burning	programs,	which	are	 generally	 conducted	during	

cooler	 periods	 (autumn	and	 early	 spring	 in	 the	 study	 area).	 In	 order	 to	mitigate	 the	

influence	of	prescribed	burning	on	results,	only	fire	data	within	the	typical	fire	season	

(November	to	February)	was	analysed.		

	

Figure	4.2	Monthly	distribution	of	fire	hotspots	from	2003	to	2013	for	South-Eastern	Australia.	



	 	

45	

	

A	 continuous	 1-km	 spatial	 resolution	 density	 map	 was	 created	 by	 calculating	 the	

number	of	fires	occurred	during	the	11	fire	seasons	of	2003-2013	that	fall	within	each	

cell	of	wildland	areas.	All	the	non-zero	values	were	converted	to	1	so	that	the	value	of	

each	point	denotes	the	presence	of	at	least	one	fire	within	each	cell.	And	the	absence	

of	fire	within	a	cell	is	denoted	by	zero	(0).	In	total,	there	were	538,690	data	points	in	

the	density	map	which	 included	28,761	presence	points	and	509,929	absence	points.	

Data	 analysis	was	 conducted	 based	on	 sample	 statistics	 in	 order	 to	 reduce	 the	 data	

volume.	Among	many	sampling	methods,	the	stratified	sampling	method	was	utilized	

i.e.	the	ratio	of	presence	to	absence	is	preserved.	10,000	samples	(which	include	596	

presence	 and	 9,404	 absence	 points)	 were	 randomly	 selected.	 That	 is,	 1.86%	 of	 the	

population	is	sampled.		

	

Figure	4.3	Map	showing	distribution	of	the	dependent	variable	(black	dots),	representing	the	presence	of	fire	in	
South-Eastern	Australia.	The	grey	colour	represents	non-wildland	areas.	

4.3 Modelling	Approach	

To	 estimate	 the	 probability	!	of	 at	 least	 one	 fire	 occurring	 within	 a	 cell,	 a	 multiple	

logistic	regression	model	was	developed.		Let	!" 	be	the	probability	of	at	least	one	fire	
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occurring	 in	 cell	#,	 and	$"% 	be	 the	 value	 of	 the	&th	 covariate	 in	 cell	#.	 The	 logistic	
regression	can	then	be	defined	as:	

!" = exp +, + +.$." + +/$/" + ⋯+ +1$1" 1 + exp +, + +.$." + +/$/" + ⋯+ +1$1" 							(1)	

where	+,	is	 an	 intercept	 and	+1	are	 coefficients	 for	 the	 explanatory	 variables	$1".	 All	
wildland	fire	occurrence	points	were	used	to	fit	the	model.	The	ratio	of	ones	to	zeros	

was	1:24.6.	

Univariate	logistic	regression	models	were	developed	for	each	explanatory	variable	to	

evaluate	their	independent	influences	on	fire	occurrence.	Following	the	suggestions	of	

Serneels	and	Lambin	 (2001),	 the	performance	of	quadratic	or	 logarithmic	versions	of	

the	continuous	variables	was	also	tested.	The	final	model	was	chosen	by	implementing	

the	 Akaike	 information	 criterion	 (AIC)	 in	 a	 backwards	 stepwise	 algorithm	 (Venables	

and	Ripley	1999).		

To	 avoid	 the	 effects	 of	 multicollinearity,	 Spearman’s	 rank	 correlation	 was	 used	 to	

compare	continuous	explanatory	variables	(Table	4.2).	Correlations	above	0.6	(Wintle	

et	 al.	 2005)	 variables	 were	 found	 between	 NDVI	 and	 slope	 (3=0.65,	!<0.001),	 NDVI	
and	 population	 density	 (3=0.81,	!<0.001),	 NDVI	 and	 EVI	 (3=0.97,	!<0.001),	 EVI	 and	
population	 density	 (3=0.84,	!<0.001),	 slope	 and	 elevation	 (3=0.67,	!<0.001),	 and	
distance	to	WUI	and	population	density	(3=0.62,	!<0.001).	Therefore,	EVI,	slope,	and	
population	density	were	excluded	from	further	analyses.	A	diagnostic	procedure	was	

also	implemented	using	the	variance	inflation	factor	(VIF),	a	measure	that	shows	how	

much	the	variance	of	a	coefficient	is	increased	due	to	collinearity	(Belsley	et	al.	1980).	

Instead	of	comparing	correlations	between	pairs	of	variables,	VIF	calculates	the	linear	

relationship	 between	one	 variable	 and	 all	 other	 variables.	 VIFs	 ranging	 from	1.01	 to	

8.29	were	considered	to	indicate	no	evidence	of	multicollinearity,	as	recommended	by	

Belsley	et	al.	(1980).	
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To	 determine	 the	 optimal	 discrimination	 threshold	 for	 predicting	 fire	 occurrence,	

receiver	 operating	 characteristic	 (ROC)	 curves	 were	 computed	 for	 all	 models.	

Specifically,	model	accuracy	was	evaluated	by	plotting	the	true	positive	rate	(sensitivity)	

against	the	false	positive	rate	(specificity).	The	area	under	the	curve	(AUC)	was	used	to	

evaluate	model	fit,	with	a	measure	of	0.9-1	being	excellent,	0.8-0.9	good,	0.7-0.8	fair,	

0.6-0.7	 poor,	 and	 0.5-0.6	 fail	 (Swets	 1988).	 To	 validate	 the	 performance	 of	 the	 final	

model,	 a	 ten-fold	 cross-validation	 approach	 was	 used	 (Breiman	 et	 al.	 1984).	 In	 this	

procedure,	 the	 original	 samples	 were	 randomly	 partitioned	 into	 ten	 groups	 of	

approximately	 equal	 sizes,	 with	 a	 single	 group	 reserved	 as	 validation	 data	 and	 the	

remaining	nine	used	as	training	data.	The	process	was	repeated	ten	times,	leaving	out	

a	 different	 group	 each	 time,	 AUCs	 calculated	 for	 each	 validation	 set.	 A	 statistical	

summary	of	all	ten	AUCs	was	calculated	in	order	to	determine	the	uncertainty	related	

to	occurrence	location.	The	mean	of	the	AUCs	was	taken	as	the	overall	cross-validated	

AUC	estimate.		

Logistic	 regressions	 were	 fitted	 using	 a	 GLM.	 VIFs,	 ROCs,	 and	 cross-validated	 AUCs	

were	computed	using	R	modules	 fmsb	 (Minato	2014),	pROC	 (Robin	 et	al.	 2011),	and	

cvAUC	(LeDell	et	al.	2014),	respectively.		

The	contribution	of	each	variable	was	calculated	by	conducting	a	jackknife	procedure	

based	 on	 the	 change	 in	 AUC	 (Bar	Massada	 et	 al.	 2013),	 namely	 the	 ten-fold	 cross-

validated	 AUC.	 The	 approach	 consists	 of	 removing	 individual	 explanatory	 variables	

from	the	full	model	and	recalculating	the	cross-validated	AUC.	The	difference	between	

AUC	values	denotes	the	loss	of	explanatory	power	of	the	model	in	the	absence	of	the	

given	 factor.	 In	 addition,	AUC	 values	were	 computed	 for	 univariate	models,	 and	 the	

variables	were	ranked	accordingly.		

	



	 	

48	

	

	

Table	4.2	Correlation	matrix	for	continuous	variables.	

	
NDVI	 Elevation	 Slope	

Northwest	

-ness	

Distance	to	zero	

residual	contours	

Distance	to	

primary	road	

Distance	to	

secondary	

road	

Distance	to	

railway	

Distance	to	

WUI	

Population	

Density	

EVI	 0.97	 0.52	 0.59	 0.01	 -0.30	 -0.32	 -0.33	 -0.45	 -0.55	 0.84	

NDVI	 	 0.56	 0.65	 0.002	 -0.32	 -0.29	 -0.31	 -0.44	 -0.52	 0.81	

Elevation	 	 	 0.67	 0.03	 -0.35	 -0.25	 -0.14	 -0.22	 -0.35	 0.41	

Slope	 	 	 	 -0.03	 -0.45	 -0.27	 -0.18	 -0.29	 -0.39	 0.53	

Northwestness	 	 	 	 	 -0.01	 -0.004	 0.03	 0.002	 0.02	 0.002	

Distance	to	zero	

residual	contours	
	 	 	 	 	 0.15	 0.11	 0.12	 0.26	 -0.26	

Distance	to	primary	

road	
	 	 	 	 	 	 0.06	 0.45	 0.39	 -0.39	

Distance	to	

secondary	road	
	 	 	 	 	 	 	 0.25	 0.34	 -0.34	

Distance	to	railway	 	 	 	 	 	
	 	

	 0.58	 -0.58	

Distance	to	WUI	 	 	 	 	 	
	 	

	 	 -0.62	
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4.4 Results	

According	 to	 the	 univariate	 logistic	 regression	 modelling	 results	 (Table	 4.3),	 all	

explanatory	variables	are	statistically	 significant	 (! ≤ 0.05)	except	 for	northwestness	
(! = 0.37).	 In	 terms	 of	 MODIS	 land	 cover	 categories,	 wildfires	 were	 most	 likely	 to	

occur	on	forests	and	savannas,	but	least	likely	to	occur	on	shrublands	and	grasslands.	

NDVI	values	also	showed	the	expected	positive	relationship	with	the	response	variable.	

Fire	 occurrence	 was	 positively	 related	 to	 elevation,	 and	 negatively	 related	 to	 the	

distance	 to	 zero	 meso-scale	 elevation	 residual	 contours.	 Fire	 occurrence	 was	 also	

negatively	related	to	all	anthropogenic	variables	(distance	to	primary	road,	distance	to	

secondary	 road,	 distance	 to	 railway,	 and	distance	 to	WUI),	which	 suggests	 that	 fires	

are	more	likely	to	occur	close	to	human	facilities	and	urban	areas.		

The	final	model	for	fire	occurrence	included	four	environmental	variables	(land	cover,	

NDVI,	 elevation,	 northwestness)	 and	 three	 anthropogenic	 variables	 (distance	 to	

primary	road,	distance	to	secondary	road,	and	distance	to	WUI).	AUC	values	from	the	

ten-fold	 cross-validation	 procedure	 ranged	 from	 0.858	 to	 0.906,	 with	 a	 standard	

deviation	of	0.014	 (Table	4.4).	As	all	 values	were	 in	 the	good	 to	excellent	 range,	 the	

AUC	variability	acceptable,	although	 it	clearly	can	be	affected	by	the	 locations	of	 the	

points.	 The	overall	 cross-validated	AUC	estimate	was	0.886,	which	 supports	 that	 the	

model	performs	well	in	predicting	fire	occurrence.		

According	 to	 the	 AUC	 values	 of	 the	 univariate	 models	 (Figure	 4.4),	 NDVI	 had	 the	

strongest	 predictive	 power,	 followed	 by	 elevation	 and	 land	 cover.	 The	 jackknife	

estimate	 of	 variable	 importance	 (Figure	 4.4)	 showed	 slightly	 different	 results,	 with	

elevation	contributing	the	most	to	wildfire	occurrence	prediction;	this	result	coincides	

with	 the	 variable's	 performance	 in	 the	 univariate	model.	 Distance	 to	WUI	 and	 land	

cover	were	ranked	second	and	third	by	jackknife	estimate,	respectively.	The	remaining	

variables	 were	 ordered	 by	 jackknife	 estimate	 as	 follows:	 distance	 to	 primary	 road,	

NDVI,	distance	to	secondary	road,	and	northwestness.	
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Table	4.3	Univariate	logistic	regression	results	for	variables	explaining	wildfire	occurrence	in	South-Eastern	Australia.	

Explanatory	Variable	 Coefficient	 Standard	Error	 P	value	 95%	Confidence	Interval	

Land	cover	 	 	 <0.001	 	 	

				Forest	(Intercept)	 -1.44	 0.05	 <0.001	 -1.54	 -1.34	
				Shrublands	 -3.73	 0.18	 <0.001	 -4.10	 -3.40	

				Savannas	 -0.83	 0.12	 <0.001	 -1.07	 -0.60	

				Grasslands	 -2.35	 0.36	 <0.001	 -3.14	 -1.71	

				Permanent	Wetlands	 -12.12	 267.7	 0.964	 NA	 18.57	

Vegetation	index	 	 	 	 	 	

				NDVI	 0.00060	 0.00002	 <0.001	 0.00055			 0.00064	

Topography	 	 	 	 	 	

				Elevation	 0.0033	 0.0001	 <0.001	 0.0031	 0.0036	

				Northwestness	 0.05	 0.059	 0.37	 -0.06	 0.17	

				Distance	to	zero	residual	contours	 -0.00047	 0.00005	 <0.001	 -0.00056	 -0.00038	

Anthropogenic	data	 	 	 	 	 	

				Distance	to	primary	road	 -0.000017	 0.000002	 <0.001	 -0.000021		 -0.000014	

				Distance	to	secondary	road	 -0.000031	 0.000003	 <0.001	 -0.000037	 -0.000025	

				Distance	to	railway	 -0.0000093	 0.0000009	 <0.001	 -0.0000011	 -0.0000076	

				Distance	to	WUI	 -0.000042	 0.000002	 <0.001	 -0.000047	 -0.000037	

	

Table	4.4	Summary	of	AUCs	values	from	ten-fold	cross-validation.	

Min	 Max	 Median	 Mean	 Standard	Deviation	 Variance	 Range	

0.858	 0.906	 0.885	 0.886	 0.014	 0.0002	 0.048	

Note:	The	mean	of	AUC	values	is	the	cross-validated	AUC	estimate.	
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A	 1	 km	 resolution	 fire	 occurrence	 probability	 map	 was	 generated	 by	 applying	 the	

coefficients	 of	 the	 final	 model	 to	 raster	 layers	 corresponding	 to	 the	 explanatory	

variables	 (Figure	4.5(a)).	Relatively	high	wildfire	probabilities	 (greater	 than	0.2)	were		

found	 in	 forestry	 areas	 and	 in	 high	 elevation	 areas	 close	 to	 urban	 areas,	 while	 low	

probabilities	(less	than	0.2)	were	found	in	inlands	and	mountainous	areas.	The	largest	

area	of	high	wildfire	probability	was	in	the	Great	Dividing	Range	along	the	study	area	

coastline.	 The	 most	 flammable	 areas	 were	 located	 in	 the	 forestry	 areas	 of	 the	

Australian	Alps,	extending	across	eastern	VIC,	 southeastern	NSW	and	 the	ACT;	 these	

were	 followed	 by	 the	 wildland-urban	 interface	 areas	 at	 the	 New	 England	 Range	 in	

northeastern	 NSW	 and	 the	 Blue	 Mountains	 above	 the	 Sydney	 Basin.	 Natural	

conservation	regions	such	as	Mount	Kaputar	National	Park	 in	northeastern	NSW	and	

Grampians	National	 Park	 in	western	VIC	were	 also	 predicted	more	 likely	 to	 burn.	 In	

addition,	ten	prediction	maps	corresponding	to	the	ten-fold	cross-validation	procedure	

were	generated	and	converted	into	a	standard	deviation	map	(Figure	4.5(b)),	provided	

insights	 into	the	spatial	distribution	of	 the	uncertainty	of	 the	 final	model.	 	Variability	

was	found	to	be	primarily	distributed	in	high	fire	probability	areas,	e.g.	the	Australian	

Alps.	

	

Figure	4.4	Jackknife	estimations	of	variable	importance	for	the	final	model.	Bars	denote	the	area	under	the	
receiver	operator	characteristic	curve	(AUC).	The	black	bar	represents	the	full-model	AUC,	white	bars	represent	

the	AUCs	of	univariate	models,	and	grey	bars	represent	the	AUCs	of	models	excluding	the	corresponding	
variables.	
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Figure	4.5	Maps	showing	(a)	the	predicted	probability	of	wildfire	occurrence	in	South-Eastern	Australia	and	(b)	
the	standard	deviation	of	probability	maps	corresponding	to	the	ten-fold	cross-validation	procedure.	

4.5 Discussion	

The	 model	 is	 able	 to	 describe	 the	 spatial	 pattern	 of	 wildfire	 occurrence	 in	 South-

Eastern	Australia	over	the	11-year	period	from	2003	to	2013.	Wildfire	locations	in	the	

study	area	were	found	to	be	significantly	influenced	by	land	cover	types.	Forests	were	

most	 susceptible	 to	 fire	 due	 to	 the	 dominance	 of	 fire-prone	 eucalyptus-related	

vegetation	and	heavy	fuel	 loads.	Savannas	were	ranked	the	second	most	susceptible,	

probably	due	to	ease	of	ignition	relating	to	their	inherent	features	(Murphy	et	al.	2013).	

Shrublands	were	least	susceptible	to	burning	due	to	the	lower	predominance	of	grass	

components	 in	 those	 areas	 (Murphy	 et	 al.	 2013).	 These	 results	 were	 slightly	

inconsistent	with	findings	from	other	landscapes	(e.g.	Mermoz	et	al.	2005;	Oliveira	et	

al.	2014),	possibly	because	of	the	low	level	of	shrub	canopy	cover	(<60%)	in	most	shrub	

areas	of	South-Eastern	Australia.		

As	expected,	model	results	indicated	fires	were	more	likely	to	occur	in	areas	with	high	

vegetation	 index	 values;	 this	 index	 has	 a	 strong	 relationship	 with	 fuel	 flammability	

(Caccamo	 et	 al.	 2012).	 Fires	 were	 also	 more	 likely	 to	 occur	 in	 areas	 with	 higher	

elevations.	 This	 can	 be	 explained	 by	 the	 fact	 that	 in	 the	 study	 area,	 the	 spatial	

distribution	 of	 vegetation	 corresponds	 with	 elevation,	 which	 means	 there	 is	 more	

vegetation	to	be	burned	at	higher	elevation.	When	it	comes	to	the	influence	of	aspect	
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on	 fire	 occurrence,	 some	 researchers	 have	 found	 that	 a	 southerly	 aspect	 in	 the	

northern	 hemisphere	 (or	 a	 northerly	 aspect	 in	 the	 southern	 hemisphere)	 is	 more	

flammable	 because	 those	 slopes	 receive	 longer	 and	 more	 direct	 solar	 exposure,	

decreasing	fuel	moisture	content	and	enhancing	its	flammability	(Mouillot	et	al.	2003;	

Mermoz	 et	 al.	 2005).	 Others	 have	 found	 that	 northern	 slopes	 are	 more	 fire	 prone	

because	much	more	water	 is	available	and	results	 in	heavier	 fuel	 loads	 (Carmo	et	al.	

2011;	Oliveira	 et	 al.	 2014).	 However,	 in	 this	 study,	 aspect	was	 not	 predictive	 of	 fire	

occurrence.	 This	may	 be	 because	 the	 coarse	 spatial	 resolution	 used	 fails	 to	 provide	

sufficient	 or	 correct	 information	 on	 solar	 exposure	 and	 fuel	 load.	 This	 study	 did	

determine	that	fires	tend	to	be	distributed	in	areas	near	the	zero	meso-scale	elevation	

residual	contour,	generated	by	removing	micro-	and	macro-scale	variation	in	elevation.	

This	finding	is	consistent	with	those	of	McRae	(1992)	regarding	natural	ignitions	in	the	

ACT	area.	This	unobvious	pattern	 is	able	 to	provide	practical	 information	 for	 fire	 risk	

mapping.	 Finally,	 fires	were	 found	 to	 be	 preferentially	 located	 in	 areas	 near	 human	

infrastructure	 (roads	 and	 railways)	 and	 WUIs,	 consistent	 with	 the	 results	 of	 other	

studies	at	small	landscape	scales	(e.g.	Penman	et	al.	2013).		

Most	 environmental	 factors	 (NDVI,	 elevation,	 and	 land	 cover)	 were	 found	 to	 be	

informative	 when	 analysed	 independently,	 which	 is	 expected	 because	 their	 spatial	

patterns	 correspond	with	 the	distribution	of	wildfires	at	broad	 spatial	 scales.	On	 the	

other	 hand,	 some	 factors	 (e.g.	 land	 cover)	 had	 low	 variable	 contributions	 because	

much	 of	 the	 information	 they	 provided	was	 included	 in	 a	 relatively	more	 influential	

variable	(e.g.	elevation).	

Anthropogenic	variables	did	not	exhibit	good	predictive	power	in	univariate	analyses.	

There	 are	 likely	 several	 reasons	 for	 this.	 First,	 the	 indistinguishability	 of	 ignition	

sources	 in	 the	MODIS	 active	 fire	 product	may	 reduce	 the	 apparent	 contributions	 of	

anthropogenic	variables.	Second,	due	to	not	all	human-caused	fire	occurrences	being	

retrieved,	 the	 independent	 predictive	 powers	 of	 anthropogenic	 factors	 are	 possibly	

being	 underestimated	 in	 this	 study.	 Third,	 the	 fire	 occurrence	 points	 contain	
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information	for	both	ignition	and	spread.	Although	fire	ignitions	in	Australia	have	been	

proven	 to	 be	 strongly	 influenced	 by	 human	 activities	 (Willis	 2005),	 fire	 spread	 is	

fundamentally	a	 function	of	 fuel,	 climate,	and	 terrain	 (Pyne	 et	al.	 1996).	Distance	 to	

WUI	was	found	to	contribute	more	predictive	power	than	NDVI	and	land	cover,	which	

supports	the	influence	of	human	activities	in	fire	occurrence.	Therefore,	anthropogenic	

variables	 should	 not	 be	 ignored	 in	 fire	 risk	 assessments	 at	 broad	 landscape	 scales.	

Moreover,	 the	 association	 between	 human	 activity	 and	 fire	 occurrence	 indicates	

threat	 from	 wildfire	 to	 human	 lives	 and	 assets.	 Reducing	 fuel	 loads	 near	 densely-

settled	areas	 that	are	close	 to	 fire-prone	bushlands	 is	 therefore	an	essential	 issue	 in	

the	context	of	wildfire	management.				

The	fire	probability	map	produced	from	the	final	model	illustrates	the	most	fire-prone	

locations	 in	 South-Eastern	 Australia.	 The	 relatively	 high	 uncertainty	 and	 limited	

predictive	capacity	of	 logistic	 regression	 in	high	 fire	occurrence	areas	 (Rodrigues	and	

de	 la	 Riva	 2014)	 suggests	 that	 fire	 probability	 has	 possibly	 been	 underestimated.	

Nevertheless,	 the	 prediction	 map	 still	 provides	 useful	 information	 regarding	 areas	

where	 environmental	 and	 anthropogenic	 conditions	 enhance	 the	 likelihood	 of	 fire	

occurrence.	 According	 to	 this	 map,	 long-term	 resources	 for	 firefighting	 and	 fire	

prevention	should	be	allocated	close	to	mountainous	areas,	forests,	and	savannas,	as	

well	as	lands	with	heavy	fuel	loads.	Areas	close	to	WUIs	and	transport	networks	should	

also	be	emphasized.		

MODIS	 data	 was	 used	 in	 this	 study	 rather	 than	 administrative	 records	 because	 the	

former	are	globally	accessible,	which	makes	it	possible	to	conduct	the	study	at	a	broad	

spatial	scale,	apply	the	method	to	other	regions	of	the	world,	assess	the	suitability	of	

the	 model,	 and	 explore	 the	 variation	 of	 spatial	 patterns	 in	 different	 study	 areas.	

MODIS	 fire	 data	 is	 especially	 useful	 for	 data-poor	 regions.	 However,	 researchers	

should	bear	in	mind	the	inherent	drawbacks	of	the	MODIS	active	fire	product	such	as	

the	existence	of	commission	error	(which	can	be	minimized	by	introducing	controlling	

factors),	the	indistinguishability	of	ignition	sources,	and	the	bias	towards	natural	fires.	
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Another	 defect	 of	 the	 model	 is	 that	 the	 explanatory	 variables	 only	 represent	 the	

environmental	 and	 anthropogenic	 conditions	 of	 the	 study	 area	 for	 a	 short	 period	of	

time,	even	 though	 the	active	 fire	data	 covers	11	years.	To	 reduce	 the	 impact	of	 this	

temporal	mismatch,	 data	 recorded	 at	 the	most	 appropriate	 times	were	 chosen	 (e.g.	

January	 2003).	 Furthermore,	 the	 overall	 goodness	 of	 fit	 of	 the	 final	 model	 is	

satisfactory.	 The	model	 could	 be	 further	 improved	 by	 using	 precise	 occurrence	 data	

that	 has	 lower	 omission	 error	 or	 that	 can	 identify	 ignition	 types.	 Adding	 more	

explanatory	variables,	especially	climate	variables,	would	also	be	helpful.	

4.6 Summary	

In	 this	work,	 logistic	 regression	was	used	 in	combination	with	 land	cover,	vegetation	

index,	 and	 topographic	 and	 anthropogenic	 information	 to	 characterize	 the	 spatial	

pattern	of	fire	occurrence	on	a	1	km
2
	grid	in	South-Eastern	Australia	over	the	period	of	

2003-2013.	 The	models	 and	 the	 final	 map	 suggest	 that	mountainous	 areas,	 forests,	

savannas,	 and	 lands	with	 high	 vegetation	 coverage	would	 be	most	 fire-prone,	while	

grasslands	and	shrublands	can	be	less	vulnerable	to	wildfire	in	the	study	area.	Wildfires	

also	 tended	 to	 occur	 in	 areas	 near	 human	 infrastructure	 and	 WUIs.	 Environmental	

variables	 were	 found	 to	 be	 powerful	 in	 predicting	 fire	 occurrence	 when	 analysed	

individually,	while	 anthropogenic	 variables	 contributed	more	 to	 the	 final	model.	 The	

study	also	demonstrates	that	the	MODIS	active	fire	product	is	a	useful	data	source	for	

studying	 environmental	 and	 anthropogenic	 controls	 on	 the	 distribution	 of	 wildfires,	

although	 attention	 should	 be	 paid	 to	 data	 manipulation	 procedures	 and	 the	

interpretation	 of	 the	 modelling	 result.	 Ultimately,	 extended	 knowledge	 about	 the	

influence	of	environmental	and	anthropogenic	conditions	on	wildfire	occurrence	and	

the	 spatial	 pattern	 of	 wildfires	 in	 the	 mainland	 NSW,	 VIC,	 and	 ACT	 can	 help	 fire	

agencies	 in	 these	 three	 regions	 better	 arrange	 their	 limited	 resources	 and	 target	

management	activities.	
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Chapter	5 Wildfire	 Ignition	 Patterns	 in	 Ecoregions	 of	 NSW	 and	
ACT	

The	work	presented	in	this	chapter	is	an	extension	of	Chapter	4	(see	Section	3.3	for	the	

description	 of	 the	 relationship	 between	 Chapters	 4	 and	 5).	 Notably,	 the	 term	 “fire	

occurrence”	 in	 this	 chapter	 refers	 to	 the	 occurrence	 of	 fire	 ignition	 within	 a	

spatiotemporal	 unit	 (see	 the	 definition	 in	 Section	 2.2.2),	which	 is	 different	 from	 the	

definition	 used	 in	 Chapter	 4.	 This	 chapter	 specifically	 aims	 to	 address	 the	 following	

questions:	What	are	the	key	types	of	environmental	and	anthropogenic	factors	driving	

the	 spatial	 patterns	 of	 wildfire	 occurrence	 in	 different	 ecoregions?	 What	 are	 the	

effects	of	these	factors,	are	they	linearly	related	with	wildfire	occurrence	probabilities,	

and	are	these	relationships	consistent	with	the	prior	knowledge?	These	questions	are	

particularly	 important	 for	 end-users	 such	 as	 fire	 managers	 and	 others	 investigating	

wildfire	risk	assessment,	since	a	better	understanding	of	fire	patterns	and	their	drivers	

will	help	minimise	fire	impacts.		

5.1 Study	Area	

South-Eastern	 Australia,	 which	 includes	 NSW,	 ACT	 and	 VIC,	 is	 one	 of	 the	most	 fire-

prone	regions	in	Australia.	The	study	area	covers	NSW	and	the	ACT,	including	coastal	

plains,	 eastern	 highlands	 (the	 Great	 Dividing	 Range),	 and	 western	 lowlands	 (Figure	

5.1(a));	 this	 area	 amounts	 to	 803,000	 km
2
	 in	 total.	 VIC	 was	 excluded	 because	 a	

comprehensive	and	state-wide	vegetation	classification	map	covering	VIC	was	not	able	

to	be	obtained	at	the	time	of	this	study.	Within	the	study	area,	six	ecoregions	(Section	

5.2.1,	 Figure	 5.1(b))	 can	 be	 found:	 temperate	 broadleaf	 and	 mixed	 forests	 (TB);	

montane	grasslands	and	shrublands	(MG);	tropical	and	subtropical	grassland,	savannas	

and	 shrublands	 (TSG);	 temperate	 grasslands,	 savannas	 and	 shrublands	 (TG);	

Mediterranean	forests,	woodlands	and	shrubs	(MF);	and	deserts	and	xeric	shrublands	

(DX).	According	 to	 the	major	groups	of	 the	Köppen	climate	classification	system,	 the	

four	major	climate	zones	of	this	area	are:	temperate	in	the	east,	subtropical	in	part	of	
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the	 north-east,	 grassland	 in	 the	 middle,	 and	 desert	 in	 the	 west.	 The	 dominant	

vegetation	formations	(Section	5.2.2,	Figure	5.2)	are	arid	shrublands	(20%),	semi-arid	

woodlands	 (20%),	 dry	 sclerophyll	 forests	 (10%),	 and	wet	 sclerophyll	 forests	 (4%),	 as	

calculated	by	the	authors.	Human	activities	are	concentrated	in	the	populated	coastal	

and	 nearby	 inland	 areas	 (Collins	 et	 al.	 2015).	 Fires	 occur	 primarily	 in	 spring	 and	

summer,	with	more	 in	 the	spring	 in	 the	north	and	more	 in	 the	summer	 in	 the	south	

(Russell-Smith	et	al.	2007).		

	

Figure	5.1	Maps	of	New	South	Wales	and	the	Australian	Capital	Territory	showing	(a)	location	and	topography	
and	(b)	ecoregions.	The	latter	are	reclassified	from	the	Interim	Biogeographic	Regionalisation	for	Australia	(IBRA)	
Version	7	(Department	of	Sustainability,	Environment,	Water,	Population	and	Communities		2012)	according	to	

the	classification	system	originally	developed	by	the	World	Wildlife	Fund.	
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Figure	5.2	Vegetation	formations	in	New	South	Wales	and	the	Australian	Capital	Territory,	adapted	from	Keith	
and	Simpson	(2012).	

5.2 Data	Description	

A	number	of	datasets	were	compiled	for	this	study,	including	the	ecoregion	layer	used	

for	data	stratification,	 the	 land	use	 layer	 (Section	4.2.1)	used	 to	 filter	 fire	points	and	

generate	other	anthropogenic	variables,	and	other	layers	(Table	5.1)	used	for	statistical	

modelling.	Some	of	the	datasets	have	been	introduced	in	Section	4.2,	and	the	rest	are	

described	in	the	following	sections.	
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Table	 5.1	 Variables	 included	 in	 generalized	 additive	 models	 explaining	 wildfire	 occurrence	 in	 NSW	 and	 the	 ACT.	 Fire	 occurrence	 is	 the	 response	 variable	 and	 all	 others	 are	
explanatory	variables.	The	spatial	resolution	of	all	variables	is	1	km.	
Variable	type	 Variable	 Source	 Description		

Spatial	Effect	 Location	 NASA	 Locations	of	fire	occurrence	points,	decimal	degree	
Vegetation	 Vegetation	type	 OEH	 Categorical	variable,	including	12	vegetation	formations	(Keith	2004):	

rainforests;	wet	sclerophyll	forests;	grassy	woodlands;	grasslands;	dry	
sclerophyll	forests;	heathlands;	alpine	complex;	freshwater	wetlands;	
forested	wetlands;	saline	wetlands;	semi-arid	woodland;	and	arid	
shrublands	

	 Normalized	Difference	Vegetation	Index	
(NDVI)	

NASA	 Median	value	of	NDVI	representing	the	average	biomass	condition	

	 Distance	to	drainage	line	 GA	 Mean	Euclidean	distance	to	the	nearest	drainage	line,	km		
Climate	 Annual	precipitation	 BOM	 Mean	annual	precipitation,	mm	
	 January	maximum	temperature	 BOM	 Mean	January	maximum	temperature,	mm	
	 July	minimum	temperature	 BOM	 Mean	July	minimum	temperature,	mm	
Topography	 Elevation	 NASA	 Elevation	grid	
	 Slope	 NASA	 Calculated	from	elevation	grid	
	 Northwestness	(NW)	 NASA	 Transformed	aspect	index,	calculated	from	elevation	grid	

NW	=	cosine	((aspect+45)	*	π/180)		
Anthropogenic	

variables	
Distance	to	road	 GA	 Mean	Euclidean	distance	to	the	nearest	road,	km	
Distance	to	track	 GA	 Mean	Euclidean	distance	to	the	nearest	track,	km	
Distance	to	railroad	 GA	 Mean	Euclidean	distance	to	the	nearest	railroad,	km		
Distance	to	wildland-urban	interface	(WUI)	 GA	 Mean	Euclidean	distance	to	the	nearest	WUI,	km		

	
Distance	to	recreational	area	 GA	 Mean	Euclidean	distance	to	the	nearest	recreational	area		
Distance	to	powerline	 GA	 Mean	Euclidean	distance	to	the	nearest	powerline		
Population	density	 ABS	 Population	density	in	each	Local	Government	Area	(LGA)	unit	in	2003		
Protected	area	 DEE	 Binary	variable	representing	the	presence	of	protective	management	

Response	variable	 Fire	occurrence	 NASA	 Binary	variable,	identified	from	MODIS	active	fire	detections		
Note:	OEH,	NSW	Office	of	Environment	and	Heritage;	GA,	Geoscience	Australia;	BOM,	Bureau	of	Meteorology;	ABS,	Australian	Bureau	of	Statistics;	DEE,	Department	
of	the	Environment	and	Energy			
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5.2.1 Ecoregion	

Ecoregions	 were	 reclassified	 from	 the	 Interim	 Biogeographic	 Regionalisation	 for	

Australia	 (IBRA)	 Version	 7	 (DSEWPaC	 2012)	 according	 to	 the	 classification	 system	

originally	 developed	 based	 on	 IBRA	 4.0	 by	 the	 World	 Wildlife	 Fund	 (WWF).	 This	

classification	 system	 provides	 a	 more	 comprehensive	 conservation	 tool	 than	 simply	

looking	at	ecosystem	types	or	biomass	based	on	climate	and	vegetation.	This	system	

defines	a	total	of	14	ecoregions	across	the	globe,	eight	of	which	are	found	in	Australia	

and	six	in	NSW	and	the	ACT	(Figure	5.1	(b)).	

5.2.2 Vegetation	

Version	 3.03	 of	 the	 NSW	 vegetation	 formation	 map	 (Keith	 and	 Simpson	 2012)	 was	

used	 to	 filter	 fire	 points	 and	 to	 conduct	 statistical	 analysis.	 The	 12	 vegetation	

formations	 (Figure	 5.2)	 defined	 by	 Keith	 (2004)	 group	 together	 vegetation	 that	 has	

similar	flammability	properties.	This	data	was	resampled	from	a	200	m	resolution	to	1	

km	resolution	by	the	majority	rule.	

NDVI	 (Section	4.2.3)	 is	 a	 highly	 variable	 factor	 that	 reflects	 the	biomass	or	 fuel	 load	

through	 time	 and	 across	 the	 landscape.	 Considering	 the	 broad	 spatial	 and	 temporal	

scale	 of	 this	 study,	 it	 is	 more	 appropriate	 to	 use	 values	 representing	 the	 average	

biomass	 condition.	 Thus,	 the	 median	 NDVI	 during	 the	 period	 of	 2003-2013	 was	

calculated	on	a	pixel-by-pixel	basis	to	avoid	the	bias	that	would	be	introduced	to	mean	

values	by	greenness	loss	after	a	burning	event.	

Additionally,	 drainage	 information	 was	 derived	 from	 the	 1:2.5	 million	 scale	

topographic	dataset	GEODATA	TOPO	2.5M	2003	(Geoscience	Australia	[GA]	2003).	The	

distance	 to	 a	 drainage	 line	 can	 affect	 fuel	 moisture	 content	 and	 thus	 influence	 the	

probability	 of	 wildfire	 occurrence	 (Penman	 et	 al.	 2013).	 A	 1	 km	 resolution	 map	 of	

distance	 to	 the	 nearest	 drainage	 line	was	 produced	 via	 calculation	 of	 the	 Euclidean	

distance	(in	km).	
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5.2.3 Climate	

Weather	 condition	 is	 a	 key	 driving	 factor	 of	 fire	 potential	 (Pyne	 et	 al.	 1996).	 As	

discussed	 in	 section	5.2.2,	 instead	of	 relating	 each	 fire	 occurrence	with	 the	weather	

conditions	 before	 or	 at	 that	 occurrence,	 variables	 representing	 integrated	 weather	

conditions	 are	more	 appropriate	 for	 the	 scale	 of	 this	 study.	 Three	 climate	 variables	

were	 tested:	 (1)	 annual	 precipitation	 (Bureau	 of	Meteorology	 [BOM]	 2016b),	 which	

depicts	regulation	of	the	spatial	distribution	of	wildfire	occurrence	through	the	effects	

of	 the	precipitation	gradient	on	 the	amount	and	 type	of	 vegetation;	 and	 (2)	 January	

maximum	temperature	 (BOM	2006-2013a)	and	 (3)	 July	minimum	temperature	 (BOM	

2006-2013b),	 which	 together	 reflect	 the	 upper	 and	 lower	 limits	 that	 maximise	 the	

spatial	 variability	 of	 temperature	 gradients	 (Syphard	 et	 al.	 2008).	 All	 layers	 were	

resampled	at	a	resolution	of	1	km	using	the	nearest-neighbour	rule.	

5.2.4 Anthropogenic	Data	

Most	 wildfires	 in	 South-Eastern	 Australia	 are	 human-caused	 (Collins	 et	 al.	 2015),	

indicating	a	potential	connection	between	fire	occurrence	and	factors	representing	the	

accessibility	 of	wildland	 areas	 to	 human	 activities.	 Some	 of	 these	 factors	 have	 been	

introduced	in	Section	4.2.5	(e.g.	distance	to	WUI,	distance	to	roads,	distance	to	railway,	

population	density);	others	include	distance	to	recreational	area,	distance	to	powerline,	

etc.	In	this	study,	roads	and	railroads	were	derived	from	GEODATA	TOPO	2.5M	2003.	

Tracks,	powerlines	and	recreational	areas	were	derived	from	a	1:250,000	topographic	

dataset,	GEODATA	TOPO	250K	Series	3	(GA	2006).	As	in	4.2.5,	1	km	resolution	distance	

maps	to	the	nearest	human	infrastructure	were	produced	via	calculation	of	Euclidean	

distances	 in	 km.	 Additionally,	 fire	 occurrence	 is	 possibly	 affected	 by	 the	 creation	 of	

protected	areas	where	human	 interventions	are	 strictly	or	moderately	 controlled	 for	

the	conservation	of	biodiversity;	fewer	human-caused	fires	are	expected	in	these	areas.	

Protected	 areas	 were	 derived	 from	 the	 Collaborative	 Australian	 Protected	 Areas	

Database,	CAPAD	(Department	of	the	Environment	and	Energy	[DEE]	2014),	and	then	
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transformed	 into	 a	 1	 km	 resolution	 binary	 layer	 representing	 the	 presence	 of	

protective	management.		

5.2.5 Fire	Occurrence	

As	 described	 in	 4.2.6,	 the	MODIS	 active	 fire	 product	was	 used	 as	 the	 source	 of	 fire	

observations.	To	mitigate	the	 influence	of	prescribed	burnings,	which	primarily	occur	

during	 autumn	 and	 early	 spring,	 this	 study	 used	 fire	 incidents	 from	 November	 to	

February	 in	 forestry	 areas	 (rainforests,	 dry	 and	 wet	 sclerophyll	 forests),	 from	

September	 to	May	 in	 grassy	 areas	 (grassy	 woodlands	 and	 grasslands),	 and	 from	 all	

seasons	in	other	lands.	

A	MODIS	 active	 fire	 detection	 does	 not	 necessarily	 represent	 the	 time	 and	 location	

that	a	fire	ignited,	hence	burning	events	were	identified	using	the	FSR	method	(Loboda	

and	Csiszar	 2007)	 and	 detected	 fire	 points	with	 the	 earliest	 time	 stamp	within	 each	

event	 were	 assumed	 to	 be	 the	 ignition	 points.	 FSR	 identifies	 burning	 events	 by	

grouping	 fire	 points	 based	 on	 spatial	 and	 temporal	 proximity	 between	 pairs	 of	 fire	

detections,	which	were	set	as	4	km	and	ten	days	in	the	present	study.	The	number	of	

fire	 detections	 for	 a	 burning	 event	 ranged	 from	 1	 to	 4,723.	 A	 map	 was	 created	

representing	the	presence	(Figure	5.3)	or	absence	of	at	least	one	fire	occurrence	point	

within	each	1	km	resolution	cell.	

The	MODIS	active	 fire	product	does	not	 contain	 information	 regarding	 the	causes	of	

fires,	 hence	 it	 is	 not	 possible	 to	 analyse	 each	 explanatory	 variable	 in	 the	 context	 of	

causality.	 Furthermore,	 small	 fires	 have	 been	 found	 to	 have	 high	 omission	 error	

(Hawbaker	 et	 al.	 2008);	 therefore,	 a	 bias	 towards	 large	 or	 natural	 fires	 should	 be	

acknowledged,	and	that	most	human-caused	fires	may	be	too	small	to	be	detected.	In	

addition,	 there	may	exist	multiple	 ignition	points	 in	 a	 given	 group	 identified	by	 FSR;	

these	 are	 either	 the	 real	 fire	 occurrence	 points	 that	 a	 large	 event	 ignites	 from	 or	

clusters	of	the	earliest-detected	burning	points	that	include	unknown	ignition	points.	A	
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spatial	sampling	scheme	(Section	5.3)	was	implemented	to	reduce	the	bias	introduced	

in	the	latter	case.	

	

Figure	5.3	Distribution	of	the	response	variable	representing	the	presence	of	fire	occurrence.	

5.3 Modelling	Approach	

In	the	present	study,	a	series	of	ecoregion-based	empirical	models	were	developed	to	

address	 the	 research	 questions.	 Separate	 models	 for	 regions	 rather	 than	 a	 single	

integrated	model	were	developed	because	fire	pattern	drivers	can	vary	among	regions,	

i.e.	a	significant	fire	driver	in	one	region	can	be	insignificant	in	another.	By	developing	

separate	models,	 the	varying	effects	of	 factors	among	regions	can	be	more	precisely	

explained.	Ecoregions	TB	and	MG	were	combined	due	to	the	lack	of	occurrence	points	

in	ecoregion	MG.	This	consolidation	is	not	expected	to	influence	the	modelling	result	

because	the	vegetation	formation	categories	preserve	important	differences	between	

these	two	ecoregions.		
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As	 explained	 in	Chapter	 4,	 Spearman’s	 rank	 correlation	was	used	 to	 account	 for	 the	

correlations	among	variables	and	avoid	the	effects	of	multicollinearity.	A	threshold	of	

0.6	 (Wintle	et	al.	2005)	was	used	as	 the	criterion	 for	 removing	a	correlated	variable.	

Because	the	assumption	of	linearity	was	not	met	between	some	explanatory	variables	

and	the	logit	of	the	response	variable	,	a	GAM	with	a	binomial	distribution	was	used	to	

model	wildfire	occurrence.	The	advantage	of	a	GAM	is	 that	 it	allows	 for	a	non-linear	

relationship	by	generating	‘smooth	functions’.		

Let	!(#$, #&)	be	the	probability	of	at	least	one	fire	occurring	at	location	(#$, #&),	where	
#$	denotes	longitude	and	#&	denotes	latitude.	The	GAM	model	can	be	defined	as:	

)*+,- !(#$, #&) = /0 + /2324
25$ + +$ #$, #& + +67$(3674)8

65$ 																			(2)	

where	/0	is	an	intercept	and	each	/2 	is	the	coefficient	for	each	explanatory	variable	32,	
which	 have	 fixed	 effects;	+$ #$, #& 	is	 a	 nonparametric	 spatial	 effect	 term;	+67$	is	 a	
smooth	 spline	 representing	 the	 non-linear	 relationships	 between	 response	 and	

explanatory	 variables	3674 ;	9 	and	: 	distinguish	3 	that	 have	 fixed	 and	 non-linear	
effects,	respectively.	The	spatial	effect	term	(Table	5.1)	is	meant	to	capture	unknown	

topographic	 or	 vegetation	 information	 that	 is	 not	 included	 in	 each	 model;	 it	 also	

handles	 dependencies	 between	nearby	points.	 Smoothing	parameters	were	 selected	

by	restricted	maximum	likelihood	(REML)	estimation,	which	allows	for	more	accurate	

smooth	 term	 estimation	 than	 does	 generalized	 cross	 validation	 (GCV)	 smoothness	

selection	(Marra	and	Wood	2011).		

The	model	was	built	by	initially	fitting	a	model	that	included	all	explanatory	variables,	

and	then	iteratively	refitting	that	model	after	dropping	one	non-significant	term	until	

no	non-significant	terms	resulted.	All	smoothing	functions	except	for	that	of	the	spatial	

effect	term	were	limited	to	three	effective	degrees	of	freedom	to	better	represent	the	

underlying	processes	and	to	avoid	overfitting.		
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To	 reduce	 the	 influence	of	 spatial	 autocorrelation	and	 the	bias	 introduced	by	 FSR,	 a	

spatially-stratified	sampling	scheme	similar	to	that	suggested	by	Hawbaker	et	al.	(2013)	

was	used.	Each	ecoregion	was	subdivided	into	blocks	of	3	×	3	pixels	and	then	one	fire	

cell	and	one	non-fire	cell	randomly	selected	from	within	each	block.	If	a	block	included	

only	fire	or	non-fire	cells,	only	that	cell	type	was	retained.	Using	the	sampled	cells,	fire	

models	were	fitted	and	semivariograms	of	the	models’	deviance	residuals	were	plotted.	

If	there	was	strong	evidence	of	spatial	autocorrelation,	the	block	sizes	were	increased,	

newly	sampled	observations	were	generated,	and	 the	models	were	 refitted	until	 the	

semivariograms	showed	pure	nugget	effects.	A	factor	was	applied	to	the	final	equation	

to	correct	bias	 in	 the	proportion	of	 fire	and	non-fire	observations	 resulting	 from	the	

sampling	 scheme.	For	each	ecoregion,	 the	original	dataset	was	 randomly	partitioned	

into	a	training	dataset	(75%	observations),	which	was	used	to	build	and	select	a	model,	

and	a	validation	dataset	(the	remaining	25%	observations),	which	was	used	for	model	

testing.	

As	 in	Chapter	4,	ROC	curves	were	used	to	evaluate	 the	accuracy	of	each	model,	and	

model	fit	was	measured	as	the	AUC	of	the	ROC	curve.	AUCs	were	calculated	for	both	

training	 (AUCT)	 and	 validation	 (AUCV)	 samples	 of	 each	 ecoregion	 model.	 GAM	

modelling	and	ROC	calculations	were	carried	out	using	R	modules	mgcv	(Wood	2006)	

and	pROC	(Robin	et	al.	2011),	respectively.	

5.4 Results	

Explanatory	 variables,	 deviance	 explained,	 and	 AUCs	 of	 each	 ecoregion	 model	 are	

given	 in	 Table	 5.2.	 Different	 variable	 types	 were	 informative	 in	 different	 ecoregion	

models.	 Vegetation	 variables	 featured	 in	most	models	 except	 the	 TSG	model,	 while	

vegetation	formation	was	included	in	the	TB	&	MG	model	and	NDVI	contributed	to	the	

TG,	 MF,	 and	 DX	 models.	 Climate	 variables	 (Annual	 precipitation,	 July	 minimum	

temperature,	January	maximum	temperature)	were	featured	 in	the	TB	&	MG	and	TG	

models;	 topographic	 variables	 appeared	 in	 none	 of	 the	models,	whereas	 the	 spatial	

effect	term	was	included	in	all	of	them;	and	anthropogenic	variables	(Distance	to	WUI,	
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Distance	to	road,	and	Distance	to	railroad)	were	featured	in	the	TB	&	MG,	MF,	and	DX	

models.	

AUC	values	ranged	from	0.70	to	0.88	for	training	datasets,	and	from	0.63	to	0.84	for	

validation	 datasets	 (Table	 5.2).	 The	 TG	 model	 (AUCT=0.85,	 AUCV=0.84),	 DX	 model	

(AUCT=0.88,	 AUCV=0.82),	 and	MF	model	 (AUCT=0.83,	 AUCV=0.80)	 all	 performed	well,	

with	24.5%,	21.8%	and	17%	of	model	deviance	respectively	explained.	In	comparison,	

the	 TB	 &	 MG	 model	 (AUCT=0.76,	 AUCV=0.75)	 and	 the	 TSG	 model	 (AUCT=0.70,	

AUCV=0.63)	performed	fairly	or	poorly,	respectively	explaining	13.5%	and	9.05%	of	the	

deviance.	 Although	 the	 predictive	 powers	 of	 some	models	were	 not	 as	 good,	 these	

models	are	still	useful	from	an	explanatory	perspective.		

Table	5.2	Explanatory	variables,	deviance	explained,	and	AUCs	of	all	ecoregion	models.	

Model	 Variable	 Dev	 AUCT	 AUCV	

1.	TB	&	MG	

Vegetation	formation	+	Annual	precipitation	+	 July	minimum	

Temperature	 +	 Distance	 to	 WUI	 +	 Protected	 area	 +	 Spatial	

effect	

13.5%	 0.76	 0.75	

2.	TSG	 Spatial	effect	 9.05%	 0.70	 0.63	

3.	TG	 NDVI	+	January	maximum	temperature	+	Spatial	effect	 24.5%	 0.85	 0.84	

4.	MF	 NDVI	+	Distance	to	railroad	+	Spatial	effect	 17%	 0.83	 0.80	

5.	DX	 NDVI	+	Distance	to	road	+	Distance	to	railroad	+	Spatial	effect	 21.8%	 0.88	 0.82	

Note:	 TB	 &	MG,	 temperate	 broadleaf	 and	mixed	 forests	 (TB)	 &	montane	 grasslands	 and	 shrublands	 (MG);	 TSG,	
tropical	and	subtropical	grassland,	savannas,	and	shrublands;	TG,	temperate	grasslands,	savannas,	and	shrublands;	
MF,	Mediterranean	forests,	woodlands,	and	shrubs;	DX,	deserts	and	xeric	shrublands.	Dev,	deviance	explained	by	
the	model;	AUCT,	AUC	of	the	training	data;	AUCV,	AUC	of	the	validation	data.	
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Figure	5.4	Estimated	partial	effects	of	two	categorical	variables	in	the	TB	&	MG	model,	with	95%	confidence	
bands.	The	reference	classes	are	dry	sclerophyll	forests	and	unprotected	areas,	respectively.	

The	 final	 TB	 &	 MG	 model	 included	 six	 variables	 (Table	 5.2).	 The	 partial	 effects	 of	

categorical	 variables	 (Figure	 5.4),	 i.e.	 vegetation	 formation	 and	 protected	 area,	

illustrated	 the	 difference	 between	 estimated	 classes	 and	 the	 reference	 classes	 (dry	

sclerophyll	 forests	 and	unprotected	 areas).	 As	 the	data	 filtering	 process	 could	 affect	

the	different	effects	of	forestry,	grassy,	and	other	vegetation	formations,	comparisons	

were	 only	 made	 between	 formations	 treated	 with	 the	 same	 filtering	 process.	

Rainforests	 and	 wet	 sclerophyll	 forests	 were	 found	 to	 be	 significantly	 less	 likely	 to	

ignite	 than	dry	sclerophyll	 forests	 (P	<	0.01),	and	also	 less	 likely	 than	wet	sclerophyll	

forest.	 There	 is	 no	 evidence	 of	 difference	 between	 the	 ignition	 probabilities	 of	

(forested	and	freshwater)	wetlands	and	some	vegetation	formations	such	as	semi-arid	

woodlands	 and	 heathlands.	 Fire	 occurrence	 probability	 was	 higher	 in	 unprotected	

areas	than	in	protected	areas.		
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Figure	5.5	Estimated	partial	effects	in	the	TB	&	MG	model	of	three	non-spatial	continuous	variables	(mean	annual	
precipitation,	mean	July	minimum	temperature,	and	distance	to	WUI)	with	95%	confidence	bands,	and	the	

estimated	spatial	effect.	

The	estimated	partial	effects	of	continuous	significant	variables	were	plotted	on	a	logit	

scale	 with	 95%	 confidence	 bands	 (Figure	 5.5).	 Probabilities	 of	 fire	 occurrence	

decreased	 with	mean	 annual	 precipitation	 and	 the	 natural	 logarithm	 of	 distance	 to	

WUI.	 When	 the	 mean	 July	 minimum	 temperature	 was	 between	 -5	 and	 0,	 the	

relationship	between	fire	occurrence	probability	and	mean	July	minimum	temperature	

followed	an	increasing	trend.	The	estimated	spatial	effect	of	the	model	suggests	that	

fire	occurrence	probability	is	highest	along	the	north-eastern	coast	and	highlands.		
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Figure	5.6	Estimated	spatial	effect	in	the	TSG	model.	

The	 final	 TSG	model	 included	 only	 the	 spatial	 effect	 variable	 (Table	 5.2,	 Figure	 5.6),	

which	suggests	that	probabilities	of	fire	occurrence	are	higher	in	the	northern	part	of	

the	region.	

	

Figure	5.7	Estimated	partial	effects	in	the	TG	model	of	two	non-spatial	variables	(NDVI	and	Mean	January	
maximum	temperature)	with	95%	confidence	bands,	and	the	estimated	spatial	effect.				

The	 final	 TG	 model	 included	 two	 environmental	 variables	 (NDVI	 and	 mean	 January	

maximum	 temperature)	 and	 the	 spatial	 effect	 variable	 (Table	 5.2,	 Figure	 5.7).	 Fire	

occurrence	probability	 increased	steadily	with	mean	 January	maximum	temperature.	

The	 partial	 effect	 of	 NDVI	 was	 non-linear,	 with	 positive	 correlation	 when	 the	 NDVI	

value	was	smaller	than	0.3	and	a	near	flat	trend	as	the	NDVI	became	larger.	The	spatial	

effect	 showed	 an	 obvious	 positive	 trend	 from	 west	 to	 east	 and	 north	 to	 south,	

indicating	transition	from	a	less	fire-prone	area	to	a	fire-prone	area.	
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Figure	5.8	Estimated	partial	effects	in	the	MF	model	of	two	non-spatial	variables	(NDVI	and	Distance	to	railroad)	
with	95%	confidence	bands,	and	estimated	spatial	effect.	

The	 final	MF	model	 included	one	 environmental	 variable	 (NDVI),	 one	 anthropogenic	

variable	 (distance	 to	 railroad),	 and	 the	 spatial	 effect	 variable	 (Table	 5.2,	 Figure	 5.8).	

The	relationship	between	fire	occurrence	probability	and	NDVI	was	in	line	with	that	of	

the	TG	model,	with	probability	 increasing	when	the	NDVI	value	was	smaller	 than	0.3	

and	 then	 near	 flat/slightly	 decreasing	 as	 NDVI	 became	 larger.	 	 Fire	 probability	 was	

found	to	decrease	when	the	log	of	distance	to	railroad	(in	km)	was	lower	than	three,	

and	to	increase	for	higher	values.	This	means	that	fire	probability	decreases	within	an	

approximate	20	kilometres	distance	buffer	around	railroads.	Spatial	effect	showed	an	

obvious	positive	trend	from	north	to	south.	

The	 final	 DX	model	 included	 one	 environmental	 variable	 (NDVI),	 two	 anthropogenic	

variables	 (distance	 to	 road	 and	 distance	 to	 railroad),	 and	 the	 spatial	 effect	 variable	

(Table	 5.2,	 Figure	 5.9).	 The	 probability	 of	 fire	 occurrence	 increased	 with	 NDVI	 and	

distance	to	road,	and	decreased	with	distance	to	railroad.	The	spatial	effect	showed	a	

huge	drop	in	probability	for	the	southernmost	area.	
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Figure	5.9	Estimated	partial	effects	in	the	DX	model	of	three	non-spatial	variables	(NDVI,	distance	to	road,	and	
distance	to	railroad)	with	95%	confidence	bands,	and	the	estimated	spatial	effect.	

5.5 Discussion	

5.5.1 Types	of	Key	Driving	Factors	

It	is	not	surprising	that	vegetation	is	one	of	the	main	drivers	of	fire	occurrence	in	most	

ecoregions,	 indicating	 fuel	 plays	 an	 important	 role	 in	 regulating	 fire	 patterns	 at	 this	

scale	 regardless	 of	 the	 ecoregion	 in	 question.	Of	 the	 two	 vegetation-related	 factors,	

vegetation	formations	were	found	to	contribute	to	regulating	fire	patterns	in	the	most	

fire-prone	ecoregion	(TB	&	MG),	in	which	vegetation	structure	and	composition	varies	

significantly	across	space	and	NDVI	cannot	substantially	capture	the	characteristics	of	

the	combustible	fuels.	Climate	variables	were	major	drivers	of	fire	occurrence	patterns	

in	 two	ecoregions	with	broad	 areas	 (TB	&	MG	and	TG),	 indicating	 that	 climate	 is	 an	

important	factor	at	relatively	broad	spatial	scales,	over	which	top-down	processes	are	

dominant.	 The	 significance	 of	 spatial	 effect	 in	 all	 presented	 models	 indicates	 the	
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influence	 of	 unknown	 topographic	 or	 vegetation	 variables	 that	 were	 not	 otherwise	

included	(Preisler	et	al.	2004).	The	spatial	effect	term	probably	suppressed	the	effects	

of	topographic	factors,	especially	elevation,	which	were	all	found	to	have	insignificant	

effects.	

Anthropogenic	 factors	 were	 observed	 to	 play	 important	 roles	 in	 regulating	 fire	

occurrence	 patterns	 in	 the	 most	 populated	 ecoregion	 type	 (TB	 &	 MG)	 and	 in	 two	

sparsely	settled	ecoregions	(MF	and	DX).	The	 latter	case	 is	probably	because	fire	 is	a	

rare	event	in	MF	and	DX	ecoregions;	thus,	even	slight	human	presence	can	significantly	

influence	the	chance	of	a	fire	being	ignited.		

5.5.2 Effects	of	Environmental	Drivers	

Dry	 sclerophyll	 forest	 is	 an	 iconic	 fire-prone	 vegetation	 formation,	 with	 an	 open	

structure	that	contributes	to	the	drying	out	of	fuels	and	thus	a	higher	likelihood	of	fire	

ignition,	especially	during	periods	of	higher	 fire	danger.	Rainforests	are	 less	prone	to	

fire	 ignition	 than	dry	 sclerophyll	 forests	because	of	 their	high	 fuel	moisture	 content;	

rainforests	 only	 become	 easy	 to	 ignite	 under	 prolonged	 hot	 and	 dry	 weather.	 The	

ignition	probability	of	wet	sclerophyll	forests	is	higher	than	rainforests,	but	lower	than	

dry	 sclerophyll	 forest.	 Compared	with	 rainforests,	 the	 relatively	 open	 canopy	of	wet	

sclerophyll	 forests	 allows	 for	 the	 penetration	 of	 additional	 sunlight,	 facilitating	 the	

growth	of	understory	vegetation	and	 the	drying	out	of	 fuels	 (Keith	2004);	 compared	

with	dry	sclerophyll	forests,	the	relatively	high	fuel	moisture	content	in	wet	sclerophyll	

forests	dictates	that	favourable	climatic	conditions	are	needed	to	foster	an	initial	burn.	

This	relative	ranking	is	largely	in	line	with	the	risk	ranking	of	vegetation	categories	used	

for	NSW	Bush	Fire	Prone	Land	Mapping	 (NSW	Rural	Fire	Service	2015)	and	with	 fuel	

load	values	assessed	and	validated	by	the	NSW	Rural	Fire	Service	(2006),	except	that	

those	guidelines	treat	wet	and	dry	sclerophyll	forests	as	being	equally	fire-prone.	This	

discrepancy	 is	not	surprising	since	the	chance	of	 ignition	may	not	be	 in	 line	with	 fire	

risk,	 which	 depends	 on	 both	 ignition	 and	 the	 rate	 of	 spread.	 Therefore,	 the	 risk	

mapping	guideline	may	not	be	appropriate	for	ignition	probability	mapping.		



	 	

73	

	

Due	 to	 biodiversity	 conservation	 concerns,	 fires	 are	 meant	 to	 be	 avoided	 in	 some	

vegetation	formations,	e.g.	rainforests,	alpine	complex,	and	saline	wetlands	(Kenny	et	

al.	 2004).	 However,	 the	 results	 of	 this	 study	 showed	 that	 there	 were	 still	 a	

considerable	number	of	 fires	 that	burned	 in	and	even	 ignited	 from	 these	vegetation	

formations.	 Another	 notable	 fact	 is	 the	 lack	 of	 evidence	 illustrating	 any	 difference	

regarding	ease	of	ignition	between	(forested	and	freshwater)	wetlands	and	some	fire-

prone	 vegetation	 formations	 such	 as	 semi-arid	woodlands	 and	heathlands.	Although	

the	sample	size	was	not	sufficient	to	support	a	statistically	significant	effect,	this	result	

is	somewhat	intriguing.	Forested	and	freshwater	wetlands	can	ignite	when	inundation	

is	 punctuated	by	periods	of	dryness	 and	 their	 biomass	 is	 sufficiently	 continuous	 and	

dry	 to	 carry	 a	 fire	 (Keith	 2004;	 Keith	 and	 Simpson	 2010).	 From	 the	 perspective	 of	

environmental	sustainability,	although	the	majority	of	vegetation	types	in	wetlands	are	

fire-adapted	 (Schneider	 and	 Sutherland	 undated),	 some	 include	 fire-sensitive	

vegetation	such	as	river	red	gums	(NSW	Department	of	Environment	Climate	Change	

and	 Water	 [DECCW]	 2010),	 and	 inappropriate	 fires	 can	 damage	 the	 resilience	 of	

wetland	ecosystems	(Allen	2000).	Therefore,	the	impacts	of	fires	on	these	ecologically-

sensitive	vegetation	formations	are	worth	further	exploration	(Kenny	et	al.	2004).		

As	 an	 indicator	 of	 live	 fuel	 moisture	 content,	 NDVI	 is	 inversely	 related	 to	 fuel	

flammability	(Caccamo	et	al.	2012)	and	has	a	marginal	role	in	fire	ignition	(Chuvieco	et	

al.	 2004).	 	 It	 is	 also	 closely	 related	 to	 biomass	 or	 fuel	 load,	 another	 parameter	 that	

influences	 fire-affected	areas	 (Russell-Smith	 et	al.	2007;	Turner	 et	al.	2011).	Without	

considering	 the	 temporal	 effect,	 median	 NDVI	 may	 represent	 the	 average	 biomass	

condition	throughout	the	study	period.	Although	fires	have	been	demonstrated	to	be	

more	likely	to	occur	in	areas	with	high	NDVI	values	in	South-Eastern	Australia	(Zhang	et	

al.	 2016),	 the	 current	 study	 shows	 that	 the	 relationship	 between	 biomass	 and	

occurrence	probability	follows	a	non-linear	pattern	within	most	ecoregions.	In	contrast,	

the	effects	of	NDVI	followed	a	general	trend:	when	NDVI	is	smaller	than	0.3,	fires	are	

more	 likely	 to	 ignite	at	 locations	 that	exhibit	higher	average	biomass,	whereas	when	

NDVI	 is	 greater	 than	0.3,	 it	 does	not	 exhibit	 an	obvious	 effect.	 This	 is	 not	 surprising	
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because	the	human-caused	fires	 that	dominate	South-Eastern	Australia	 (Collins	et	al.	

2015)	normally	ignite	at	places	that	are	easy	to	access,	which	are	not	typically	remote	

areas	with	dense	vegetation	cover.	At	the	same	time,	the	environment	needs	to	fulfil	

the	criteria	(e.g.	sufficient	biomass)	for	a	fire	to	ignite.	In	desert	areas	(DX)	where	NDVI	

values	 are	 generally	 below	 0.3,	 higher	 NDVI	 values	 also	 correspond	 to	 greater	 fuel	

availability,	thus	fire	occurrence	may	be	more	strongly	regulated	by	the	availability	of	

fuel.	

This	 study	 included	 mean	 values	 of	 precipitation	 and	 temperature	 as	 factors	

representative	 of	 climate	 gradients,	 so	 that	 temporal	 variation	 of	 climate	 was	 not	

taken	into	account.	 In	temperate	regions	(TB	&	MG	and	TG),	fires	tended	to	occur	at	

places	 with	 low	 annual	 precipitation	 because	 rain	 raises	 the	 dead	 fuel	 moisture	

content	above	the	extinction	moisture	content	(Pickett	et	al.	2010).	Fires	also	tended	

to	 ignite	 at	 places	with	 high	 July	minimum	 temperature	 and	high	 January	maximum	

temperature	 because	 higher	 temperatures	 lead	 to	 low	 fuel	moisture	 (Sullivan	 et	 al.	

2012).		

5.5.3 Effects	of	Anthropogenic	Drivers	

In	 TB	 &	 MG	 ecoregions,	 fires	 tended	 to	 occur	 in	 areas	 near	 the	 WUI,	 which	 is	

consistent	with	studies	conducted	in	other	countries	(Syphard	et	al.	2008;	Oliveira	et	al.	

2012a).	 The	 tendency	 for	 fires	 to	 occur	 in	 non-protected	 areas	 where	 human	

interventions	 are	 not	 restricted	 also	 illustrates	 the	 association	 between	 human	

activities	and	fire	occurrence.	These	further	 indicate	the	threat	of	wildfires	to	human	

lives	 and	 assets,	 emphasizing	 the	 importance	 of	 fire	 management	 strategies	 in	 this	

region.		

In	MF	and	DX	ecoregions,	the	results	suggest	that	fires	tend	to	ignite	within	a	certain	

distance	 of	 railroads,	 probably	 because	 in	 these	 sparsely-populated	 areas,	 human	

activities	 that	 can	 trigger	 fires	 may	 be	 largely	 concentrated	 in	 areas	 with	 public	

transportation.	Surprisingly,	 fires	 in	the	DX	region,	tended	to	occur	at	 locations	away	
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from	roads	probably	because	except	for	those	occurring	along	railroads,	most	fires	in	

this	 region	are	naturally	 ignited.	 It	 is	 important	 to	note,	however,	 that	knowledge	of	

wildfire	occurrence	is	generally	lacking	for	this	ecoregion.		

5.5.4 Overall	Discussion		

Model	performances	were	evaluated	 through	the	calculation	of	percentage	deviance	

explained	and	the	AUCs	of	the	training	and	validation	data.	Overall	performances	were	

good	 in	 the	 relatively	 less	 fire-prone	 inland	regions	 (TG,	MF,	and	DX),	 indicating	 that	

fire	occurrence	patterns	are	well-captured	by	the	incorporated	factors.	Conversely,	the	

merely	fair	performances	of	TB	&	MG	and	TSG	models	demonstrate	the	challenge	of	

assessing	 long-term	 fire	 occurrence	 probabilities	 in	 regions	 where	 complex	 and	

multiple	 factors	 play	 interactive	 roles	 in	 regulating	 fire	 patterns.	 It	 is	 noted	 that	 the	

number	of	 identified	 ignition	points	 is	relatively	small	 in	the	arid	and	semi-arid	areas	

and	 in	 the	 TSG	 ecoregion;	 therefore,	 it	 is	 possible	 that	 alternate	 patterns	might	 be	

found	as	additional	MODIS	data	becomes	available.	

MODIS	data	was	used	because	 its	 global	 accessibility	 facilitates	 its	 use	 in	 analysis	 at	

broad	spatial	scales.	Additionally,	this	data	does	not	exhibit	the	limitations	of	historical	

observed	 data,	where	 some	 fires	 in	 remote	 areas	 are	 not	 reported	 to	management	

agencies	 (Turner	 et	 al.	 2011).	 A	 weakness	 of	 the	MODIS	 active	 fire	 product	 is	 that	

detections	 representing	 prescribed	 and	 agricultural	 fires	 are	 fully	 realised.	 Despite	

attempts	 to	 filter	 out	 as	 many	 of	 these	 detections	 as	 possible,	 some	 non-wildfire	

detections	may	have	remained	in	the	modelling	data.	Other	limitations	of	the	MODIS	

data	 include	 its	 bias	 towards	 large	 fires	 and	 the	 lack	 of	 fire	 cause	 information.	 The	

proposed	 model	 would	 be	 improved	 by	 introducing	 better-quality	 occurrence	 data	

that	contains	information	on	fire	causes	and	has	lower	omission	error.	
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5.6 Summary	

This	study	identified	drivers	controlling	the	spatial	patterns	of	wildfire	occurrence	over	

the	period	of	2003-2013	and	across	different	ecoregions	of	NSW	and	the	ACT,	Australia.	

Fire	 occurrence	 (ignition)	 points	were	 identified	 from	 the	MODIS	 active	 fire	 product	

with	 the	 FSR	 algorithm,	 and	 five	 ecoregion-based	 GAM	 models	 were	 developed	 in	

order	 to	 identify	 the	 key	 driving	 factors	 regulating	 wildfire	 occurrence	 and	 to	

understand	the	effects	of	these	factors.	Findings	from	this	study	have	the	potential	to	

support	ecoregion-based	fire	management	and	decision	making	in	NSW	and	the	ACT.	

This	 study	 also	 indicates	 that	 the	MODIS	 product	 is	 able	 to	 be	 used	 as	 an	 input	 in	

wildfire	 occurrence	 studies,	 provided	 that	 filtering	 processes	 are	 conducted	 and	 the	

results	are	carefully	interpreted.	

This	 study	 identified	 a	 number	 of	 important	 factors	 that	 regulate	 fire	 occurrence.	

Vegetation	is	 important	 in	most	ecoregions;	vegetation	formation	affects	fire	 ignition	

patterns	in	the	most	fire-prone	areas;	climate	gradients	drive	fire	ignition	in	ecoregions	

with	relatively	broad	areas;	spatial	effects	drive	fire	ignition	patterns	in	all	ecoregions;	

and	anthropogenic	factors	regulate	fire	ignition	patterns	in	the	most	populated	areas	

and	in	two	sparsely-populated	areas.	In	the	most	fire-prone	areas,	fires	are	less	likely	

to	ignite	within	rainforests	and	wet	sclerophyll	forests	than	in	dry	sclerophyll	forests.	In	

most	 ecoregions,	 there	 is	 a	 non-linear	 relationship	 between	 NDVI	 and	 fire	 ignition,	

with	 small	 to	 medium	 levels	 of	 NDVI	 showing	 a	 positive	 effect	 on	 fire	 ignition.	 In	

temperate	 areas,	 fires	 tend	 to	 ignite	 within	 areas	 with	 low	 precipitation	 and	 high	

temperature.	Fires	are	also	likely	to	ignite	near	human	facilities	and	at	non-protected	

areas	in	some	ecoregions,	but	away	from	roads	in	one	ecoregion.	
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Chapter	6 Factors	 Contributing	 to	 Fire	 Ignition	 in	 the	 Semi-arid	
Inland	Riverine	Environment	

The	 objective	 of	 this	 chapter	 is	 to	 understand	 wildfire	 ignition	 patterns	 and	 their	

driving	factors	in	inland	forested	wetlands	and	the	neighbouring	dry	lands	on	the	NSW	

side	of	the	Riverina	Bioregion.	This	study	aims	to	address	the	following	questions:	(1)	

What	 are	 the	 spatial	 and	 temporal	 patterns	 of	 human-caused	 and	 natural	 wildfire	

occurrence?	 (2)	 What	 are	 the	 effects	 of	 weather	 and	 fuel	 on	 these	 patterns,	 and	

specifically,	 does	 the	 probability	 of	 wetland	 fire	 ignition	 and	 inundation	 frequency	

follow	a	non-linear	relationship?	(3)	What	are	the	relative	contributions	of	fire	ignition	

drivers?	

6.1 Study	Area	

	

Figure	6.1	Map	of	Riverina	bioregion	showing	the	general	location	of	the	study	area.	The	Murray	River	forms	the	
boundary	between	the	states	of	New	South	Wales	and	Victoria.		

The	study	area	(Figure	6.1)	is	situated	approximately	between	141.0°	E	–147.0°	E	and	

33.0°	S	–36.0°	S,	covering	an	area	of	70,000	km2	(Thackway	and	Cresswell	1995),	and	
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comprises	 the	NSW	side	of	 the	Riverina	bioregion	 (DSEWPaC	2012).	 	The	majority	of	

this	 region	 experiences	 a	 warm	 and	 persistently	 dry	 semi-arid	 climate	 (Stern	 et	 al.	

2000).	The	average	annual	rainfall	ranges	from	about	250	mm	in	the	far	west	to	about	

600	mm	in	the	south-east,	indicating	a	transition	from	semi-arid	to	mesic	zones	(NSW	

Natural	Resources	Commission	[NRC]	2009).	The	topography	follows	a	general	trend	of	

increasing	elevation	from	approximately	sea	level	in	the	far	west	to	130	m	in	the	east.	

The	Murray,	Murrumbidgee,	and	Lachlan	Rivers	flow	in	a	westerly	direction	across	the	

region,	 forming	 an	 area	 of	 approximately	 9,000	 km2	 that	 experiences	 periodic	

inundation	(i.e.	wetlands).	Within	the	wetland	region,	an	area	of	4,000	km2	is	“forested	

wetlands,”	a	vegetation	formation	dominated	by	sclerophyllous	trees	5-40	m	tall	with	

an	understorey	of	hydrophytic	species	(Keith	2004,	2010);	this	accounts	for	5.6%	of	the	

entire	study	area.	The	distribution	of	vegetation	structure	and	community	in	forested	

wetlands	 varies	 with	 topography	 and	 flooding	 regime	 (Eardley	 1999;	 Keith	 2004),	

ranging	from	eucalypt	open	forest	with	a	shrubby	understorey	in	the	west	of	Murray	

and	Lachlan	 to	eucalypt	woodland	with	a	 tussock	grass	understorey	 in	 the	east	 (DEE	

2016).	 In	 the	 majority	 of	 the	 study	 area,	 the	 dominant	 tree	 species	 is	 Eucalyptus	

camaldulensis	 (river	 red	 gum);	 	 Eucalyptus	 largiflorens	 (black	 box)	 predominates	 in	

some	 regions	 (Eardley	 1999;	 Keith	 2004).	 The	 understorey	 vegetation	 includes	 a	

diverse	range	of	perennial,	annual,	and	ephemeral	herbaceous/grassy	species	such	as	

Centipeda	 cunninghamii	 (common	 sneezeweed)	 and	Corex	 appressa	 (tussock	 sedge),	

as	 well	 as	 shrubby	 species	 such	 as	 Muehlenbeckia	 florulenta	 (lignum)	 and	

Chenopodium	 nitrariaceum	 (nitre	 goosefoot).	 The	 rest	 of	 the	 Riverina	 area	 (non-

wetland)	is	generally	upslope	from	the	watercourse	and	is	dominated	by	cleared	lands,	

chenopod	shrublands,	samphire	shrubs,	and	forblands	with	an	ephemeral	ground	layer	

of	grasses	and	herbs	(Keith	and	Simpson	2010;	DEE	2016).	

6.2 Data	Description	

All	 explanatory	 variables	used	 in	 this	 chapter	 are	 listed	 in	 Table	 6.1.	 These	 variables	

were	 subdivided	 into	 four	 groups:	 weather,	 fuel,	 topography,	 and	 ignition	 sources	
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(Section	 2.3).	 Daily	maximum	 and	minimum	 temperatures,	wind	 speed,	 and	 relative	

humidity	 at	 3pm	 were	 obtained	 from	 121	 weather	 stations	 (BOM	 2016a)	 in	 the	

Riverina	 and	 its	 neighbouring	 regions.	 Specific	 fire	 records	 were	 assigned	 to	 the	

nearest	station	having	complete	records	across	its	entire	burning	period.	A	number	of	

variables	and	 indexes	–	FMI,	KBDI,	FFDI	and	days	since	 last	rain	–	were	derived	from	

the	weather	data.	 Since	FMI	 is	highly	dynamic	 (Sharples	and	McRae	2011),	 the	daily	

FMI	was	calculated	by	averaging	the	fuel	moisture	values	for	the	given	day.	Daily	KBDI	

was	 calculated	 according	 to	 equations	 presented	 by	 Keetch	 and	 Byram	 (1968),	 and	

FFDI	was	derived	following	the	work	of	McArthur	(1967)	and	(Noble	et	al.	1980).		

The	 annual	 rainfall	 variable	 was	 derived	 from	 a	 precipitation	 map	 representing	 the	

mean	 values	 of	 annual	 rainfalls	 for	 Australia	 from	2002	 to	 2016	 (BOM,	 2016b).	 This	

variable	 was	 assigned	 to	 the	 fuel	 group	 because	 it	 synthesises	 annual	 weather	

conditions	and	 is	 representative	of	 the	 rate	of	biomass	accumulation	 (Section	2.3.2).	

The	 map	 distinguishing	 forested	 wetlands	 from	 other	 vegetation	 formations	 was	

derived	 from	the	NSW	vegetation	 formation	map	v3.03	 (Keith	and	Simpson	2012).	A	

binary	variable	(Wetland)	was	generated	to	represent	whether	a	sample	is	 located	in	

forested	 wetland	 (see	 also	 in	 Table	 6.1).	 Inundation	 frequency	 was	 derived	 from	 a	

water	 prevalence	 map	 created	 by	 calculating	 the	 proportions	 of	 observations	 with	

water	present	in	the	NSW	inundation	count	dataset	(OEH,	2017).	The	inundation	count	

dataset	itself	was	produced	by	applying	a	new	water	index	to	each	Landsat	acquisition	

from	mid-1984	to	mid-2016	using	the	technique	developed	by	Fisher	et	al.	(2016).	The	

generation	and	roles	of	other	variables	(e.g.	Distance	to	Drainage	Line,	Northwestness,	

Distance	to	WUI,	Protected	Area)	have	been	explained	in	Chapters	4	and	5.	Wetland,	

Water	Prevalence,	and	Distance	to	Drainage	Line	were	also	assigned	to	the	fuel	group	

due	to	their	relationships	with	fuel	load	and	moisture	content.	

The	wildfire	history	datasets	 contain	 fire	 records	 for	 the	 state	of	NSW	 from	1902	 to	

2016	(NSW	OEH	2016;	NSW	RFS	2016).	Duplicate	records	and	prescribed	burning	scars	

were	 removed.	Only	 records	within	 the	Riverina	bioregion	were	used.	The	positional	
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uncertainty	 of	 fire	 boundaries	 ranges	 from	10	 to	 100	m	 (Price	 and	Bradstock	 2011).	

Because	fire	records	obtained	from	NSW	RFS	have	only	been	consistently	captured	or	

updated	from	the	2001/2002	fire	season	forward	(NSW	RFS	2016),	those	from	before	

2001	were	excluded,	resulting	in	a	total	of	157	fire	records	(Table	6.2)	that	were	used	

in	analysis.		

Since	the	actual	location	where	a	fire	event	started	is	unknown,	a	given	fire	could	have	

been	 ignited	 anywhere	 within	 the	 fire	 event	 polygon.	 Fires	 were	 divided	 into	 three	

categories	based	upon	the	degree	of	event	polygon	overlap	with	wetlands:	FEW,	FPW,	

and	FNW	(Section	3.3,	Table	6.2).	 FNW	represents	 fire	 that	neither	 started	 from	nor	

spread	 into	 forested	wetlands.	 For	 fires	 in	 the	FPW	category,	 it	 is	not	 clear	whether	

they	were	ignited	from	or	spread	into	forested	wetlands;	therefore,	this	category	was	

used	 only	 for	 descriptive	 analysis	 and	 was	 not	 used	 to	 build	 logistic	 GLMs.	 Fire	

observations	 with	 unknown	 causes	 were	 subsequently	 excluded	 because	 their	

presence	may	mask	the	effects	of	important	fire	drivers	in	the	models.	This	resulted	in	

a	total	of	85	fire	samples	eligible	for	the	quantitative	analysis,	including	49	natural	fires	

and	 36	 (suspected)	 human-caused	 fires	 (Table	 6.2).	 The	 spatial	 distributions	 of	 both	

types	 of	 fires	 are	 depicted	 in	 Figure	 6.2,	 with	 fire	 locations	 represented	 by	 their	

centroid	points.	
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Table	6.1	Variables	analysed	in	order	to	explain	drivers	of	wildfire	ignition	in	the	semi-arid	inland	riverine	environment.	

Variables Description 
Weather   

Maximum Temperature Daily maximum temperature (°C) 
Minimum Temperature Daily minimum temperature (°C) 
Relative Humidity 3pm Relative humidity at 3 pm (%) 
FMI Daily mean Fuel Moisture Index (Sharples et al., 2009) 
KBDI Daily Keetch-Byram Drought Index (Keetch and Byram, 1968) 
FFDI Daily Forest Fire Danger Index (Noble et al., 1980, McArthur, 1967) 
Days Since Rain Days since last rain day 

Fuel  

Annual Rainfall Mean Annual Rainfall from 2002 to 2016 (mm) 

Wetland Whether site is located in the forested wetland (wetland vs. non-wetland), binary variable  
Inundation Frequency Inundated pixel observations from Landsat acquisitions from mid-1984 to mid-2016 
Distance to Drainage Line Euclidean distance to the nearest drainage line (km). 

Topography  

Elevation Elevation (m) 

Slope Slope (°) 

Northwestness (NW) Aspect relative to the north-west 

Ignition Source  

Distance to WUI Euclidean distance to the nearest WUI (km) 
Distance to Road Euclidean distance to the nearest road (km) 
Protected Area Whether site is located in a protected area (protected vs non-protected), binary variable 
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Table	 6.2	 Fire	 data	 counts	 used	 in	 this	 study.	 All	 data	 summarized	 in	 the	 table	 were	 used	 in	 the	 descriptive	

analysis;	FPW	events	and	fires	with	unknown	causes	were	not	used	to	build	logistic	GLMs.	

 FEW FNW FPW Total2 Total 

Human-caused Fire 16 20 7 36 43 

Natural Fire 14 35 23 49 72 

Fire with Unknown Cause 12 19 11 31 42 

Total1 30 55 30 85 115 

Total 42 74 41 133 157 

Note:	Total1,	the	total	number	of	human-caused	and	natural	fires;	Total2,	the	total	number	of	FEW	and	FNW	events.	

	

	

Figure	6.2	Distributions	of	(a)	human-caused	and	(b)	natural	fires	occurring	in	2012-2016	in	the	Riverina	Bioregion	

(fire	polygons	are	represented	by	their	centroid	points).	
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6.3 Modelling	Approach	

Descriptive	analyses	were	conducted	 for	each	 fire	cause	 (i.e.	human-caused,	natural,	

and	 unknown)	 and	 category	 (i.e.	 FEW,	 FNW,	 and	 FPW)	 to	 explore	 the	monthly	 and	

seasonal	 distributions	 of	 fire	 ignition.	 Pearson’s	 χ2	 tests	 were	 conducted	 to	 test	

whether	the	seasonal	distribution	of	fires	was	independent	of	cause	or	category	at	the	

0.05	significance	level.	Logistic	GLMs	were	used	to	compare	the	probability	of	ignitions	

with	 random	 points	 In	 order	 to	 determine	whether	 the	 variables	 listed	 in	 Table	 6.1	

affect	the	ignition	of	fires	differently	than	what	would	be	expected	by	chance	(Syphard	

et	al.	2008),	.	All	ignition	points	were	used;	400	points	were	allocated	to	random	dates	

and	sites	for	the	regression	analysis.		

Univariate	 logistic	GLMs	were	built	 to	quantify	 relationships	between	 fire	probability	

and	 its	 explanatory	 variables,	 as	 well	 as	 to	 find	 the	 most	 appropriate	 variables	 for	

inclusion	 in	 the	 multiple	 GLMs.	 According	 to	 Vittinghoff	 and	McCulloch	 (2007),	 the	

number	of	“cases”	(fire	incidents)	per	independent	variable	should	range	from	at	least	

five	to	nine,	therefore	the	maximum	number	of	independent	variables	in	the	multiple	

logistic	GLMs	was	set	to	85/9 ≈ 9	for	all	fires,	49/9 ≈ 5	for	natural	fires,	and	36/9 ≈
4	for	human-caused	fires.	The	original	representation	of	Inundation	Frequency	was	not	

significant	 in	 either	 univariate	 or	 multiple	 models;	 therefore,	 the	 square,	 natural	

logarithm,	and	fourth	root	of	the	variable	were	tested.	Of	these,	the	fourth	root	was	

significant	and	better	fit	the	data,	thus	was	included	in	model	development.	To	avoid	

the	 influence	 of	 multicollinearity,	 variables	 with	 a	 Spearman’s	 rank	 correlation	 of	

greater	 than	0.6	 (Wintle	 et	al.	 2005)	 (e.g.	Annual	Rainfall	 and	Elevation)	or	 variables	

that	 were	 generated	 from	 another	 (e.g.	 FFDI	 was	 generated	 from	 Maximum	

temperature)	were	not	included	in	the	same	model.		

As	 in	 Chapter	 4,	 the	 multiple	 logistic	 GLMs	 were	 built	 using	 a	 backwards	 stepwise	

algorithm	 (Venables	 and	 Ripley	 1999)	 based	 on	 AIC	 (Akaike	 1998);	 i.e.	 explanatory	

variables	were	iteratively	dropped	if	the	model	had	smaller	AIC	without	them.	All	1st	

order	 interactions	were	tested	as	well,	and	none	were	found	to	be	significant.	There	
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was	no	evidence	of	spatial	autocorrelations	according	to	the	plotted	semivariograms	of	

the	models’	deviance	residuals.	Goodness	of	fit	was	measured	with	the	percentage	of	

deviance	explained,	as	well	as	the	AUC	of	the	ROC	curve.	Three	models	were	explored	

for	each	cause	of	fire:	the	best	model	(i.e.	the	model	that	explained	the	most	deviance	

and	 had	 the	 highest	 AUC)	 and	 models	 that	 included	 and	 excluded	 Inundation	

Frequency.	The	contribution	of	each	variable	group	to	the	best	model	was	estimated	

with	a	jackknife	procedure	based	on	the	change	in	AUC	(Bar	Massada	et	al.	2013).	The	

effect	 and	 contribution	 of	 Inundation	 Frequency	 on	 fire	 ignition	 probability	 were	

examined	 by	 graphically	 plotting	 the	 model	 including	 Inundation	 Frequency	 and	

comparing	the	goodness	of	fit	of	the	latter	two.	

All	 statistical	 analyses	 were	 conducted	 using	 R	 version	 3.2.3	 (R	 Development	 Core	

Team	 2016).	 Modules	 that	 were	 used	 for	 data	 compilation,	 visualisation,	

transformation,	 analysis,	 and	 storage	 included	 rgdal	 (Bivand	 et	 al.	 2015),	 raster	

(Hijmans	2016),	pROC	(Robin	et	al.	2011),	ggplot2	(Wickham	2009),	mandate	(Murphy	

2013),	and	xlsx	(Dragulescu	2014).	

6.4 Results	

Regardless	of	 their	 causes	and	 the	vegetation	 types	burned,	 fires	mostly	occurred	 in	

summer,	 specifically	 in	 December	 and	 January	 (Figure	 6.3);	 this	 also	 applies	 to	 the	

seasonality	of	natural	fires	(Figure	6.3(a)	and	(b)).	Human-caused	fires	mostly	occurred	

during	 spring,	 followed	 by	 summer,	 with	 the	 largest	 number	 of	 fires	 occurring	 in	

October,	November,	and	December.	The	 largest	number	of	FEW	and	FPW	fires	were	

found	 in	 summer	 (especially	December	 and	 January),	while	 FNW	mostly	 occurred	 in	

spring	and	summer	(especially	November	and	December)	(Figure	6.3(c)	and	(d)).	The	P	

values	 from	 Pearson’s	 χ2	 tests	 were	 0.01	 for	 fire	 seasonality	 against	 fire	 cause	 and	

0.001	 for	 fire	 seasonality	 against	 fire	 category.	 These	 results	 indicate	 that	 there	 are	

significant	differences	in	terms	of	fire	seasonality	among	different	fire	categories	and	

causes.	
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Figure	6.3	Monthly	and	 seasonal	distributions	of	wildfire	 (a,	b)	by	 cause	and	 (c,	d)	by	vegetation	 type	burned.	

FEW,	fires	burned	entirely	in	forested	wetlands;	FPW,	fires	burned	partly	in	forested	wetlands;	FNW,	fires	not	in	

forested	wetlands;	Spr,	Spring;	Sum,	Summer;	Aut,	Autumn;	Win,	Winter.	

All	 variables	 with	 significance	 in	 univariate	 models	 are	 listed	 in	 Table	 6.3.	 Most	

variables	 in	 the	 groups	 of	 weather	 and	 fuel	 were	 significant	 at	 the	 0.05	 level	 in	

explaining	 the	 probability	 of	 fire	 ignition,	 except	 for	 Days	 Since	 Rain	 (P	 =	 0.11)	 and	

Distance	to	Drainage	(P	=	0.39)	for	human-caused	fire,	as	well	as	KBDI	for	both	human-

caused	 and	 natural	 fires	 (P	 =	 0.32	 and	 P	 =	 0.79).	 Elevation	 was	 the	 only	 significant	

topographic	variable.	Some	variables	in	the	ignition	source	group	(i.e.	Distance	to	WUI	

and	Distance	to	Road)	were	significant	in	terms	of	human-caused	fire	ignition,	but	did	

not	explain	natural	fire	ignition.	
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Table	6.3	Results	of	univariate	models	for	human-caused	and	natural	fires.	Only	significant	variables	are	listed.		

Variable Human-caused Fire Natural Fire 

 Estimate Std. Error z value Pr(>|z|) Estimate Std. Error z value  Pr(>|z|) 

Weather         

Maximum Temperature 0.08 0.02 3.85 0.00 0.19 0.03 7.25 0.00 

Minimum Temperature 0.07 0.02 2.79 0.01 0.18 0.03 6.71 0.00 

Relative Humidity 3pm -0.05 0.01 -4.05 0.00 -0.05 0.01 -4.93 0.00 

FMI -0.08 0.02 -3.11 0.00 -0.16 0.02 -6.28 0.00 

FFDI 0.04 0.01 3.72 0.00 0.06 0.01 6.26 0.00 

Days Since Rain 0.02 0.02 1.23 0.22 0.03 0.02 2.13 0.03 

Fuel          

Annual Rainfall 0.02 0.00 5.74 0.00 0.01 0.00 3.64 0.00 

Wetland -2.25 0.39 -5.84 0.00 -1.71 0.38 -4.48 0.00 

Distance to Drainage -0.02 0.02 -0.85 0.39 -0.06 0.02 -2.34 0.02 

Inundation Frequency ^ (1/4)  3.59 1.08 3.32 0.00 3.12 1.02 3.06 0.00 

Topography         

Elevation 0.05 0.01 5.06 0.00 0.03 0.01 3.59 0.00 

Ignition Source         

Distance to WUI -0.05 0.01 -5.17 0.00 -0.01 0.01 -1.20 0.23 

Distance to Road -0.23 0.06 -3.93 0.00 -0.02 0.03 -0.75 0.45 

Note:	The	reference	class	of	the	binary	variable	“Wetland”	is	the	class	“wetland”.	



	 	

87	

	

Among	significant	variables	in	the	univariate	models,	positive	relationships	were	found	

between	the	probability	of	fire	ignition	and	variables	such	as	Maximum	Temperature,	

Minimum	 Temperature,	 FFDI,	 Days	 Since	 Rain,	 Annual	 Rainfall,	 the	 fourth	 root	 of	

Inundation	Frequency,	and	Elevation.	Negative	relationships	were	found	between	fire	

ignition	 probability	 and	 all	 other	 variables.	 The	 results	 showed	 that	 fires	were	more	

likely	to	occur	in	wetland	than	in	other	vegetation	types.	

The	 best-performing	 model	 for	 human-caused	 fire	 ignition	 contained	 one	 weather	

variable	 (Maximum	 Temperature),	 two	 fuel-related	 variables	 (Annual	 Rainfall	 and	

Wetlands)	and	two	ignition	source	variables	(Distance	to	WUI	and	Distance	to	Road),	

explaining	34%	of	the	deviance	with	an	AUC	value	of	0.88	(Table	6.4,	Table	6.5).	The	

best-performing	model	for	natural	fire	ignition	contained	the	same	weather	and	fuel-

related	variables,	and	had	an	AUC	of	0.89	and	explained	deviance	of	34%	(Table	6.4,	

Table	6.5).	
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Table	6.4	Performance	of	multivariate	models	for	human-caused	and	natural	fires.	%	Dev,	percentage	of	deviance	explained;	AIC,	Akaike	information	criterion;	AUC,	Area	under	the	
receiver	operating	characteristics	curve.			

Models %Dev AIC AUC 

Human-caused fire    

Maximum Temperature + Annual Rainfall + Wetland + Distance to WUI + Distance to Road  ** 34 204.48 0.88 

Maximum Temperature + Annual Rainfall + Inundation Frequency ^ (1/4) + Distance to WUI + Distance to Road 29 218.95 0.86 

Maximum Temperature + Annual Rainfall + Distance to WUI + Distance to Road 27 223.01 0.84 

Natural fire    

Maximum Temperature + Annual Rainfall + Wetland  ** 34 236.47 0.89 

Maximum Temperature + Annual Rainfall + Inundation Frequency ^ (1/4) 33 240.59 0.89 

Maximum Temperature + Annual Rainfall 28 253.56 0.87 

Note:	the	best	models	are	marked	with	**.			

Table	6.5	Estimates	from	the	best-performing	models	for	human-caused	and	natural	fires.	

Human-caused Fire      Natural Fire     

 Estimate Std. Error z value  Pr(>|z|)   Estimate Std. Error z value  Pr(>|z|) 

Intercept -6.74 1.80 -3.75 0.00  Intercept -12.02 1.76 -6.85 0.00 

Weather      Weather     

Maximum Temperature 0.10 0.03 3.88 0.00  Maximum Temperature 0.21 0.03 7.11 0.00 

Fuel      Fuel     

Annual Rainfall 0.01 0.00 3.43 0.00  Annual Rainfall 0.02 0.00 4.46 0.00 

Wetland -2.25 0.49 -4.55 0.00  Wetland -2.12 0.48 -4.38 0.00 

Ignition           

Distance to WUI -0.02 0.01 -2.21 0.03       

Distance to Road -0.16 0.07 -2.40 0.02       
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The	 jackknife	 estimate	 of	 variable	 importance	 (Figure	 6.4)	 for	 the	 best	 model	 of	

human-caused	 fires	 showed	 that	each	 factor	group	contributes	 to	 the	 final	model	at	

approximately	 the	 same	 level;	 the	 AUC	 values	 of	 models	 without	 weather,	 fuel,	 or	

ignition	 sources	were	 0.85,	 0.84	 and	 0.85,	 respectively.	 For	 natural	 fires,	 the	model	

without	 weather	 variables	 has	 an	 AUC	 far	 less	 than	 for	 the	 model	 without	 fuel	

variables	 (0.71	 vs.	 0.84),	 indicating	 that	 weather	 contributes	 more	 than	 fuel	 to	

explaining	the	ignition	of	natural	fires.		

	

Figure	6.4	Jackknife	estimations	of	variable	importance	for	the	final	models	of	human-caused	and	natural	fire.	
Bars	denote	the	area	under	the	receiver	operator	characteristic	curve	(AUC).	The	black	bar	represents	the	full-
model	AUC,	white	bars	represent	the	AUCs	of	univariate	models,	and	grey	bars	represent	the	AUCs	of	models	

without	the	corresponding	variables.	

0.84

0.71

0.89

0.71

0.84

0.00 0.20 0.40 0.60 0.80 1.00

Fuel	/	Climate

Weather

Overall

Natural	Fire

AUC	with	only AUC	without

0.85

0.84

0.85

0.88

0.80

0.81

0.68

0.00 0.20 0.40 0.60 0.80 1.00

Ignition	Source

Fuel	/	Climate

Weather

Overall

Human-caused	Fire



	 	

90	

	

Models	including	the	fourth	root	of	Inundation	Frequency	exhibited	an	AUC	of	0.86	for	

human-caused	 fires	 and	 0.89	 for	 natural	 fires,	 the	 performances	 of	 which	 are	

considerably	 better	 than	 models	 without	 Inundation	 Frequency	 (AUC	 =	 0.84	 for	

human-caused	 fire	 and	 AUC	 =	 0.87	 for	 natural	 fire,	 as	 shown	 in	 Table	 6.4).	 Graphs	

depicting	 the	 change	 of	 fire	 probability	 in	 relation	 to	 selected	 variables	 (Figure	 6.5)	

indicate	 that	 fire	probability	 increases	as	Maximum	Temperature	 increases,	and	 that	

this	effect	becomes	stronger	at	higher	Inundation	Frequency	values	(Figure	6.5	(a),	(b)).	

Fire	probability	and	 Inundation	Frequency	had	a	positive	and	non-linear	relationship;	

the	slope	was	steeper	at	lower	Inundation	Frequency	than	at	higher	values	(Figure	6.5	

(c),	(d)).	

	

Figure	6.5	Probabilities	of	(a,	c)	human-caused	and	(b,	d)	natural	fire	ignition	as	a	function	of	Maximum	
Temperature	and	Inundation	Frequency.	
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6.5 Discussion	

6.5.1 Spatial	and	Temporal	Patterns	of	Wildfire	

Most	fires	in	the	Riverina	bioregion	occurred	during	summer,	consistent	with	the	peak	

fire	 season	 of	 this	 area	 (Luke	 and	McArthur	 1978).	 In	 this	 bioregion,	 the	 conditions	

most	preferable	for	fire	ignition	occur	during	summer	when	the	weather	is	hot	and	dry,	

the	average	temperature	is	over	30	°C,	and	rainfall	occurs	less	reliably	(Eardley	1999).	

Seasonal	 inundation	 patterns	 may	 also	 regulate	 fire	 seasonality:	 in	 the	 riverine	

environment,	 fires	 are	 very	 unlikely	 to	 occur	 during	 winter	 inundation	 phases.	

However,	 fires	 caused	 by	 different	 processes	 experience	 different	 seasonalities.	

Natural	 fires	 are	 mostly	 ignited	 in	 summer	 (especially	 December	 and	 January),	

probably	because	of	lightning	strikes	associated	with	summer	thunderstorms	(Eardley	

1999).	 Human-caused	 fires	 have	 slightly	 extended	 seasonality,	 with	 fires	 mostly	

occurring	 in	spring	and	summer	(especially	October,	November,	and	December).	This	

difference	 in	 fire	 seasonality	 is	 generally	 consistent	 with	 that	 observed	 in	 the	 U.S.,	

where	 lightning	 fires	 were	 clustered	 in	 the	 summer	 while	 human-caused	 fires	 have	

extended	 fire	 season	 (Balch	 et	 al.	 2017),	 although	 that	 study	 also	 recognized	

prescribed	fires	and	crop	fires	as	human-caused.	

Both	 FEW	 and	 FPW	 categories	 tended	 to	 ignite	 in	 December	 and	 January,	 whereas	

FNW	events	mostly	 ignited	 in	November	 and	December.	 This	 reflects	 the	 difference	

between	 fire	 activity	 in	 temperate	 eucalypt	 forests/woodlands	 and	 in	 semi-arid	

chenopod	 shrublands;	 the	 former	 is	 dominated	 by	 summer	 fires	 and	 the	 latter	 by	

spring-summer	fires	(Bradstock	2010;	Murphy	et	al.	2013).		

Both	human-caused	and	natural	 fires	were	 found	 to	be	more	 likely	 to	be	 ignited	on	

days	with	severe	weather	conditions	(higher	temperature	and	fire	danger	index,	lower	

relative	 humidity	 and	 fuel	 moisture	 content),	 in	 areas	 with	 higher	 levels	 of	 annual	

rainfall,	 in	 forested	wetlands	 as	 opposed	 to	 the	 surrounding	 dry	 lands,	 and	 in	 areas	

with	 intermediate	 inundation	 frequencies.	 Human-caused	 fires	 were	 more	 likely	 to	
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occur	near	urban	areas	and	transportation	facilities,	consistent	with	findings	 in	other	

landscapes	(e.g.	Pew	and	Larsen	2001;	Romero-Calcerrada	et	al.	2008;	Penman	et	al.	

2013).	

6.5.2 Effects	of	Weather	and	Fuel	

The	 observed	 effects	 of	 ambient	weather	 conditions	were	 generally	 consistent	with	

those	found	at	broader	scale	(Turner	et	al.	2011)	and	in	other	landscapes	(Penman	et	

al.	2013).	The	insignificance	contribution	of	KBDI	to	ignition	of	both	types	of	fires	can	

be	 explained	 by	 the	 nature	 of	 fuels	 in	 Riverina.	 In	 this	 semiarid	 environment	where	

woody	plant	cover	is	inherently	sparse,	ephemeral	and	perennial	grass	is	the	dominant	

fuel	 type	 (Myers	 et	 al.	 2004;	Bradstock	 et	 al.	 2014).	Although	 the	drought	 condition	

represented	by	KBDI	is	expected	to	be	related	to	the	availability	to	burn	litter	fuels	in	

forested	systems,	it	lacks	the	capacity	in	explaining	the	ignition	of	grass	fires,	the	fuels	

of	which	are	frequently	dry	enough	to	burn	(Bradstock	2010;	Bradstock	et	al.	2014).	

Wildfire	 activity	 varies	 with	 different	 climatic	 conditions	 (Russell-Smith	 et	 al.	 2007;	

Turner	et	al.	2011).	In	a	semi-arid	landscape,	the	rainfall	gradient	is	an	indicator	of	fuel	

amount	(productivity):	the	greater	the	average	annual	rainfall,	the	higher	the	biomass	

production,	 and	 consequently	 the	 higher	 the	 probability	 of	 fire	 ignition	 (Bradstock	

2010).	Accordingly,	fire	probability	was	found	to	be	higher	in	the	south-eastern	part	of	

Riverina	 while	 lower	 in	 the	 far	 west;	 this	 paralleled	 productivity,	 and	 conforms	 to	

findings	in	other	semi-arid	landscapes	(e.g.	Pausas	and	Bradstock	2007).		

Results	 showed	 that	 regardless	 of	 cause,	 fires	 are	 more	 likely	 to	 start	 in	 forested	

wetlands	than	in	dry	lands,	which	is	 inconsistent	with	the	fire-vegetation	relationship	

in	temperate	forests;	other	studies	have	documented	lower	or	equal	frequency	of	fire	

in	riparian	areas	compared	with	adjacent	uplands	 (Morrison	et	al.	1990;	Olson	2000;	

Dwire	 and	 Kauffman	 2003;	 Skinner	 2003;	 Olson	 and	 Agee	 2005;	 Pettit	 and	 Naiman	

2007).	 This	 discrepancy	 is	 probably	 determined	 by	 the	 semi-arid	 climate	 of	 Riverina	

and	the	larger	quantity	of	fuel	in	its	wetlands.	Riparian	zones	generally	have	higher	fuel	
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loads	due	to	the	promotion	of	high	biomass	production	by	better	water	accessibility,	

the	 accumulation	 of	wrack	 and	woody	 fuels	 in	 channels	 produced	 by	 uprooted	 and	

redistributed	trees,	and	the	harvest	of	riparian	trees	(Pettit	and	Naiman	2007).	These	

factors	apply	to	both	dry	and	wet	ecosystems.	However,	the	semi-arid	climate	in	this	

area	accelerates	the	drying-out	of	 inland	riparian	forests	during	the	summer	drought	

and	 non-inundation	 phase	 (Briggs	 1988),	 providing	 favorable	 conditions	 for	 fires	 to	

start.	This	can	be	partially	proved	by	the	fact	 that	wildfire	season	co-occurs	with	the	

drought	and	non-inundation	period.	A	comparable	result	has	been	found	in	a	tropical	

floodplain	system	of	southern	Africa,	where	fire	frequency	was	higher	in	wetlands	than	

for	dry	lands	(Heinl	et	al.	2006).	The	main	vegetation	formation	in	that	study	(savanna)	

was	 considerably	 different	 from	 that	 of	 the	 present	 study	 (forest);	 however,	 it	 does	

provide	corroboration	on	the	effect	of	productivity	on	fire	ignition	in	arid	or	semi-arid	

environments.	It	is	notable	that,	although	fires	in	the	Riverina	are	more	likely	to	occur	

in	 forested	 wetlands	 than	 dry	 lands,	 these	 wetland	 fires	 appeared	 to	 be	 relatively	

smaller	in	size	both	individually	and	in	total.	This	is	likely	due	to	the	low	proportion	of	

forested	wetlands	within	 the	 entire	 study	 area	 and	 the	 relatively	 high	 fuel	moisture	

content	 associated	with	 both	water	 and	 forest	 environments	 (Zhang	 et	 al.	 2017).	 A	

more	 comprehensive	 discussion	 of	 fire	 risk	 in	 this	 environment	 may	 therefore	 be	

needed	to	support	sustainable	management	and	ecological	assessment	practices.	

	At	 inundation	 frequencies	 equal	 to	 or	 below	 0.5,	 fires	were	more	 likely	 to	 occur	 in	

areas	with	higher	 inundation	 frequency.	This	 fire-flood	 relationship	can	be	explained	

by	 the	 fact	 that	higher	 inundation	 frequency	may	 lead	 to	higher	biomass	production	

and	also	higher	rates	of	uproot	and	redistribution	of	woods,	which	result	in	higher	fuel	

load.	 The	 relationship	 between	 these	 factors	 flattened	 out	 in	 areas	 that	were	more	

frequently	 inundated,	 i.e.	nearer	to	rivers.	This	finding	reflects	the	change	of	balance	

between	biomass	amount	and	its	propensity	to	burn	(Bradstock	2010).	It	also	confirms	

the	hypothesis	that	fire	and	flood	frequency	follow	a	non-linear	relationship	(Pettit	and	

Naiman	2007).		
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No	fires	were	recorded	on	lands	with	 inundation	frequencies	greater	than	0.5,	which	

may	 mean	 that	 fires	 are	 very	 unlikely	 to	 occur	 on	 these	 less-inundated	 lands.	 It	 is	

suspected	that	at	an	inundation	frequency	greater	than	0.5,	the	fire	ignition	probability	

will	 decline	with	more	 frequent	 flooding.	 as	 fires	 are	 least	 likely	 to	occur	near	areas	

that	experience	permanent	inundation	(Camp	et	al.	1997).	This	suspicion	is	supported	

by	 the	 finding	 of	 Heinl	 et	 al.	 (2006)	 that	 the	 highest	 fire	 frequencies	 occur	 at	

intermediate	flood	frequencies,	i.e.	every	second	year.	However,	more	data	is	required	

to	draw	a	final	conclusion.		

6.5.3 Overall	Discussion	

For	 human-caused	 fires,	 weather,	 fuel,	 and	 ignition	 sources	 explained	 fire	 ignition	

probability	to	approximately	equal	degrees.	This	means	that	allocation	of	suppression	

resources,	fuel	management	activities,	and	management	of	human	accessibility	are	all	

essential	 factors	 for	 controlling	 human-caused	 fires.	 For	 natural	 fires,	 weather	

contributed	 more	 to	 the	 final	 model	 than	 fuel,	 implying	 an	 association	 between	

extreme	 weather	 and	 lightning.	 Weather	 is	 therefore	 more	 important	 from	 the	

perspective	of	natural	fire	risk	mitigation.	

The	 present	 study	 has	 some	 limitations.	 First,	 natural	 fire	 ignition	 is	 expected	 to	 be	

affected	by	the	incidence	of	lightning	strikes	(Dowdy	and	Mills	2012b),	hence	it	may	be	

better	 modelled	 by	 introducing	 lightning-related	 factors.	 Second,	 the	 fire	 history	

dataset	only	recorded	fires	that	had	been	investigated,	which	means	that	there	might	

have	 been	 minor	 fires	 that	 were	 not	 included	 in	 the	 dataset.	 In	 addition,	 the	

geographical	locations	of	ignition	points	were	unknown;	therefore,	the	factors	used	in	

the	present	study	only	represent	the	general	conditions	of	when	and	where	fires	get	

started.	Improvements	can	be	made	when	more	precise	data	regarding	ignition	points	

are	available.	

Using	 vegetation	 type	 as	 an	 explanatory	 variable	 in	 these	 models	 necessitates	 that	

fires	 ignited	 from	 different	 vegetation	 types	 be	 distinguished,	 and	 fires	 that	 burned	
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multiple	 types	 (i.e.	 FPW)	 be	 discarded.	 Similarly,	 fires	 with	 unknown	 causes	 were	

excluded	 to	 avoid	 introducing	 noise	 to	 the	 final	 models.	 These	 filters	 might	 have	

excluded	a	number	of	potentially	useful	samples	from	analysis.	Future	studies	can	look	

at	 fire	 patterns	 that	 do	not	 distinguish	 fires	 by	 cause,	 and	build	models	 that	 do	not	

contain	vegetation	type.	

6.6 Summary	

This	study	investigated	the	spatial	and	temporal	patterns	of	wildfire	ignition,	as	well	as	

their	driving	factors,	 in	the	NSW	side	of	the	Riverina	bioregion.	Most	fires	occured	in	

summer,	with	human-caused	fires	primarily	in	spring	and	summer	and	natural	fires	in	

summer.	 In	 forested	wetlands,	 summer	was	again	 the	most	 fire-prone	 season,	while	

fires	 in	 dry	 lands	mostly	 occured	 during	 spring	 and	 summer.	 Fire	 probabilities	were	

higher	 under	 severe	 weather	 conditions,	 in	 areas	 with	 higher	 annual	 rainfall,	 in	

forested	 wetlands,	 and	 in	 areas	 with	 intermediate	 inundation	 frequencies.	 Human-

caused	 wildfire	 ignition	 was	 strongly	 associated	 with	 human	 access	 to	 the	 natural	

landscape,	as	represented	by	proximity	to	urban	areas	and	roads.	Weather,	fuel,	and	

ignition	sources	were	comparably	important	in	explaining	human-caused	fire	ignition,	

while	weather	was	more	important	than	fuel	in	explaining	natural	fire	ignition.		



	 	

96	

	

Chapter	7 Effects	 of	 Climate	 on	 Wildfire	 Size	 in	 Eucalyptus	
Camaldulensis	Forests	and	Dry	Lands	of	the	Riverina	Bioregion	

This	chapter	aims	to	investigate	the	effects	of	top-down	control	(climate)	on	fire	size	in	

the	NSW	portion	of	 the	Riverna	bioregion,	 the	same	study	area	as	 in	Chapter	6.	The	

study	 specifically	 addresses	 the	 following	 questions:	 (1)	What	 are	 the	 properties	 of	

wildfires	in	inland	forested	wetlands	and	their	adjacent	dry	lands?	(2)	How	do	ambient	

weather	 and	 antecedent	 rainfall	 affect	 the	 sizes	 of	 these	 fires?	 (3)	Which	 factor	 or	

group	 of	 factors	 provides	 the	 best	 explanatory	 performance,	 and	 how	 does	 that	

performance	change	as	neighbouring	lands	are	included?		

7.1 Data	Description	

In	 the	 present	 study,	 large	 fires	 that	 burned	 greater	 than	 1,000	 ha	 (Bradstock	 et	 al.	

2009)	 and	 excluded	 from	 further	 analysis.	 While	 small-	 or	 medium-sized	 fires	 are	

driven	 by	 near	 surface	 fuels	 and	 weather	 conditions,	 large	 fires	 tend	 to	 propagate	

under	 a	 more	 complex	 mechanism	 on	 account	 of	 variable	 surface	 conditions,	 the	

potential	 of	 long-distance	 spotting,	 and,	 more	 importantly,	 interaction	 with	 upper	

levels	of	the	atmosphere	(McRae	and	Sharples	2011);	therefore,	it	is	inappropriate	to	

investigate	sizes	of	large	fires	using	the	same	model	as	for	small	and	medium	fires.	The	

study	 used	 only	 records	 where	 all	 relevant	 explanatory	 variables	 were	 available,	

resulting	 in	a	 total	dataset	of	257	wildfire	observations.	The	dependent	variable	was	

the	natural	log	of	fire	area	measured	in	hectares	(ha).		

Since	 fire	 sizes	 are	 driven	 by	 severe	 weather	 conditions,	 which	 influence	 fire	

propagation	during	daytime	and	 the	moistening	of	 fuels	overnight	 (Catchpole	2002),	

the	corresponding	extreme	daily	records	were	assigned	to	each	fire	event,	comprising	

seven	 variables	 (Table	 7.1):	 maximum	 daily	 maximum	 temperature	 (MaxTemp),	

maximum	daily	minimum	temperature	(MinTemp),	minimum	relative	humidity	at	3pm	

(RH3pm),	minimum	daily	mean	FMI	(FMI),	maximum	daily	KBDI	(KBDI),	maximum	daily	
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FFDI	(FFDI),	and	the	number	of	days	since	last	rain	(DaysSinceRain).	It	should	be	noted	

that	FMI,	KBDI,	and	FFDI	refer	to	the	most	extreme	values	that	occurred	during	the	fire	

event	rather	than	daily/hourly-based	values	as	they	were	originally	defined.		

A	 representation	 of	 cumulative	 rainfall	 with	 different	 phases	 and	 lags	 (PhaseXLagX,	

Table	7.1)	was	constructed	 following	 the	work	of	Turner	et	al.	 (2011)	by	aggregating	

the	maps	of	monthly	 rainfall	 totals	 (BOM,	2016b).	 Lag	 represents	 the	number	of	 the	

month	 prior	 to	 the	 month	 in	 which	 a	 fire	 event	 occurred,	 while	 phase	 depicts	 the	

number	 of	 months	 being	 accumulated.	 For	 example,	 Phase1Lag0	 denotes	 the	

cumulative	rainfall	of	 the	month	 immediately	preceding	the	month	of	 the	 fire	event,	

and	Phase13Lag5	denotes	the	cumulative	rainfall	of	months	6-18	before	the	fire	event	

month.	 Lags	of	 0-24	and	phases	of	 1-24	were	 considered,	 resulting	 in	 a	 total	 of	 600	

variables.	 Additional	 variables	 representing	 the	 cumulative	 rainfall	 in	 each	 of	 the	

preceding	four	seasons	(SeasonalRain,	Table	7.1)	were	also	calculated.	The	daily	record	

variables	and	the	cumulative	rainfall	within	a	three-month	lag	and	three-month	phase	

reflect	ambient	weather	conditions,	while	the	remainder	represent	antecedent	rainfall	

conditions.	
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Table	7.1	Variables	analysed	in	regression	models	used	to	explain	wildfire	size	in	the	Riverina	bioregion.	

Variables	 Group	 Description	 Mean	 Range	 Std.Dev	
Dependent	variable	 	 	 	

Log	(fire	size)	 	 Natural	log	of	fire	size	(ha).	Fires	are	divided	into	three	categories:	fires	burned	entirely	in	forested	

wetlands	(FEW),	fires	burned	partly	in	forested	wetlands	(FPW),	and	fires	not	in	forested	wetlands	

(FNW)	

	 	 	

Explanatory	variable	 	 	 	

MaxTemp	 Ambient	Weather	 Maximum	daily	maximum	temperature	during	fire	event	(°C)	 33.97	 13-46.7	 6.77	

MinTemp	 Ambient	Weather	 Maximum	daily	minimum	temperature	during	fire	event	(°C)	 17.54	 0.4-30	 5.63	

RH3pm	 Ambient	Weather	 Minimum	relative	humidity	at	3	pm	during	fire	event	(%)	 22.58	 5-77	 13.03	

FMI	 Ambient	Weather	 Minimum	daily	mean	Fuel	Moisture	Index	(Sharples	et	al.	2009)	during	fire	event	 15.04	 5.15-30.58	 5.75	

KBDI	 Ambient	Weather	 Maximum	daily	Keetch-Byram	Drought	Index	(Keetch	and	Byram	1968)	during	fire	event	 104.10	 8.5-187.1	 40.61	

FFDI	 Ambient	Weather	 Maximum	daily	Forest	Fire	Danger	Index	(McArthur	1967;	Noble	et	al.	1980)	during	fire	event	 28.45	 0.06-100	 19.42	

DaysSinceRain	 Ambient	Weather	 Days	since	last	rain	 7.42	 0-39	 7.72	

PhaseXLagX	 Ambient	Weather	/	

Antecedent	Rainfall	

Cumulative	rainfall	with	different	phases	and	lags	(mm)	

Cumulative	rainfall	variables	within	3	months	lag	and	3	months	phase	were	assigned	to	the	

Ambient	Weather	group	and	others	were	assigned	to	the	Antecedent	Rainfall	group.	

24.37	 0-163.77	 19.99	

SeasonalRain	 Antecedent	Rainfall	 Cumulative	rainfall	in	the	preceding	four	seasons	(spring,	summer,	autumn,	winter)		 83.67	

110.79	

96.29	

89.92	

21.15-309.93	

4.51-341.33	

6.58-292.11	

22.57-231.36	

51.49	

77.18	

61.29	

38.15	

Note:	Statistics	(mean,	range,	and	standard	deviation)	for	PhaseXLagX	are	shown	as	that	of	Phase1Lag0;	statistics	for	SeasonalRain	are	listed	in	the	order	of	spring,	

summer,	autumn	and	winter.	
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7.2 Modelling	Approach	

Descriptive	analysis	regarding	the	distribution	of	fire	sizes	was	conducted	for	each	fire	

category.	Relationships	were	quantified	using	the	log-normal	model,	i.e.	a	simple	linear	

model	with	log-transformed	fire	sizes	as	the	response.	This	model	was	used	because:	

(1)	fire	sizes	are	non-negative	and	positively	skewed,	and	(2)	the	relationship	between	

the	response	variable	and	the	explanatory	variables	is	close	to	linear.		

Differences	in	weather	conditions	for	the	three	fire	categories	were	explored	through	

boxplots	 and	 tested	 with	 the	 Wilcoxon	 signed-rank	 test,	 allowing	 for	 non-normal	

distributions.	Relationships	between	fire	size	and	explanatory	variables	were	explored	

by	plotting	fire	size	against	selected	explanatory	variables.	Univariate	models	were	first	

developed	to	evaluate	the	independent	effect	of	each	variable	on	fire	size	and	to	find	

the	most	 suitable	 variables	 for	 inclusion	 in	 the	multiple	 regression	models.	 Records	

from	 FWE,	 FPW,	 and	 FNW	 fire	 categories	 were	 progressively	 incorporated	 into	 the	

analysis	in	that	order	(Section	3.3);	thus	models	were	developed	for	FEW	(Case	I),	FEW	

and	FPW	(Case	II),	and	for	FEW,	FPW	and	FNW	(Case	III).	As	this	study	aims	to	model	

changes	 in	 fire	 size	 determinates	 as	 the	 proportion	 of	 burned	 forested	 wetland	

decreases	from	100%	(Case	I)	to	very	low	(Case	III),	independent	models	were	not	built	

for	FPW	or	FNW	categories.	

Multicollinearity	 was	 tested	 via	 the	 calculation	 of	 Spearman’s	 rank	 correlation,	 and	

variables	with	a	correlation	greater	than	0.6	(Wintle	et	al.	2005)	were	not	included	in	

the	 same	 models.	 In	 this	 study,	 MaxTemp,	 MinTemp,	 RH3pm,	 FMI,	 and	 FFDI	 were	

always	highly	correlated	with	each	other.	Model	fit	was	compared	on	the	percentage	

of	deviance	explained	by	each	model,	and	determination	of	the	best	model	was	based	

on	the	Akaike	information	criterion	(AIC,	Akaike	1998).	Models	whose	AIC	values	were	

within	 two	 points	 of	 the	 best	 model	 were	 considered	 meaningful	 (Burnham	 and	

Anderson	2003).	The	contributions	of	each	variable	group	 (i.e.	 ambient	weather	and	

antecedent	 rainfall)	 to	 the	 best	 model	 were	 compared	 using	 the	 percentage	 of	
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deviance	 explained	 by	 each	 group.	 The	 effects	 of	 log-	 and	 square-transformed	

explanatory	variables,	as	well	as	two-way	interaction	terms,	were	also	tested.	Moran’s	

I	was	used	to	measure	the	spatial	autocorrelation	of	model	residuals	(Legendre	1993).		

All	 statistical	 analyses	 were	 conducted	 using	 R	 version	 3.2.3	 (R	 Development	 Core	

Team	2016).	Log-normal	models	were	fitted	using	a	GLM	with	family	‘gaussian’	and	a	

link	 function	 of	 ‘identity’.	 Spatial	 objects	 were	 processed	 using	 rgdal	 (Bivand	 et	 al.	

2015)	 and	 raster	 (Hijmans	 2016).	 Other	 modules	 used	 in	 analysis	 include	 ggplot2	

(Wickham	2009),	mandate	(Murphy	2013),	and	xlsx	(Dragulescu	2014).	

7.3 Results	

7.3.1 Descriptive	Analysis	

Some	of	the	size	characteristics	of	FEW,	FPW	and	FNW	fires	(fire	size	<	1,000	ha)	are	

depicted	in	Figure	7.1.	The	size	distributions	of	all	three	fire	categories	and	overall	area	

burned	 are	 skewed	 small	 (Figure	 7.1(a)	 and	 (c)).	 In	 particular,	 FEW	 tended	 to	 burn	

smaller	areas	both	individually	(<	200	ha,	Figure	7.1(a))	and	in	total	(<	1,000	ha,	Figure	

7.1(b))	than	the	other	two	fire	categories.	Case	I	and	Case	II	datasets	had	their	largest	

fires	 burned	 in	 January,	 followed	 by	 February	 (Figure	 7.1(d)).	 Case	 III	 also	 had	 its	

largest	area	burned	in	January,	but	the	next	greatest	were	in	December	and	November	

(Figure	 7.1(d)).	 For	 all	 three	 cases,	 fires	 burned	 the	 largest	 area	 in	 summer	 and	

smallest	in	winter	(Figure	7.1(e)).	
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Figure	7.1	(a)	Boxplot	of	fire	sizes	for	different	fire	categories	(FEW,	FPW,	and	FNW);	(b)	Cumulative	area	burned	
by	 different	 fire	 categories;	 (c)	 Histogram	 of	 fire	 size;	 (d)	 Monthly	 cumulative	 area	 burned;	 (e)	 Seasonal	
cumulative	area	burned;	fire	size	<	1000	ha;	FEW,	fires	burned	entirely	 in	forested	wetlands;	FPW,	fires	burned	
partly	in	forested	wetlands;	FNW,	fires	not	burned	in	forested	wetlands;	Spr,	Spring;	Sum,	Summer;	Aut,	Autumn;	
Win,	Winter.	

7.3.2 Univariate	Models	

Weather	conditions	were	not	significantly	different	between	the	three	fire	categories	

except	for	MaxTemp,	which	differend	between	FPW	and	FNW	(Figure	7.2,	Table	7.2).	

Plotting	fire	size	against	weather	variables	showed	that	the	natural-log	of	fire	size	and	

weather	conditions	have	an	approximately	linear	relationship	(Figure	7.3).		
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Figure	 7.2	 Boxplots	 of	 ambient	weather	 conditions	 for	 the	 three	 fire	 categories.	 FEW,	 fires	 burned	 entirely	 in	
forested	wetlands;	FPW,	fires	burned	partly	in	forested	wetlands;	FNW,	fires	not	burned	in	forested	wetlands.	

	

Table	7.2	Ambient	weather	differences	(mean	±	std.	error)	between	paired	fire	categories.	

Comparison	 MaxTemp	 MinTemp	 RH3pm	 FMI	 FFDI	 DaysSinceRain	

FEW-FPW	 -0.80	±	2.10	 -0.40	±	1.70	 1.00	±	3.00	 0.35	±	1.75	 -1.46	±	5.36	 0.00	±	2.00	

FEW-FNW	 1.20	±	1.80	 -0.40	±	1.60	 -3.00	±	3.00	 -1.05	±	1.45	 2.17	±	5.06	 0.00	±	2.00	

FPW-FNW	 2.00	±	2.00	*	 0.10	±	1.40	 -3.00	±	4.00	 -1.23	±	1.72	 3.54	±	5.04	 0.00	±	2.00	

*	Significant	effect	(p=0.046)	
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Figure	 7.3	 Scatterplots	 of	 fire	 size	 against	 selected	 explanatory	 variables	 for	 three	 fire	 categories.	 FEW,	 fires	
burned	entirely	 in	 forested	wetlands;	 FPW,	 fires	burned	partly	 in	 forested	wetlands;	 FNW,	 fires	not	burned	 in	
forested	wetlands.	

Univariate	 regression	 results	 (Table	7.3)	 show	that	all	ambient	weather	variables	are	

significant	at	the	0.95	level	across	all	cases,	except	for	KBDI	(P	>	0.05).	In	all	univariate	

models,	 fire	 extent	 had	 positive	 relationships	 with	 MaxTemp,	 MinTemp,	 FFDI,	 and	

DaysSinceRain,	and	negative	relationships	with	RH3pm	and	FMI.		

Table	 7.3	 Univariate	 regression	 results	 for	 all	 ambient	 weather	 variables	 and	 selected	 antecedent	 rainfall	
variables.	FEW,	fires	burned	entirely	 in	forested	wetlands;	FPW,	fires	burned	partly	 in	forested	wetlands;	FNW,	
fires	not	burned	in	forested	wetlands;	%	Dev,	the	percentage	of	deviance	explained.	Codes	for	the	variables	are	
as	given	in	Table	7.1.	

Variable	 Coefficient	 Std.	Error	 t	value	 Pr(>|t|)	 %Dev	

FEW	(Case	I)	 	

MaxTemp	 0.112	 0.043	 2.628	 0.010	 7.9	

MinTemp	 0.119	 0.056	 2.127	 0.036	 5.3	

RH3pm	 -0.070	 0.025	 -2.809	 0.006	 8.9	

FMI	 -0.115	 0.057	 -2.015	 0.047	 4.8	

KBDI	 0.014	 0.009	 1.584	 0.117	 3.0	

FFDI	 0.054	 0.019	 2.821	 0.006	 8.9	
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Variable	 Coefficient	 Std.	Error	 t	value	 Pr(>|t|)	 %Dev	

DaysSinceRain	 0.080	 0.040	 2.014	 0.047	 4.8	

Phase1Lag0	 -0.038	 0.018	 -2.121	 0.037	 5.3	

Phase1Lag5	 0.051	 0.017	 2.995	 0.004	 10.0	

Phase13Lag5	 0.007	 0.003	 2.680	 0.009	 8.1	

Phase2Lag12	 0.019	 0.007	 2.624	 0.010	 7.8	

Phase2Lag16	 0.015	 0.006	 2.405	 0.018	 6.7	

FEW&FPW	(Case	II)	 	

MaxTemp	 0.104	 0.032	 3.263	 0.001	 6.3	

MinTemp	 0.103	 0.041	 2.505	 0.013	 3.8	

RH3pm	 -0.055	 0.018	 -3.006	 0.003	 5.4	

FMI	 -0.091	 0.040	 -2.266	 0.025	 3.1	

KBDI	 0.002	 0.006	 0.275	 0.784	 0.0	

FFDI	 0.046	 0.013	 3.571	 <0.001	 7.4	

DaysSinceRain	 0.074	 0.029	 2.531	 0.012	 3.9	

Phase2Lag4	 0.023	 0.007	 3.184	 0.002	 6.0	

FEW&FPW&FNW	(Case	III)	 	 	 	 	 	

MaxTemp	 0.172	 0.030	 5.785	 <0.001	 11.6	

MinTemp	 0.190	 0.036	 5.259	 <0.001	 9.8	

RH3pm	 -0.070	 0.016	 -4.403	 <0.001	 7.1	

FMI	 -0.177	 0.036	 -4.968	 <0.001	 8.8	

KBDI	 0.001	 0.005	 0.137	 0.891	 0.0	

FFDI	 0.045	 0.011	 4.231	 <0.001	 6.6	

DaysSinceRain	 0.071	 0.027	 2.604	 0.010	 2.6	

Phase11Lag7	 0.003	 0.001	 2.463	 0.015	 2.3	

Note:	All	models	were	fitted	using	observations	from	fires	smaller	than	1000	ha.		
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Figure	7.4	Plots	of	estimated	coefficient	signs	(sign(cof))	times	the	percentage	of	deviance	explained	(%Dev)	for	
(a-c)	 all	 antecedent	 rainfall	 variables	 and	 (d-f)	 significant	 antecedent	 rainfall	 variables.	 Axis	 units	 are	months.	
FEW	=	Case	 I;	FEW&FPW	=	Case	 II;	FEW&FPW&FNW	=	Case	 III	 (see	section	7.2	 for	details).	Red	colours	denote	
positive	 relationships	 and	 blue	 colours	 denote	 negative	 relationships,	with	 darker	 colours	 representing	 higher	
percentage	of	deviance	explained.	FEW,	 fires	burned	entirely	 in	 forested	wetlands;	FPW,	 fires	burned	partly	 in	
forested	wetlands;	FNW,	fires	not	burned	in	forested	wetlands.		

Figure	 7.4(a-c)	 plots	 the	 sign	 of	 the	 estimated	 coefficients	 times	 the	 percentage	 of	

deviance	explained	against	antecedent	rainfall	variables	with	 lags	of	0-24	and	phases	

of	1-24.	In	Figure	7.4(d-f),	insignificant	variables	have	been	removed.	Seasonal	rainfall	

variables	did	not	show	significant	effects,	so	they	were	not	plotted.		

In	Case	I	models	(Figure	7.4(a)	and	(d)),	antecedent	rainfall	variables	exhibit	a	‘patchy’	

pattern	of	 effect;	 several	 variables	 (Phase1Lag5,	%Dev	 =	 10.0;	 Phase13Lag5,	%Dev	 =	

8.1;	 Phase2Lag12,	 %Dev	 =	 7.8	 and	 Phase2Lag16,	 %Dev	 =	 6.7)	 explained	 a	 higher	

percentage	of	deviance	than	their	adjacent	variables	(Table	7.3).	The	only	exception	is	

Phase1Lag0	 (%Dev	=	5.3),	which	shows	a	negative	 relationship	with	FEW	size	 (Figure	

7.4(a)	and	(d),	Table	7.3).		
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In	Case	II	models,	the	effect	pattern	of	antecedent	rainfall	variables	is	simpler	(Figure	

7.4(b)	 and	 (e),	 Table	7.3).	 Comparing	with	 the	 variables	highlighted	above	 for	Case	 I	

models,	 only	 Phase1Lag5	 is	 still	 significant	 and	 exhibits	 a	 positive	 relationship	 with	

Case	 II	 size,	 and	 it	 can	 be	 substituted	 by	 Phase2Lag4	 (%Dev	 =	 6.0),	 which	 best	

explained	the	extent	of	Case	II.	In	the	Case	III	models,	none	of	the		variables	significant	

in	 Case	 I	models	 remained	 significant	 (Figure	 7.4(c)	 and	 (f),	 Table	 7.3).	 Phase11Lag7	

(%Dev	=	2.3)	explained	the	greatest	percentage	of	deviance	and	shows	a	positive	effect.	

The	 above-mentioned	 variables	 were	 introduced	 into	 their	 corresponding	 multiple	

regression	models.		

Additionally,	significant	negative	relationships	were	found	between	fire	size	and	some	

cumulative	 rainfall	 variables	 with	 lags	 greater	 than	 18.	 However,	 these	 were	 not	

incorporated	 into	 the	 final	 models	 as	 the	 mechanism	 behind	 those	 relationships	 is	

unclear.	

7.3.3 Complete	Models	

For	each	case,	there	were	a	number	of	models	within	2	ΔAIC	of	the	best	models:	three	

models	for	Case	I,	eight	for	Case	II,	and	two	for	Case	III.	The	best	three	models	for	each	

case	are	listed	in	Table	7.4.	FFDI	appears	in	all	selected	Case	I	models	and	was	present	

in	at	least	one	of	the	Case	II	models.	Temperature	variables	(MaxTemp	and	MinTemp)	

appear	in	the	selected	models	for	Case	II	and	Case	III.	DaysSinceRain	also	appears	in	at	

least	one	of	the	selected	models	for	all	model	groups.	

The	best	Case	 I	model	contained	 four	variables:	FFDI,	Phase1Lag5,	Phase2Lag12,	and	

Phase2Lag16.	 This	 indicates	 an	 effect	 for	 FFDI,	 as	 well	 as	 for	 the	 past	 one	 or	 two	

months	of	cumulative	rainfall	slightly	out	of	phase,	with	lags	of	5,	12,	and	16	months.	

The	 best	 Case	 II	 model	 contained	 MinTemp,	 DaysSinceRain,	 and	 Phase2Lag4,	 and	

therefore	 incorporates	 the	effects	of	 temperature	and	 recent	 rainfall,	 as	well	as	 two	

months'	rainfall	with	a	lag	of	four	months	(Table	7.4).	The	best	Case	III	model	included	

MaxTemp	 and	 Phase7Lag5	 (7.5),	 and	 demonstrated	 effects	 from	 temperature	 and	
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seven	 months’	 rainfall	 with	 a	 lag	 of	 5.	 All	 relationships	 (positive/negative)	 were	

consistent	with	those	determined	from	the	univariate	models.	The	Moran’s	I	values	of	

the	 three	 best	models	 ranged	 from	0.12	 to	 0.17,	which	 are	 acceptable	 according	 to	

Gibson	et	al.	(2015).	

Table	7.4	and	Table	7.5	showed	that	the	best	Case	I	model	(%Dev	=	31.4)	exhibited	the	

better	overall	 performance	 compared	with	 the	other	 two	best	models	 (%Dev	=	14.6	

and	 15.6).	 	 	 The	 contributions	 of	 variable	 groups	 (ambient	weather	 and	 antecedent	

rainfall)	 to	model	 fits	 (Table	 7.5)	 showed	 that	 in	 the	 best	 Case	 I	model,	 antecedent	

rainfall	 variables	 explained	 far	more	 deviance	 (%Dev	 =	 23.2)	 than	 ambient	 weather	

variables	(%Dev	=	8.9),	while	in	Case	II	and	Case	III	models	theyexplained	comparable	

or	less	deviance	(%Dev	=	6.0	and	2.3)	than	ambient	weather	variables	(%Dev	=	6.7	and	

12.3).	Thus,	 the	power	of	antecedent	 rainfall	dropped	significantly	 from	Case	 I	 to	 III,	

while	that	of	ambient	weather	stayed	the	same.	
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Table	7.4	Selected	models	within	2	ΔAIC	of	the	best	models.	FEW,	fires	burned	entirely	in	forested	wetlands;	FPW,	fires	burned	partly	in	forested	wetlands;	FNW,	fires	not	burned	
in	forested	wetlands;	AIC,	Akaike	information	criterion.	Codes	for	the	variables	are	as	given	in	Table	7.1.	

	

	

	

Model	 AIC	 ΔAIC	 Dev%	 Pr(>F)	

FEW	(Case	I)	 	 	 	 	

FFDI	+	Phase1Lag5	+	Phase2Lag12	+	Phase2Lag16	 392.320	 0.000	 31.4	 <0.001	

FFDI	+	DaysSinceRain	+	Phase1Lag5	+	Phase2Lag12	+	Phase2Lag16	 392.924	 0.604	 32.6	 <0.001	

FFDI	+	Phase1Lag5	+	Phase2Lag16	 394.174	 1.854	 28.2	 <0.001	

FEW&FPW	(Case	II)	 	 	 	 	

MinTemp	+	DaysSinceRain	+	Phase2Lag4	 782.950	 0.000	 14.4	 <0.001	

MaxTemp	+	DaysSinceRain	+	Phase2Lag4	 783.657	 0.708	 14.1	 <0.001	

FFDI	+	DaysSinceRain	+	Phase2Lag4	 783.739	 0.789	 14.0	 <0.001	

FEW&FPW&FNW	(Case	III)	 	 	 	 	

MaxTemp	+	DaysSinceRain	+	Phase11Lag7	 1327.686	 0.000	 15.6	 <0.001	

MaxTemp	+	Phase11Lag7	 1327.909	 0.223	 14.8	 <0.001	
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Table	7.5	Model	estimates	and	contributions	of	variable	groups	to	model	fits	for	the	three	best	models.	%	Dev,	deviance	explained;	FEW,	fires	burned	entirely	in	forested	wetlands;	
FPW,	fires	burned	partly	in	forested	wetlands;	FNW,	fires	not	burned	in	forested	wetlands.	Codes	for	the	variables	are	as	given	in	Table	7.1.	

Model	 Coefficient	 Std.	Error	 t	value	 Pr(>|t|)	 %	Dev	

FEW	(Case	I)	 	 	 	 	 	

Intercept	 -4.866	 0.878	 -5.545	 <0.001	 Overall:	31.4	

Ambient	Weather:	8.9	

Antecedent	Rainfall:	23.2	

	

FFDI	 0.055	 0.018	 3.065	 0.003	

Phase1Lag5	 0.045	 0.015	 2.902	 0.005	

Phase2Lag12	 0.012	 0.006	 1.926	 0.058	

Phase2Lag16	 0.019	 0.006	 3.421	 0.001	

FEW&FPW	(Case	II)	 	 	 	 	 	

Intercept	 -2.621	 0.900	 -2.913	 0.004	 Overall:	14.6	

Ambient	Weather:	6.7	

Antecedent	Rainfall:	6.0	

	

MinTemp	 0.117	 0.040	 2.920	 0.004	

DaysSinceRain	 0.060	 0.028	 2.153	 0.033	

Phase2Lag4	 0.026	 0.007	 3.776	 <0.001	

FEW&FPW&FNW	(Case	III)	 	 	 	 	 	

Intercept	 -5.890	 1.166	 -5.049	 <0.001	 Overall:	15.6	

Ambient	Weather:	12.3	

Antecedent	Rainfall:	2.3	

MaxTemp	 0.169	 0.030	 5.631	 <0.001	

DaysSinceRain	 0.039	 0.026	 1.482	 0.139	

Phase11Lag7	 0.004	 0.001	 3.105	 0.002	
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7.4 Discussion	

7.4.1 Fire	Characteristics	and	Fuel	Types	

Smaller	fires	occurred	more	frequently	than	fires	of	larger	sizes,	which	result	is	largely	

in	 line	with	 those	of	other	 studies	 (e.g.	 Price	 and	Bradstock	2011).	 FEW	had	 smaller	

burned	areas,	probably	because	the	FEW	category	is	limited	to	narrow	areas	alongside	

the	 watercourse	 and	 also	 because	 of	 the	 relatively	 high	 fuel	 moisture	 content	

associated	 with	 water	 and	 forest	 (CFA,	 2014).	 Fires	 burned	 the	 largest	 area	 during	

summer	and	the	smallest	in	winter;	this	is	regulated	by	the	(summer)	drought	phases	

and	the	(winter)	rainfall	and	possibly	inundation	phases.	This	seasonality	is	consistent	

with	 that	 described	 in	 broad-scale	 studies	 of	 Australia	 (Russell-Smith	 et	 al.	 2007;	

Turner	 et	 al.	 2008).	 The	 monthly	 distribution	 of	 fire	 size	 indicates	 that	 January	 is	

always	the	most	fire	danger	period,	regardless	of	fuel	type.	The	second-ranked	months	

were	February	for	Case	I	and	December	and	November	for	Case	III,	reflecting	a	shift	in	

the	pattern	of	 seasonal	burned	area	as	 the	proportion	of	 forested	wetland	declines.	

This	may	reflect	a	change	of	 fire	 regime	from	temperate	eucalypt	 forests/woodlands	

dominated	 by	 summer	 fire	 to	 semi-arid	 chenopod	 shrublands	 dominated	 by	 spring-

summer	fire	(Bradstock	2010;	Murphy	et	al.	2013).	

In	forested	wetlands	of	the	Riverina	bioregion,	the	dominant	fuel	types	(litter	or	grass)	

are	 poorly	 understood	 (VEAC	 2007,	 as	 cited	 by	 National	 Parks	 Association	 of	 NSW	

Undated).	Specifically,	litter	is	the	primary	surface	fuel	for	eucalypt	open	forests	(30%	-	

70%	 foliage	 cover;	 Specht,	 1970),	 complemented	 by	 shrubs	 and	 herbs;	 in	 contrast,	

herb/grass	fuel	is	prominent	for	eucalypt	woodlands	(10-30%	foliage	cover)(Bradstock	

2010).	Since	the	structural	form	of	forested	wetlands	changes	from	open	forest	in	the	

west	to	woodland	in	the	east,	an	“intermediate”	foliage	cover	(30%)	was	expected;	the	

contributions	 of	 litter	 and	 grass	 fuels	 may	 generally	 be	 comparable	 (litter/grass	

environment),	 and	 the	 balance	 between	 them	 may	 be	 significantly	 altered	 by	

additional	factors	(Bradstock	2010).	 In	other	vegetation/land	use	types,	such	as	lands	
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cleared	for	cropping	and	grazing	or	the	poorly	flammable	chenopod	shrublands,	both	

shrubby	and	grassy	fuels	predominate,	with	the	dominant	fuel	type	being	grass	(Myers	

et	al.	2004).		

7.4.2 Effects	of	Climatic	Factors	

Climate	 influences	 fire	 danger	 through	 affecting	 the	 drying	 of	 existing	 fuels	 and	 the	

spread	 of	 fire.	 In	 particular,	 ambient	 weather	 directly	 affects	 fire	 size,	 and	 biomass	

accumulation	determined	by	antecedent	rainfall	indirectly	affects	fire	size	(Littell	et	al.	

2009;	Bradstock	2010;	Krawchuk	and	Moritz	2011).	As	for	forested	wetland	areas,	the	

dominance	 of	 sclerophyllous	 forest	 and	 hydrophytic	 vegetation,	 the	 high	 moisture	

contents	 alongside	 watercourses	 and	 the	 seasonal	 rainfall	 and	 flooding	 events	

complicate	 the	 mechanism	 and	 distinguish	 it	 from	 that	 in	 their	 surrounding	

ecosystems.		

The	effects	observed	for	most	ambient	weather	factors	are	logical	and	consistent	with	

those	documented	for	other	landscapes	(Price	and	Bradstock	2011).	Namely,	larger	fire	

extent	is	associated	with	higher	daily	(maximum	and	minimum)	temperatures,	higher	

FFDI,	 lower	 relative	 humidity,	 and	 lower	 fuel	 moisture	 index;	 this	 is	 due	 to	 the	

connections	of	these	values	with	the	moisture	contained	in	fuels	and	with	fire	danger	

(McArthur	 1967;	 Catchpole	 2002).	 Notably,	 daily	 minimum	 temperature	 is	 not	 a	

conventional	 explanatory	 variable	 in	 fire	 behaviour	 modelling;	 the	 variables	 more	

traditionally	 used	 are	 daily	maximum	 temperature,	 relative	 humidity,	 and	 FFDI.	 The	

minimum	 temperature	 normally	 occurs	 in	 the	middle	 of	 the	 night,	 and	 these	 higher	

minimums	 may	 disrupt	 the	 overnight	 fuel	 moistening	 process,	 thereby	 priming	 the	

landscape	for	more	severe	fire	behaviour	the	next	day	(i.e.	after	sunrise).	This	in	turn	

leads	 to	 stretched	 suppression	 resources	 and	 increased	 difficulty	 of	 initial	 attack,	

ultimately	 resulting	 in	 larger	 fire	 size.	 The	 power	 of	 this	 variable	 in	 fire	 behaviour	

modelling	 may	 be	 worth	 exploring	 further	 in	 future	 studies.	 The	 insignificant	

relationship	between	KBDI	and	fire	size	is	likely	to	be	explained	by	the	nature	of	fuel	in	

this	study	area.	Although	KBDI	provides	information	on	the	dryness	of	litter	fuels	and	
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consequently	 influences	 forest	 fire	behaviour,	 it	 does	not	necessarily	 affect	 grassfire	

spread;	that	spread	is	determined	by	ambient	weather	and	curing	level.	This	may	also	

be	 reflected	 in	 the	 relatively	 better	 performance	 of	 KBDI	 in	 models	 for	 FEW	

(litter/grass	environment)	than	for	other	two	cases	(shrub/grass	environments).		

Elapsed	days	since	 last	rain	and	the	cumulative	rainfall	within	a	three-month	 lag	and	

three-month	phase	before	fire	reflects	short-term	variation	in	moisture	that	relates	to	

the	 availability	 of	 fuels	 to	 burn,	 i.e.	 the	 dryness	 of	 litter	 and	 the	 curing	 level	 of	

herbs/grass	 (Bradstock	 2010;	 Turner	 et	 al.	 2011).	 Results	 indicate	 that	 as	 days	 since	

last	 rain	decrease,	or	 the	higher	 the	amount	of	 rainfall	 in	 the	 immediately	preceding	

month	(Phase1Lag0),	the	less	likely	the	fuel	is	to	be	sufficiently	dry	or	cured	to	support	

the	propagation	of	a	FEW.	This	one	month	phase	is	far	shorter	than	that	determined	in	

Sydney	Hinterland	dry	sclerophyll	forests	and	woodlands,	where	fire	extent	was	found	

to	 be	 negatively	 related	 to	 past	 annual	 rainfall	 (Price	 and	 Bradstock	 2011).	 This	 is	

probably	because	the	drying	of	litter	fuels	and	the	curing	of	herb/grass	fuels	after	rain	

is	 faster	 in	 inland	 riparian	 forest	 areas	where	 (1)	 the	 semi-arid	 climate	 is	 dryer	 and	

hotter	 than	mesic,	 temperate	areas,	 and	 (2)	 the	 taller	and	 less	dense	 trees	 facilitate	

greater	 penetration	 radiant	 heat	 to	 underground	 fuels.	 When	 fires	 burning	 other	

vegetation	 types	 were	 incorporated,	 DaysSinceRain	 became	 less	 powerful	 and	 the	

effect	of	Phase1Lag0	became	insignificant,	probably	because	other	categories	feature	

areas	with	higher	proportions	of	shrub/grass	fuels,	which	contain	lower	moisture	and	

tend	to	dry	out	faster	after	rainfall.		

The	 cumulative	 rainfall	 outside	 three-month	 lag	 or	 three-month	 phase	 represents	

antecedent	rainfall	related	to	biomass	production	(Bradstock	2010;	Turner	et	al.	2011).	

For	FEW,	greater	rainfall	in	the	6th	(Phase1Lag5),	17-18th	(Phase2Lag16)	and	13-14th	

(Phase2Lag12)	 months	 before	 fire	 corresponded	 with	 larger	 area	 burned	 by	 an	

individual	FEW.	The	former	two	variables	largely	coincide	with	natural	late	winter	and	

early	spring	 inundation	phases,	 respectively,	while	 the	 latter	 term	coincides	with	 the	

summer	 phase.	 Rainfall	 and	 the	 inundation	 that	 possibly	 occurs	 afterwards	 may	
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promote	the	growth	of	highly	ephemeral	fuels	and	their	drying	out	in	following	months	

(e.g.	 6th	month)	 or	 1.5	 years	 later	 (e.g.	 17-18th	month)	 (Briggs	 1988).	 The	 effect	 of	

rainfall	 in	 the	13-14th	month	 (approximately	one	 year)	 before	 FEW	can	probably	be	

explained	by	high	summer	rainfall	 leading	 to	grassy	biomass	growth,	and	possibly	by	

unseasonal	summer	floods.	These	effects	gradually	become	insignificant	as	fires	from	

surrounding	 landscapes	 are	 incorporated,	 probably	 because	 (1)	 the	 decreased	

antecedent	 rainfall	amount	and	 flooding	 frequency	 in	adjacent	dry	 lands	may	not	be	

sufficient	 to	 stimulate	 and	 sustain	 biomass,	 and	 (2)	 strong	 human	 interventions	

(grazing	 and	 cropping)	 that	 affect	 the	 natural	 biomass	 accumulation	 process	 in	

surrounding	 areas.	 Nevertheless,	 a	 weak	 connection	 can	 still	 be	 demonstrated	 for	

multiple	long-term	antecedent	rainfall	factors	less	than	18	months	(approximately	1.5	

years)	before	fire	(Case	III).	By	presenting	both	the	monthly	lags/phases	and	the	effect	

directions	(positive/negative)	in	surfaces	(Figure	7.3),	the	present	study	provides	more	

precise	 results	and	better	 reveals	underlying	ecological	processed	 than	other	 studies	

conducted	 at	 larger	 scales	 (Russell-Smith	 et	 al.	 2007;	 Turner	 et	 al.	 2011).	 This	 is	

partially	supported	by	the	fact	that	no	relationship	has	been	found	between	the	past	

seasonal	rainfall	and	fire	size	in	this	present	study.	

All	 the	 selected	 complete	 models	 include	 both	 ambient	 weather	 and	 antecedent	

rainfall	variables,	demonstrating	the	combined	effects	of	high	fuel	amount	and	hot,	dry	

climate	 in	regulating	 fire	size.	The	presence	of	FFDI	 in	all	 selected	Case	 I	models	and	

one	 selected	 Case	 II	model	 indicates	 that	 it	 sufficiently	 explains	 fire	 size	 in	 forested	

wetland	areas,	while	direct	weather	factors	such	as	MaxTemp	and	MinTemp	are	more	

effective	when	surrounding	drylands	is	incorporated.		

The	 differences	 in	 performance	 of	 variable	 groups	 for	 the	 three	 cases	 reflect	 	 the	

capacities	of	the	included	factors	to	explain	fire	sizes	for	each	case.	In	Case	I,	ambient	

weather	 factors	explained	 far	 less	deviance	than	antecedent	rainfall	 factors,	which	 is	

different	from	that	has	been	found	in	the	temperate	Eucalyptus	forested	ecosystems	

that	 weather	 is	 more	 influential	 in	 Eucalyptus	 forest	 ecosystems	 than	 antecedent	
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rainfall	 (Price	 and	 Bradstock	 2011).	 This	 is	 probably	 because	 in	 forested	 wetlands,	

there	is	either	a	natural	 imbalance	between	woody	litter	and	grass/herb	fuels,	or	the	

balance	 has	 been	 altered	 by	 grazing	 activity,	 which	 replaces	 perennial	 understorey	

grasses	 with	 ephemeral	 grasses	 that	 enhance	 the	 sensitivity	 of	 fire	 size	 to	 rainfall	

variation	(Noble	and	Grice	2002;	Bradstock	2010).	From	Case	II	to	III,	ambient	weather	

factors	 are	 increasingly	 more	 important	 than	 antecedent	 rainfall	 factors,	 indicating	

that	 fire	 size	 is	 less	 sensitive	 to	 biomass	 accumulation	 in	 shrub/grass	 environments	

than	 in	 litter/grass	environments.	 This	difference	 in	 relative	 importance	 results	 from	

decreases	 in	 the	 performance	 of	 antecedent	 rainfall	 factors;	 the	 power	 of	 ambient	

weather	factors	remained	stable	throughout	all	three	cases.	The	weak	performance	of	

antecedent	 rainfall	 factors	 in	 Cases	 II	 and	 III	 may	 be	 explained	 by	 the	 extensive	

occurrence	 of	 less	 flammable,	 shrubby	 fuels	 in	 dry	 lands,	 where	 low	 understorey	

biomass	has	limited	lateral	connectivity	(Keith	and	Simpson	2010).	

7.4.3 Limitations	

This	 empirical	 study	 is	 able	 to	 give	 an	 idea	 of	 the	 driving	 factors	 of	 fire	 extent	 in	

forested	wetlands	and	surrounding	vegetation	types.	There	is	no	denying	the	fact	that	

significant	 differences	 in	 propagation	 processes	 exist	 among	 fires	with	 different	 fuel	

types,	 and	 driving	 factors	may	 further	 change	 throughout	 the	 lifetime	 of	 a	 fire.	 The	

long-term	expansion	of	 a	 free-burning	wildfire	 is	 determined	by	normal	 spread	days	

punctuated	 by	 rare	 spread	 events,	 where	 major	 growth	 occurs.	 This	 study's	 results	

have	 the	 potential	 to	 serve	 as	 a	 foundation	 for	 the	 simulation	 of	 fire	 behaviour	 in	

riverine	areas,	which	should	take	these	varying	factors	into	consideration.		

A	 limitation	 of	 the	 present	 study	 is	 that	 other	 potentially	 influential	 factors	 such	 as	

topographic	 effects,	 curing,	 land	 cover	 types,	 and	 fire	management	 efforts	 have	not	

been	 incorporated.	For	example,	while	 the	amount	of	 short-term	antecedent	 rainfall	

indicates	 curing	 level	 to	 some	 extent,	 the	 model	 fit	 may	 be	 further	 improved	 by	

incorporating	data	that	directly	reflects	vegetation	greenness	or	curing	level.	Another	

limitation	is	that	some	of	the	weather	variables	may	not	be	fully	representative	of	local	
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weather	 conditions.	 For	 instance,	 wind	 speed	 is	 of	 paramount	 importance	 in	 non-

wetland	 areas,	 given	 their	 prevailing	 grassy	 nature,	 and	 relatively	 distant	 weather	

stations	may	not	portray	wind	speed	adequately.	This	may	especially	affect	the	model	

performances	for	Cases	II	and	III.	

7.4.4 Management	Implications	

The	management	of	forested	wetlands,	i.e.	river	red	gum	forests	and	woodlands,	has	

primarily	 targeted	 at	 maintaining	 ecological	 function	 in	 support	 of	 the	 neighboring	

communities’	environmental	and	social-economical	values,	and	to	minimise	the	risk	of	

damage	 from	 fire	 (NSW	 NRC,	 2009).	 Fire	 risk	 management	 plans	 (including	 fuel	

management	and	the	fire	suppression)	are	essential	components	of	the	management	

of	 forested	 wetlands	 (Forests	 NSW	 2008).	 	 Similarly,	 the	 management	 of	 semi-arid	

shrub/grass	 environments	 has	 primarily	 focused	 on	 maintaining	 biodiversity	 value,	

which	is	partly	affected	by	fire	regimes	(Myers	et	al.	2004).	The	present	study	provides	

insights	 into	 climatic	 drivers	 of	 fire	 size,	 a	 fundamental	 component	of	 fire	 regime	 in	

both	ecosystems	that	can	potentially	be	used	 in	support	of	sustainable	management	

and	fire	risk	reduction.	

In	 forested	 wetlands,	 fire	 suppression	 resources	 should	 be	 properly	 allocated	

according	to	the	level	of	fire	danger,	i.e.	FFDI	(Table	7.5).	Fuel	management	practices	

such	 as	 thinning	 and	 prescribed	 burning	 may	 be	 considered	 under	 certain	

circumstances,	 e.g.	 before	 the	 greatest	 fire	 danger	 period	 of	 summer,	 specifically	

January	and	February	 (Figure	7.1);	or	 in	 the	year	of	and	year	 following	high	 levels	of	

winter	and/or	summer	rainfall	 (Figure	7.2,	Table	7.5).	Prescribed	burning	should	only	

be	 considered	 in	 conservation	 areas,	 rather	 than	 timber	 production	 areas,	 to	 avoid	

damaging	merchantable	timber	 (NSW	NRC,	2009),	and	 its	ecological	benefits	have	to	

be	proved	before	using	it	as	a	management	tool	(Allen	2000).		

There	should	not	be	any	fires	burned	in	chenopod	shrublands	because	their	dominant	

species	are	unable	to	regenerate	after	burning	(Myers	et	al.	2004).	Although	chenopod	
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shrublands	are	generally	 less	flammable	(Keith	and	Simpson	2010),	fuel	management	

activities	may	be	required	 	under	exceptional	circumstances,	e.g.	before	the	greatest	

fire	 danger	 period	 of	 spring	 and	 summer,	 specifically	 January,	 December,	 and	

November	 (Figure	 7.1)	 in	 the	 year	 after	 a	 high	 level	 of	 long-term	 (e.g.	 1.5	 years)	

cumulative	rainfall	(Figure	7.2,	Table	7.5).	Daily	maximum	and	minimum	temperatures	

and	 drought	 condition	 (Table	 7.5)	may	 be	 used	 as	 indicators	 for	 preparation	 of	 fire	

suppression.	

After	 higher	 levels	 of	 antecedent	 rainfall,	 fuel	 management	 and	 fire	 suppression	

resource	allocation	may	be	prioritized	for	forested	wetlands	due	to	their	sensitivity	to	

biomass	accumulation	after	long-term	rain.	

7.5 Summary	

This	 study	 investigated	 wildfire	 characteristics	 and	 the	 effects	 and	 relative	

contributions	of	climatic	factors	on	fire	size	in	Eucalyptus	camaldulensis	forests	and	the	

dry	lands	of	the	Riverina	bioregion,	NSW,	Australia.	Fire	size	in	forested	wetlands	and	

the	 surrounding	 areas	was	 found	 to	 be	 driven	 by	 ambient	weather	 and	 antecedent	

rainfall	 conditions.	 The	 most	 influential	 factors	 and	 the	 contribution	 of	 each	 factor	

group	 in	 explaining	 fire	 size	 varied	 with	 changes	 of	 vegetation	 type,	 reflecting	

differences	in	the	roles	and	capacities	of	climatic	factors	in	litter/grass	and	shrub/grass	

environments.		

The	present	 study	provides	effective	and	precise	 information	 that	better	 reveals	 the	

underlying	 ecological	 process	 in	 forested	wetlands	 and	 their	 surrounding	 vegetation	

types.	 The	 results	 have	 the	 potential	 to	 support	 forest	 and	 fire	 management	 and	

planning	in	this	environment,	and	the	conclusions	may	be	extended	to	other	warm	and	

dry	riverine	ecosystems	around	the	world.	
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Chapter	8 Conclusion	

The	 thesis	explored	patterns	of	wildfires	at	 two	scales	 in	South-Eastern	Australia	–	a	

broad	scale	covering	NSW,	ACT,	and	VIC,	and	a	small	scale	covering	the	NSW	side	of	

the	 Riverina	 bioregion.	 Wildfire	 information	 was	 sourced	 from	 remotely	 sensed	

observations	 and	 administrative	 records.	 The	 effects	 and	 relative	 contributions	 of	

environmental	 factors	and	anthropogenic	 factors	on	wildfire	patterns	were	modelled	

using	statistical	methods,	i.e.	GLM	and	GAM.	Spatial	and	temporal	patterns	of	wildfire	

occurrence	and	 size	were	 found	 to	be	 regulated	by	different	 factors	across	different	

regions	 and	 scales,	 reflecting	 the	 complex	 relationships	 among	 components	 of	 the	

biophysical	 environment.	 This	 chapter	 summarises	 the	 main	 findings	 of	 the	 thesis,	

discusses	 its	 contributions	 and	 limitations,	 and	 points	 out	 potential	 directions	 for	

future	work.	

8.1 Main	Findings	

The	main	findings	of	the	thesis	were	summarised	in	the	respective	sections	of	Chapters	

4	 through	 7.	 This	 section	will	 synthesize	 these	 findings	 to	 address	 the	 four	 research	

questions	presented	in	Section	1.2.		

(1) What	are	the	broad-scale	wildfire	activity	patterns	in	South-Eastern	Australia;	what	

are	 the	 effects	 and	 relative	 contributions	 of	 environmental	 and	 anthropogenic	

factors	that	regulate	these	patterns;	and	how	can	the	MODIS	active	fire	product	be	

incorporated	into	wildfire	modelling?	

The	modelling	 results	 reveal	 that	 in	 NSW,	 ACT,	 and	 VIC,	wildfires	 are	most	 likely	 to	

occur	 in	 mountainous	 areas,	 forests,	 savannas,	 and	 lands	 with	 high	 vegetation	

coverage,	and	less	likely	to	occur	on	grasslands	and	shrublands.	Wildfires	also	tend	to	

occur	 in	 areas	 near	 human	 activities.	 Environmental	 variables	 are	 strong	 individual	

predictors	of	 fire	activity,	while	anthropogenic	variables	contribute	more	 to	 the	 final	
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model.	The	MODIS	active	fire	product	can	be	applied	in	wildfire	modelling,	especially	

for	studies	that	cover	broad	scales,	bearing	in	mind	the	limitations	of	the	product	and	

associated	requirements	in	data	manipulation	and	result	interpretation.	

(2) What	are	the	wildfire	ignition	patterns	across	different	ecoregions	of	South-Eastern	

Australia;	are	there	any	non-linear	relationships	between	these	patterns	and	their	

determinants;	and	how	do	the	relationships	vary	spatially?	

The	modelling	results	reveal	that	in	NSW	and	ACT,	vegetation	is	the	key	factor	in	most	

ecoregions:	vegetation	 formations	 regulate	 fire	occurrence	patterns	 in	 the	most	 fire-

prone	area	(TB	&	MG,	see	Section	5.1	for	the	definition),	where	vegetation	structure	

and	 composition	 varies	 significantly	 across	 space;	 climate	 gradients	 drive	 fire	

occurrence	in	ecoregions	with	relatively	broad	areas	(TB	&	MG	and	TG),	where	the	top-

down	 process	 is	 dominant.	 Spatial	 effects	 influence	 fire	 patterns	 in	 all	 ecoregions,	

while	anthropogenic	 factors	 regulate	 fire	occurrence	patterns	 in	 the	most	populated	

area	(TB	&	MG)	and	two	sparsely	populated	areas	(MF	and	DX).		

In	 the	 TB	&	MG	 ecoregion,	 wet	 sclerophyll	 forests	 are	 higher	 in	 ignition	 probability	

than	 rainforests	but	 lower	 than	dry	 sclerophyll	 forest;	 there	 is	 a	need	 for	evaluating	

the	 impacts	 of	 fires	 on	 some	 ecologically-sensitive	 vegetation	 formations.	 In	 most	

ecoregions,	there	is	a	non-linear	relationship	between	NDVI	and	fire	occurrence,	with	

small	 to	medium	 levels	of	NDVI	 showing	a	positive	effect.	Additionally,	 in	 temperate	

regions,	fires	tend	to	occur	in	low	precipitation	and	high	temperature	areas.	Fires	also	

tend	 to	 occur	 near	 human	 facilities	 and	 at	 non-protected	 areas	 in	 TB	 &	 MG,	 near	

railroads	in	both	MF	and	DX,	but	away	from	roads	in	DX.	

(3) What	 are	 the	 spatial	 and	 temporal	 patterns	 of	 fires	 with	 different	 causes	 and	

different	 vegetation	 types	 in	 the	 inland	 semi-arid	 riverine	 environments;	 how	do	

their	determinants	affect	these	patterns;	and	what	are	the	relative	contributions	of	

different	factor	groups	to	fire	ignition?		
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The	monthly	 and	 seasonal	 distributions	 of	 fire	 occurrence	 suggest	 that	 fires	 on	 the	

NSW	side	of	the	Riverina	bioregion	mostly	occur	in	summer.	In	particular,	natural	fires	

mostly	 occur	 in	 summer,	 while	 human-caused	 fires	 occur	 in	 spring	 and	 summer.	

Summer	 is	 the	most	 fire-prone	 season	 in	 forested	wetlands,	while	 in	 dry	 lands	 fires	

mostly	occur	during	both	spring	and	summer.		

The	results	of	the	regression	models	reveal	that	fires	are	more	likely	to	occur	on	days	

with	severe	weather	conditions	and	in	areas	with	higher	annual	rainfall.	Fires	are	also	

more	likely	to	occur	in	forested	wetlands	than	in	dry	lands.	The	relationship	between	

fire	occurrence	probability	and	inundation	frequency	is	non-linear,	with	fire	probability	

being	 the	 highest	 at	 intermediate	 inundation	 frequencies.	 As	 in	 other	 landscapes,	

human-caused	fire	probabilities	are	higher	 in	areas	with	better	human	accessibilities.	

The	relative	contributions	of	weather,	fuel,	and	ignition	sources	in	explaining	human-

caused	fire	occurrence	are	approximately	equal,	while	natural	 fire	occurrence	can	be	

better	explained	by	weather	than	fuel.		

(4) What	are	the	properties	of	wildfires	and	their	sizes	in	inland	forested	wetlands	and	

adjacent	 dry	 lands;	 how	 do	 ambient	 weather	 and	 antecedent	 rainfall	 affect	 the	

sizes	of	these	fires;	and	which	are	the	most	important	factors	that	govern	fire	sizes	

in	these	environments?		

Smaller	 fires	 occur	more	 frequently	 than	 fires	 that	 are	 relatively	 larger	 in	 size,	 as	 is	

found	 in	other	 landscapes.	 In	 terms	of	 cumulative	area	burned	by	 fires	 smaller	 than	

1,000	ha,	forested	wetlands	and	dry	lands	experience	summer	and	spring-summer	fire	

regimes,	 respectively.	 FEW	 (see	 Section	 6.2	 for	 the	 definition)	 burned	 smaller	 areas	

both	individually	and	in	total	than	did	fires	partially	or	fully	in	dry	lands.	

The	regression	model	results	suggest	that	higher	cumulative	rainfall	conditions	in	the	

6th,	13-14th,	and	17-18th	months	before	fire	drive	larger	sizes	of	FEW,	while	a	number	

of	factors	representing	cumulative	rainfall	after	the	18th	month	before	fire	positively	

affect	 fire	 size	 for	FPW	and	FNW.	Larger	 fire	extents	are	also	driven	by	more	severe	
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ambient	weather	conditions.	FFDI	is	more	powerful	in	explaining	the	size	of	FEW,	while	

daily	 temperature	 becomes	 more	 effective	 when	 FPW	 and	 FNW	 are	 gradually	

incorporated;	this	supports	the	use	of	distinct	factors	as	indicators	of	fire	danger	in	the	

two	diverse	ecosystems.	Antecedent	rainfall	 factors	are	more	powerful	than	ambient	

weather	 in	 explaining	 the	 size	 of	 FEW,	 while	 they	 become	 less	 important	 when	

surrounding	lands	are	incorporated.		

8.2 Contributions	and	Implications	

This	thesis	systematically	studied	two	types	of	fire	patterns	–	fire	occurrence	and	size	–	

and	 their	 determinants	 in	 South-Eastern	 Australia.	 The	 occurrence	 of	 fire	 provides	

information	 on	 when	 and	 where	 fires	 are	 most	 likely	 to	 ignite,	 whereas	 fire	 size	

determines	 the	 effects	 of	 fire	 on	 landscape	 and	 ecosystem.	 The	 findings	 from	 this	

thesis	 	 provide	 a	 better	 understanding	 of	 broad-scale	 and	 long-term	 fire	 activity	

patterns	 and	 their	 regulators	 (Chapter	 4),	 the	 variation	 of	 fire	 ignition	 patterns	 and	

their	 determinants	 across	 ecoregions	 (Chapter	 5)	 in	 the	 states	 of	 South-Eastern	

Australia,	 as	well	 as	patterns	 in	 fire	occurrence	 (Chapter	6)	and	 size	 (Chapter	7)	and	

their	driving	factors	 in	the	semi-arid	riverine	environment	of	South-Eastern	Australia.	

This	 information	 supplements	 existing	 knowledge	 on	 the	 risk	 and	 regime	 of	 fires	 in	

these	 two	 Australian	 landscapes,	 and	 can	 be	 used	 to	 support	 the	 planning	 of	

sustainable	fire	management	and	risk	mitigation	activities	at	both	strategic	and	tactical	

levels.	

The	 broad-scale	models	 of	 fire	 activity	 and	 ignition	 (Chapters	 4	 and	 5)	 are	 spatially	

based	 and	 temporally	 irrelevant,	 and	 provide	 information	 on	 where	 fires	 are	 most	

likely	 to	 burn	 or	 ignite.	 These	models	 can	 be	 used	 to	 produce	 predictive	maps	 (e.g.	

Figure	4.5)	that	illustrate	areas	where	conditions	related	to	weather,	fuel,	topography,	

and	 ignition	 sources	 produce	 a	 higher	 probability	 of	 fire	 occurrence.	 Understanding	

obtained	from	these	models	as	well	as	the	spatial-based	predictive	maps	is	important	

for	 making	 strategic	 decisions	 concerning	 long-term	 resource	 management	 in	 large	

regions	 (Taylor	 et	 al.	 2013).	 These	 models	 may	 also	 provide	 information	 for	 the	
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designation	of	areas	with	higher	fire	risk	 in	order	to	protect	new	developments	from	

potential	fire	threats	and	thus	reduce	losses	from	fire	(NSW	Rural	Fire	Service	2015).		

On	the	other	hand,	the	spatiotemporal	models	of	fire	occurrence	(Chapter	6)	and	size	

(Chapter	 7)	 provide	 information	 on	when	 and	where	 fires	 are	more	 likely	 to	 ignite;	

they	also	illustrate	how	large	a	fire	could	be	expected	in	a	small	region	(i.e.	the	NSW	

side	of	Riverina)	and	during	a	short	period	(i.e.	one	day),	given	certain	environmental	

and	anthropogenic	conditions.	This	information	supports	the	generation	of	daily-based	

fire	risk	maps	that	 inform	fire	managers	of	the	days	and	 locations	of	potentially	high	

fire	danger.	They	can	also	help	 fire	management	agencies	make	tactical	decisions	on	

matters	such	as	crew	allocation	and	the	planning	of	fuel	management	programs	within	

the	 study	area.	 For	example,	 in	 forested	wetlands	of	 the	Riverina,	 fuel	management	

practices	 may	 be	 emphasized	 before	 summer	 of	 a	 year	 with	 high	 levels	 of	 winter	

and/or	 summer	 rainfall,	 and	 also	 the	 year	 immediately	 following.	 After	 high	 rainfall	

and	under	similar	ambient	weather	conditions,	 fire	risk	management	priority	may	be	

given	to	forested	wetlands	since	fire	size	is	more	sensitive	to	biomass	accumulation	in	

that	environment	than	in	the	adjacent	dry	lands.	Furthermore,	insights	obtained	from	

these	 studies	 also	 provide	 foundational	 knowledge	 for	 the	 assessment	 of	 the	

ecological	 impact	 of	 fire	 in	 fire-sensitive	wetland	 environments,	 which	 is	 out	 of	 the	

scope	of	this	thesis.		

In	additional	to	the	findings	regarding	fire	patterns	and	their	responses	to	variation	in	

environmental	and	anthropogenic	processes,	knowledge	of	the	relative	importance	of	

these	processes	(Chapters	4,	6,	and	7)	is	also	important.	The	results	of	the	case	studies	

presented	in	this	thesis	complement	existing	knowledge	on	the	relative	importance	of	

fire-pattern	drivers,	which	vary	regionally	with	fluctuations	in	available	moisture	across	

different	 Australian	 ecosystems	 (Bradstock	 2010).	 The	 potential	 effects	 of	 global	

change	as	well	as	future	trends	in	fire	patterns	can	also	be	assessed	or	discussed	based	

on	these	results.	
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In	 this	 thesis,	 the	 results	 from	 each	 research	 theme	 have	 been	 discussed	 and	

compared	 with	 existing	 knowledge	 from	 landscapes	 that	 share	 more	 or	 less	

comparable	 characteristics	 in	 terms	 of	 geographical	 positions,	 climatic	 conditions,	

vegetation	 types,	 etc.	 Results	 obtained	 from	 this	 study	 may	 be	 extended	 and	

compared	with	information	on	fire	occurrence	and	size	in	other	landscapes	across	the	

world.	

8.3 Limitations	and	Future	Work	

For	the	broad-scale	fire	occurrence	studies	(Chapters	4	and	5),	fire	observations	were	

sourced	from	the	MODIS	active	fire	product.	 Its	merits	are	that	the	satellite	sensor	is	

capable	of	capturing	fires	burning	in	remote	areas,	the	dataset	covers	broader	areas,	

and	the	modelling	process	can	be	repeated	and	extended	to	other	regions.	However,	

there	are	limitations	on	this	dataset	such	as	the	existence	of	commission	error,	a	bias	

towards	 large/natural	 fires,	a	 lack	of	 information	on	fire	causes,	and	the	existence	of	

detection	 noise	 such	 as	 prescribed	 and	 agricultural	 fires.	 Careful	 data	 manipulation	

and	 result	 interpretation	 have	 been	 employed	 to	 mitigate	 the	 influence	 of	 these	

drawbacks.		

The	 limitations	 discussed	 in	 the	 previous	 paragraph	 have	 been	 overcome	 for	 the	

studies	 presented	 in	 Chapters	 6	 and	 7,	 which	 used	 administrative	 fire	 records	 that	

contain	 information	 on	 fire	 causes	 and	 have	 lower	 errors	 or	 noise.	 However,	 these	

studies	have	their	own	limitations.	An	unavoidable	issue	is	related	to	the	construction	

of	the	explanatory	variable:	station-based	weather	observations	may	not	fully	capture	

local	weather	conditions,	especially	wind	speed.	Also,	there	are	potentially	influential	

factors	 other	 than	 ambient	 weather	 and	 antecedent	 rainfall	 that	 have	 not	 been	

considered,	 which	 may	 affect	 model	 performances.	 Possible	 improvements	 can	 be	

made	on	these	models	by	introducing	factors	related	to	curing,	land	cover	types,	and	

fire	management	activities.	
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The	MODIS	fire	data	are	relatively	short,	and	the	administrative	fire	records	are	few	in	

number.	These	limitations	can	potentially	be	overcome	by	incorporating	datasets	that	

cover	 larger	 areas	 or	 have	 longer	 temporal	 spans.	 This	 thesis	 did	 not	 do	 so	 for	 two	

reasons.	(1)	Chapters	6	and	7	had	the	objective	of	exploring	fire	patterns	in	a	particular	

environment	 –forested	 wetlands	 and	 their	 neighbouring	 drylands	 (see	 Chapter	 1).	

Their	 study	 area	 was	 constrained	 to	 the	 riverine	 area	 that	 experiences	 a	 semi-arid	

climate,	 roughly	corresponding	to	the	NSW	side	of	 the	Riverina	bioregion.	Expanding	

the	study	to	include	data	from	a	different	bioregion	(e.g.	a	neighbouring	bioregion	that	

experiences	 a	 mesic	 climate)	 is	 beyond	 the	 objective	 of	 these	 case	 studies;	

furthermore,	doing	so	can	alter	the	observed	fire-environment	relationships	as	well.	(2)	

Both	MODIS	and	administrative	fire	observations	cover	brief	temporal	spans	because	

data	availability	is	limited.	The	timespan	involved	cannot	be	improved	until	more	years	

of	 data	 become	 available.	 Despite	 these	 limitations,	 the	 results	 of	 this	 thesis	 are	

valuable	and	largely	consistent	with	studies	conducted	in	other	landscapes	across	the	

world	(e.g.	Penman	et	al.	2013,	Syphard	et	al.	2008).		

In	this	thesis,	Moran’s	I	and	semivariograms	were	used	to	test	the	existence	of	spatial	

dependence	 among	 model	 errors.	 Although	 these	 techniques	 are	 useful,	 there	 are	

more	sophisticated	spatial	regression	models,	e.g.	simultaneous	autoregressive	models	

and	conditional	autoregressive	models,	that	may	provide	more	information	such	as	a	

clear	 picture	 of	 the	 residual	 spatial	 pattern	 and	 therefore	 some	 hints	 on	 omitted	

variables	 (Wall	 2004).	 These	 models	 can	 be	 employed	 in	 future	 studies	 on	 fire	

occurrence	and	size.	

The	total	deviance	explained	by	 fire	occurrence	models	 in	 this	study	ranges	 from	9%	

for	the	TSG	model	(Chapter	5)	to	34%	for	the	best	fire	ignition	models	(Chapter	6).	The	

explanatory	powers	of	these	models	are	comparable	with	or	less	than	those	discussed	

in	Penman	et	al.	(2013),	 i.e.	29%	for	lightning	ignition	and	57%	for	arson,	but	greater	

than	those	of	Turner	(2011),	i.e.	1%-5%.	The	total	percentage	of	deviance	explained	by	

fire	size	models	(Chapter	7)	ranges	from	14.6%	for	the	FEW&FPW	model	to	31%	for	the	
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FEW	model,	 which	 is	 comparable	 with	 that	 of	 Turner	 (2011),	 i.e.	 4%-32%.	 Possible	

reasons	 for	 the	 merely	 fair	 performances	 of	 some	 models	 have	 been	 discussed	 in	

Sections	5.5.4	and	7.4.3.	Although	some	models	do	not	fit	the	data	as	well	as	others,	

they	 remain	 useful	 from	 an	 explanatory	 perspective.	 Nonetheless,	 possible	

improvement	 in	 terms	 of	 model	 performance	 can	 be	 made	 by	 introducing	 more	

reliable	datasets	and	explanatory	factors.	

Studies	conducted	in	other	 landscapes	reveal	that	the	relative	contributions	of	factor	

groups	 in	regulating	fire	regime	are	scale-dependent	(McRae	and	Sharples	2011).	For	

example,	the	relative	role	of	 fire-size	drivers	varies	across	scales	(Slocum	et	al.	2010;	

Liu	et	al.	2013;	Fang	et	al.	2015;	Fernandes	et	al.	2016a).	Theoretically,	small	fires	are	

mainly	 constrained	 by	 bottom-up	 controls	 such	 as	 the	 vegetation	 and	 topography,	

while	increasingly	larger	fires	are	gradually	affected	more	by	top-down	factors	such	as	

weather	conditions.	Fire	likelihood	(Parks	et	al.	2011)	and	area	burned	(Parisien	et	al.	

2011)	also	have	scale-dependent	responses	to	their	controlling	factors.	The	effects	of	

scale	on	the	relative	contributions	of	fire-pattern	drivers	in	the	study	area	of	this	thesis	

are	worth	further	exploration.		

In	 conclusion,	 this	 thesis	 has	 shown	 that	 fire	 patterns	 vary	 substantially	 within	 and	

between	 regions	 and	 scales	 due	 to	 variations	 in	 weather/climate,	 fuel/vegetation,	

topography,	 and	 factors	 related	 to	 human	 behaviours.	 Remotely	 sensed	 and	

administrative	 fire	 records	 as	 well	 as	 statistical	 methods	 have	 been	 used	 in	

understanding	fire	processes	and	in	predicting	fire	patterns	in	the	fire-prone	states	and	

in	the	semi-arid	riverine	environment	of	South-Eastern	Australia.	Spatial	and	temporal	

variations	 in	 fire	 occurrence	 and	 size	 were	 explored,	 and	 the	 effects	 and	 relative	

importance	 of	 fire-pattern	 drivers	 were	 modelled.	 Findings	 from	 this	 thesis	 are	

expected	to	inform	strategic	and	tactical	decision-making	regarding	the	landscapes	of	

South-Eastern	Australia.	
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