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Abstract 

Wildfires pose a significant hazard in many residential areas around the world.  Minimisation of 

the risk to human lives and property requires a multi-faceted approach, involving fuel reduction, 

fire suppression, and engineering measures to improve the resistance of buildings to the effects 

of intense radiant heat, burning embers and flame contact. 

Measures that are recommended to improve the wildfire resistance of buildings typically focus 

on building materials and design features, as well as fuel sources close to the building.  Wildfire 

sprinkler systems are often promoted as an optional, additional risk-mitigation measure.  

Typically, such systems are designed to spray water on building external surfaces, surround the 

building with airborne droplets, and/or wet nearby fuel sources during wildfires. 

Very little rigorous scientific investigation has previously been conducted into the performance 

of wildfire sprinkler systems, and consequently little consensus has been reached as to the 

mechanisms by which water sprays mitigate the impacts of wildfire on buildings, or the degree 

of protection that can be achieved.  Furthermore, the effects of strong, hot, dry winds (which 

typically occur during wildfires) on wildfire sprinkler performance do not appear to have 

previously been quantified.  The lack of reliable quantitative evidence has prevented wildfire 

sprinkler systems from being fully incorporated into risk-mitigation activities, other than as an 

optional/additional measure of unknown effectiveness.  A series of experiments and simulations 

were designed and conducted in the present study to form a foundation for such evidence. 

Six water sprays, generated by ‘butterfly’, ‘impact’, hollow-cone, flat-fan and deflector-plate 

sprinklers, were experimentally characterised, using a single-camera high-speed videography 

technique.  Video analysis software was developed and applied to measure the size, velocity and 

location of individual droplets within the video footage.  A new technique to separate overlapping 

images of non-spherical droplets was developed and found to outperform several existing 

methods.  Data, describing in the order of 100,000 droplets in each spray, were corrected for 
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statistical bias and converted into continuous co-distributions of droplet diameter, velocity and 

mass flux, resolved in time and space. 

Experiments were also conducted outdoors to generate fundamental test cases, for the validation 

of simulations involving wind–spray interaction around bluff bodies in the atmospheric boundary 

layer.  Individual sprinklers were operated in the vicinity of an isolated 2.4 m cube in an open 

field.  Water deposition was measured on the cube surfaces and ground using custom-built 

collection gauges, and detailed wind characteristics were measured at a nearby 10-m-tall mast. 

An extensive investigation was undertaken into the performance of computational fluid dynamics 

(CFD) methods in simulations of spray dispersion around buildings in wind, using the commercial 

code ANSYS Fluent 14.5.  Test cases from the above-mentioned experiments were replicated in 

steady Reynolds-averaged Navier-Stokes (RANS) simulations with Lagrangian particle tracking.  

Several hundred such simulations were conducted, to evaluate different approaches to the 

definition of droplet sources and the modelling of turbulence.  It was discovered that even some 

transient sprays, such as those produced by ‘butterfly’ sprinklers, could be simulated reasonably 

accurately using steady RANS-based methods, with the majority of time-averaged deposition 

fluxes agreeing with experimental results to within ±15%.  However, some local deposition fluxes 

did differ from the experimental values by more than 50%, especially those on the cube top 

surface.  Comparison of different CFD methodologies revealed that: i) one and two-way coupled 

simulations produced very similar results, as did simulations conducted using the RNG k-ε and 

realisable k-ε turbulence models; ii) turbulent dispersion models needed to be implemented in 

order to obtain results that agreed with experiments; iii) at least 1,000 spatially unique source 

points and 10 or more distinct size classes needed to be used to represent each sprinkler; iv) small 

changes in the initial location of droplets caused large differences in CFD results, if droplet initial 

velocities were not modified accordingly; and v) disagreement between CFD and experimental 

results in the present study did not appear to be caused by large-scale ‘inactive’ turbulence. 

The CFD methodology that was developed was then applied to evaluate the performance of nine 

typical wildfire sprinkler configurations in three sets of weather conditions (including air 
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temperature, humidity and wind speed).  The simulations revealed that if wildfire sprinklers are 

not positioned appropriately more than half of the water ejected from the sprinkler nozzles can be 

blown downwind of the building, and/or evaporated while airborne.  Sprinklers located close to 

the target surfaces and aimed directly towards them were the least prone to such losses. 

Results from the CFD simulations were post-processed to estimate: i) the heat flux that could be 

removed by water deposited on the building, and ii) the radiant heat flux that could be attenuated 

by airborne droplets.  Sprinklers that sprayed water directly onto the top section of the wall (e.g. 

from under the building eaves) were effective at removing a 30 kW m-2 heat flux from all, or 

most, of the wall height, while sprinklers that emitted droplets away from the building from near 

the roof perimeter removed less than half this heat flux.  The airborne droplets projected around 

the building by five of the nine sprinkler configurations were able to attenuate 6–26% of incident 

radiant heat.  Wind-drift and evaporation were found to influence sprinkler system effectiveness 

strongly, e.g. the attenuation of radiative heat fluxes varied by more than 39% between the 

weather scenarios investigated, due to differences in the ambient air temperature, humidity and 

wind speed. 

The evidence presented in this thesis indicates that wildfire sprinkler systems can provide 

significant protection to buildings during wildfires, if designed appropriately.  Results also 

indicate that the effects of wind need to be taken into account in order to obtain accurate 

assessments of wildfire sprinkler performance.  Moreover, the tools and techniques that have been 

developed in the present project are a relatively simple means by which to quantify the 

performance of such sprinklers in the hot, windy conditions that occur during wildfires.  With 

further development, and application to a larger set of sprinkler configurations, these tools and 

techniques could be used to form the rigorous quantitative evidence base that is required to guide 

the design of effective wildfire sprinkler systems, and to facilitate the use of sprinklers as a 

worthwhile and quantifiable wildfire risk mitigation measure.  
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Chapter 1 Introduction 

Introduction 

This thesis documents a research project that was focused on sprinkler systems for the protection 

of buildings from wildfire.  The work covered a wide range of topics and activities including in-

depth investigations into high-speed videography, image analysis, atmospheric fluid dynamics, 

multiphase flows and computational fluid dynamics.  This chapter outlines the motivations for 

the research, the overarching methodology that was adopted and the contents of the subsequent 

chapters. 

1.1 Background 

The destruction of buildings by wildfires is an issue faced in many regions around the world 

(Blanchi et al. 2010; Caton et al. 2016; Mell et al. 2010; Viegas et al. 2003).  The number of 

buildings destroyed each year is increasing and is predicted to continue to increase into the future 

(Bowman et al. 2017; Moritz et al. 2014; Syphard et al. 2013). This trend is generally attributed 

to changes in climate and continued urban expansion into forested areas, amongst other factors 

(Caton et al. 2016; IPCC 2014; Krawchuk et al. 2009; Lucas et al. 2007; Mell et al. 2010).  

Improved building resistance to wildfire has consistently been identified by researchers as an 

important aspect of the multi-faceted approach that is required to most effectively mitigate this 

increasing risk (Bradstock et al. 2012; Calkin et al. 2014; Cohen 1999, 2000; Mell et al. 2010; 

Moritz et al. 2014; Pellegrino, Bryner & Johnsson 2013; Penman et al. 2017). 
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Improvements to the wildfire resistance of a building not only help in averting the significant 

financial and sentimental losses inherent in the destruction of a home, but they can also provide 

a safer place of refuge for those who choose to ‘stay and defend’ their property or are 

unexpectedly unable to escape the fire (Blanchi et al. 2014; Cova et al. 2009; Haynes et al. 2010; 

Paveglio, Carroll & Jakes 2008).  Measures that are taken to reduce the vulnerability of a building 

to wildfire can also benefit other nearby structures by eliminating the building as a fuel source 

(Blanchi & Leonard 2005; Butry & Donovan 2008; Calkin et al. 2014; Maranghides & Mell 2011; 

Mell et al. 2010). 

Wildfires affect buildings through three primary mechanisms: i) ember attack (i.e. the transport 

of solid, burning materials from the fire to the building by wind), ii) radiant heat transfer, and iii) 

direct flame contact (Blanchi, Leonard & Leicester 2006; Caton et al. 2016; Leonard, Blanchi & 

Bowditch 2004; Ramsay, McArthur & Dowling 1987; Standards Australia 2009).  In addition to 

these primary mechanisms, the strong winds that often coincide with wildfires can cause 

significant structural damage to buildings (Blanchi et al. 2011; Blanchi et al. 2010; McRae et al. 

2013; Weber & Dold 2006).  It should be noted that these mechanisms do not operate in isolation, 

for example wind or the uneven heating of glazing elements can create and/or damage openings 

in the building, through which embers can enter and ignite the building from within (Blanchi, 

Leonard & Leicester 2006). 

Previous research has provided many insights into how buildings can be made less vulnerable to 

wildfire (Blanchi & Leonard 2005; Blanchi, Leonard & Leicester 2006; Bowditch et al. 2006; 

Caton et al. 2016; Cohen 1995, 2004; Hakes et al. 2016; Leonard, Blanchi & Bowditch 2004; 

Macindoe 2006; Macindoe & Leonard 2009; Macindoe, Mikaelsson & Leonard 2008; Manzello 

et al. 2005; Manzello et al. 2010; Manzello, Park & Cleary 2009; Manzello et al. 2011; Manzello 

& Suzuki 2012; Manzello, Suzuki & Hayashi 2012; Mell et al. 2010; Ramsay 1985; Ramsay, 

McArthur & Dowling 1996; Ramsay, McArthur & Dowling 1987; Watson et al. 2010).  New 

buildings must comply with design standards in some regions, and many agencies provide 

guidance on how to improve the wildfire resistance of existing buildings.  It is typically advised 
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that a ‘defensible space’ be established around the building (i.e. an area with significantly reduced 

fuel load).  Measures that are often recommended to ‘harden’ the building itself include: covering 

of any vents or other gaps that would allow embers to enter; use of non-combustible building 

materials in exposed locations (especially at the base of walls, window sills and doors, where 

embers can accumulate); and protection of exposed glazing elements with non-combustible 

screens or shutters.  The installation of sprinklers, on or around buildings, is also often cited as an 

effective method to mitigate the impacts of wildfire (CFS 2011; FEMA 2008; FPAA 2000; 

GTVFD 2007; Hakes et al. 2016; Potter & Leonard 2010).  Such systems are predominantly 

presented as an optional measure, which can be taken in addition to, rather than as an alternative 

to, the ‘passive’ measures outlined above.  The literature indicates that such spray systems have 

been used since at least 1984 (FPAA 2000) and there are currently many commercial entities 

offering wildfire sprinkler systems in Australia and the USA. 

Very little research focussed on wildfire sprinkler systems appears to have been published, despite 

calls for scientific investigation into various aspects their operation (FPAA 2000; Potter & 

Leonard 2010).  Consequently, technical guidance that is currently available to assist in the design 

of such systems, e.g. Standards Australia (2012), CFS (2011), FEMA (2008) and GTVFD (2007), 

is largely based on a combination of anecdotal evidence (FPAA 2000; Johnson, Downing & 

Nelson 2008; Mitchell 2006), knowledge from other, related fields (e.g. indoor fire sprinklers) 

and engineering judgement.  Much of the guidance that is given is arguably inconsistent, and does 

not provide the detailed information required to tailor a wildfire sprinkler system to the needs of 

a specific building, or to accurately predict the capabilities of a given system. 

1.1 Aims and Objectives 

The primary aim of the present work was to progress towards a more complete and rigorous 

understanding of wildfire sprinkler system operation in windy conditions.  The author also aimed 

to identify and communicate gaps in the understanding of such systems to the wider scientific 

community, since it was not an active field of research at the time of writing. 
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Key research questions addressed in the work include the following. 

 What gaps exist in the scientific understanding of wildfire sprinkler systems? 

 What are the characteristics of sprays currently recommended for use in wildfire 

sprinklers? 

 Can simulation techniques, such as computational fluid dynamics (CFD) accurately 

simulate wildfire sprinkler system operation in windy conditions? 

 How do typical wildfire sprinkler systems compare, in terms of the dispersion of water in 

windy conditions? 

To address these questions, a series of objectives were set for the research. 

1. Conduct an extensive literature review of: 

a. previous scientific investigations into wildfire sprinkler systems; and 

b. current technical guidance on the design of wildfire sprinkler systems. 

2. Measure and characterise the sprays generated by several sprinklers that are used in 

wildfire sprinkler systems.  This objective involved: 

a. a literature review into relevant experimental methods; 

b. measurement of six sprays; and 

c. analysis and presentation of detailed spray characteristics. 

3. Conduct experiments to provide validation data for simulations of sprinkler operation and 

water deposition around buildings, in windy conditions. 

4. Compare the performance of various CFD methods in simulations of wildfire sprinkler 

systems, using validation data from item 4, above.  This objective involved: 

a. a literature review into CFD techniques relevant to the simulation of wildfire 

sprinkler systems; and 

b. a simulation study, comparing the performance of various CFD methods using 

the commercial code ANSYS Fluent 14.5. 

5. Quantify the effects of wind and evaporation on various wildfire sprinkler systems that 

are described in the literature. 
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1.2 Thesis Structure 

This thesis is comprised of seven chapters.  Chapters 2–6 each outline a distinct body of work, 

involving one of the five objectives described above (see Figure 1.1).  Each chapter draws on 

findings from the previous chapters. 

Chapter 1 
Introduction 

 

Chapter 2 
Literature Review 

 

Chapter 3 
Spray Characterisation 

 

Chapter 4 
Wind–Spray Interaction: Full-

Scale Experiments 

 

Chapter 5 
Wind–Spray Interaction: 

Development and Validation of 
a Simulation Methodology 

 
 

 

Chapter 6 
Wildfire sprinkler system 
performance comparison 

 

Chapter 7 
Conclusion 

 

Legend:  

FIGURE 1.1: Schematic outline of the thesis structure. 

1.3 List of Publications Associated with the Thesis 
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Chapter 2 Literature Review 

Literature Review 

As explained in Chapter 1, measures to improve the resistance of buildings to wildfire are needed, 

to protect people and property from the significant and growing hazard posed by wildfires.  This 

chapter summarises a review of literature related to wildfire sprinkler systems.  Such sprinklers 

are often suggested as an additional protective measure to owners of wildfire-prone buildings, 

however very few scientific investigations appear to have been conducted into their performance.  

For background on the hazard posed by wildfires, the mechanisms by which they affect buildings, 

and typical measures taken to mitigate these effects, the reader is directed to section 1.1 of this 

thesis.  Wildfire sprinkler systems reported in the literature have been described in sections 2.1–

2.3, and in sections 2.4–2.6 a brief analysis has been presented of existing evidence related to 

three aspects of their operation: 1) the influence of sprays in mitigating the effects of wildfire; 2) 

the dispersion of sprayed droplets to the exterior of buildings and/or surrounding surfaces; and 3) 

the supply of water which is to be sprayed. 

2.1 Wildfire Sprinkler Types 

At the time of writing, only one peer-reviewed publication appeared to exist which focused 

specifically on wildfire sprinkler systems (Mitchell 2006).  However, two technical reports had 

been published which described the ‘state-of-the-art’ in wildfire sprinkler system design (FPAA 
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2000; Potter & Leonard 2010), and several sources of technical guidance for system designers 

had also described the type of sprinklers that should be used and how they should be configured 

around buildings (CFS 2011; FEMA 2008; GTVFD 2007; Standards Australia 2012). 

Sprinklers primarily designed for garden irrigation have often been recommended, although 

purpose-built wildfire sprinklers were commercially available at the time of writing.  ‘Butterfly’ 

and ‘Impact’ irrigation sprinklers (see Figure 2.1) have been recommended in several design 

guides (CFS 2011; FPAA 2000; GTVFD 2007; Johnson, Downing & Nelson 2008).  However, 

such sprinklers do not meet the requirements outlined in Australian Standard AS 5414-2012, 

which specifies that wildfire sprinklers should contain no moving parts, to reduce the probability 

of malfunction (Standards Australia 2012).  Mitchell (2006) proposed a design that featured 

hollow-cone sprinklers, and ‘small-bore misting nozzles’ were documented in several of the 

sprinkler systems surveyed by the Fire Protection Association Australia (FPAA 2000).  However, 

such sprinklers do not comply with recommendations made by others, that wildfire sprinklers 

should produce large droplets (CFS 2011; FEMA 2008; GTVFD 2007; Potter & Leonard 2010). 

 

FIGURE 2.1: Examples of sprinklers used to protect buildings from wildfires: a) a ‘butterfly’ 
sprinkler; b) an ‘impact’ sprinkler; c) a small-bore misting nozzle designed to produce a 180° 
‘flat-fan’ spray; and d) a ‘hollow cone’ sprinkler similar to those recommended by Mitchell 

(2006). 

2.2 Wildfire Sprinkler System Configurations 

The configuration of sprinklers around the building to be protected has varied widely among 

systems reported in the literature.  Sprinklers have been located on building roofs, under eaves, 

near vulnerable building elements (e.g. doors and windows), and in areas surrounding buildings 

(see Figure 2.2 and Table 2.1).  It is typically recommended that the spacing of sprinklers be such 
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that there is some overlap of their sprays, to ensure complete coverage of key surfaces (FPAA 

2000; Standards Australia 2012), and a degree of ‘overspray’ is also often prescribed (CFS 2011; 

Potter & Leonard 2010; Standards Australia 2012), which is a recommendation that the sprays 

impinge on the ground surrounding a building as well as on the building itself. 

 

FIGURE 2.2: A selection of the various sprinkler configurations that have been recommended for 
wildfire sprinkler systems, shown on the cross-section of a building. 

The most comprehensive account of existing wildfire sprinkler system designs appears to be that 

of the Fire Protection Association Australia (FPAA 2000).  Thirteen systems were evaluated and 

six distinct types were identified, as described below. 

1. Small-bore misting nozzles positioned to spray over vulnerable building features, e.g. 

roof penetrations, gutters, door and window openings, etc. 

2. Misting nozzles as in 1, but with the addition of sprinklers designed for higher volume 

flow-rates, such as ‘butterfly’ sprinklers, located around the perimeter of the roof. 

3. Misting nozzles and high-flow sprinklers as in 2, except the high-flow sprinklers are 

located on metal upstands, in a ring surrounding the building at a distance of 4–5 m, rather 

than on the roof. 

4. Misting nozzles and high-flow sprinklers as in 3, except the ring of high-flow sprinklers 

is located approximately 10m from the building and an additional ring of ‘impact’ 

sprinklers surrounds the building at a distance of approximately 30 m. 
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5. An automatically activated indoor sprinkler system, identical to those conventionally 

used to defend against structural fires except that the sprinklers are also installed in 

outdoor areas such as verandas and awnings, and ‘upright’ sprinklers are installed on the 

roof ridges. 

6. Garden sprinklers of the ‘butterfly’ or ‘impact’ type installed near the building, to serve 

the dual purpose of garden watering and wetting the building walls during wildfires. 

In addition to the documentation of system 5, above, several sources of technical guidance have 

also promoted the use of conventional indoor fire sprinklers to aid in the protection of buildings 

from wildfire (FEMA 2008; FPAA 2000; Potter & Leonard 2010; Standards Australia 2012). 

TABLE 2.1: Summary of documented wildfire sprinkler systems.  The symbols 'X' and 'O' denote 
properties of the system that are presented as necessary and optional, respectively.  References: 
1 – FPAA (2000); 2 – Standards Australia (2012); 3 – Mitchell (2006); 4 – GTVFD (2007); 5 – 

Johnson et al. (2008); 6 – CFS (2011); 7 – FEMA (2008). 

Sprinkler Type Sprinkler Location 
Systems Recommended in 

Technical Guidance 
Systems from a Survey 

conducted in Australia, 2000 

Misting nozzles On roof X X               X X X X X    X 

Misting nozzles Directed at windows and doors X X  O*             X X X X X     

Misting nozzles Directed inwards from gutters                                

Butterfly sprinklers Roof ridges                                

Butterfly sprinklers Near gutters O       O    X      X           

Butterfly sprinklers Under eaves    O*                            

Butterfly sprinklers On risers, 4–5 m from building         O    O      X         

Butterfly sprinklers On risers, 10 m from building  X O                    X X     

Butterfly sprinklers At property perimeter                             X  

Impact sprinklers On roof ridges                                

Impact sprinklers On risers, 30 m from building  O O      O      X        X     

Impact sprinklers ‘At ground level’      X X      O                X 

Hollow-cone 
sprinklers 

Directed outwards from gutters     X                           

‘Modified’ upright 
sprinklers 

Roof ridges   X                        X   

Upright or pendant 
sprinklers 

Near gutters    O*    O                        

Pendant sprinklers Under eaves    O*                            

‘Rotating’ 
sprinklers 

Near gutters and barge boards    O*                            

‘Large-droplet’ 
nozzles 

Directed at windows and doors    O*                            

Indoor sprinkler 
system 

Indoors and extended to 
verandahs, etc. 

  X O      X                 X   

 Reference: d 1 1 1 2 3 4 5 6 6 7  1 1 1 1 1 1 1 1 1 1 1 
* It is not clear exactly what type of sprinkler is recommended. 
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All of the wildfire sprinkler systems that were reviewed were designed to spray water.  A number 

of publications suggested that the water supplied to sprinklers can be dosed with foam or gel-

forming agents, to increase its ‘dwell time’ on surfaces (FEMA 2008; FPAA 2000; Standards 

Australia 2012).  However, no further guidance was provided on the selection of such products, 

or their implementation in a sprinkler system. 

2.3 Operational Timing of Sprinkler Systems During Wildfire Events 

The commencement and duration of wildfire sprinkler operation during wildfire events should be 

chosen to provide sufficient protection to prevent building ignition, yet minimise water usage.  

The passage of the main front of a wildfire past a building can occur in a relatively short period 

of time; fine fuels (< 6 mm) can burn for as little as 30 or 40 s (Butler et al. 2004; Wotton et al. 

2012), while larger wildland fuels typically undergo flaming combustion for several minutes 

(Albini et al. 1995; CFS 2011).  However, ember attack and spot-fires can endanger buildings for 

much longer periods of time prior-to and after the passage of a wildfire front (Blanchi, Leonard 

& Maughan 2004; Leonard, Blanchi & Bowditch 2004; Mell et al. 2010; Ramsay, McArthur & 

Dowling 1987). 

The minimum total operational duration of various wildfire sprinkler systems has been suggested 

to be 30 min (Standards Australia 2012), 60 min (FPAA 2000), 90 min (FPAA 2000), 2 h (CFS 

2011), 3 h (Mitchell 2006), 6 h (Potter & Leonard 2010) and 18 h (GTVFD 2007).  

Recommendations have been made that systems operate for at least 10 min (Potter & Leonard 

2010), or 15 min (FPAA 2000), prior to the passage of wildfire, to saturate potential fuels.  A 

fact-sheet distributed by the South Australian Country Fire Service (CFS 2011) recommends that 

sprinklers be operated overnight prior to wildfires, if possible.  Suggestions have also been made 

that sprinkler systems should be operated at full capacity for a short period (typically 0.5–2 h) and 

a lower level of protection should be provided outside of this period, by intermittent sprinkler 

operation (Potter & Leonard 2010; Standards Australia 2012), operation of a reduced number of 

sprinklers (Standards Australia 2012) or manual intervention by people defending the building 
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(FPAA 2000); in order for, it has been suggested, limited water resources to be used more 

effectively. 

It is likely that there will be an element of uncertainty in the potential temporal profiles of radiant 

heat, ember attack and flame contact incident on buildings during wildfires.  Moreover, factors 

that vary between different buildings, such as the magnitude of the local wildfire hazard, building 

construction details, and the availability of water, are likely to cause variation in the ‘ideal’ timing 

and duration of wildfire sprinkler operation.  Progress towards a situation where the effectiveness 

of wildfire sprinklers can be predicted would allow such factors to be taken into account in the 

design of systems. 

2.4 System Influence 

Conclusive evidence of the effectiveness of wildfire sprinkler systems does not appear to exist, 

but several accounts do indicate that sprinkler systems may have prevented the destruction of 

buildings during previous wildfires.  Johnson, Downing and Nelson (2008) documented building 

losses during the 2007 Ham Lake Fire in Minnesota, USA, where 56 threatened residential 

buildings had sprinkler systems installed.  Nine of the systems failed to operate, but only 2% of 

buildings with functional systems were destroyed, as compared to 67% of buildings without 

sprinkler protection.  Mitchell (2006) conducted a survey of a single building fitted with a 

sprinkler system, after it had survived the 2003 Cedar Fire in Southern California, USA.  

Conclusions could not be drawn as to the effects of the sprinkler system in that case, but the 

building did appear to have withstood some ember attack.  The FPAA report (FPAA 2000) also 

cites anecdotal evidence that wildfire sprinkler systems can be effective. 

The mechanisms by which wildfire sprinkler systems mitigate the effects of ember attack, radiant 

heat and direct flame contact have also not been clearly established.  Some guidelines are 

accompanied by caveats, specifying that the systems discussed are primarily designed to address 

ember attack (Mitchell 2006; Potter & Leonard 2010) or ember attack with the addition of a 

limited level of radiant heat flux (CFS 2011; FPAA 2000; Standards Australia 2012).  However, 
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there does not appear to be a consensus on how such protection is achieved.  Seven mechanisms 

have been suggested in the literature that was reviewed, as follows. 

1. The intensity of ember attack and radiant heat incident on the building is reduced by 

wetting surrounding fuels, e.g. vegetation (GTVFD 2007; Mitchell 2006; Potter & 

Leonard 2010; Standards Australia 2012). 

2. The cooling of exposed combustible surfaces on the building (FPAA 2000; Potter & 

Leonard 2010; Standards Australia 2012) or exposed glazing (Potter & Leonard 2010; 

Standards Australia 2012). 

3. Radiant heat is attenuated by airborne droplets (CFS 2011; FPAA 2000). 

4. Embers are prevented from entering the building by flooding of any gaps or cracks in the 

building envelope (Potter & Leonard 2010). 

5. Airborne embers are extinguished when they collide with water droplets (Mitchell 2006). 

6. A ‘humid bubble’ of air is established around the building (FPAA 2000; Mitchell 2006). 

7. Sprays inside the building extinguish fires arising therein, e.g. due to ember ingress or 

radiant heat transmission through windows (FEMA 2008; FPAA 2000; Standards 

Australia 2012). 

Such claims were typically not accompanied by any evidence/justification.  However, some 

insight into the validity of each claim was obtained by reviewing literature from related fields, 

and this has been briefly summarised in the following sections. 

2.4.1 Extinguishment of Spot-Fires and Accumulated Embers 

The action of water as a fire suppressant is primarily through cooling of burning fuel, cooling of 

gases in the flame zone and volumetric displacement of oxygen by water vapour (Grant, Brenton 

& Drysdale 2000).  Solid, non-metallic fuels have a tendency to ‘burn back’ (i.e. reignite after 

extinguishment) if not thoroughly cooled, so the cooling effects of water are much more important 

than those due to the displacement of oxygen in the extinguishment of such fuels.  Therefore, it 

is likely that water sprays are able to extinguish spot-fires and accumulated embers near buildings, 
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by direct cooling of the fuels.  However, it is not clear whether the water vapour produced by 

wildfire sprinklers would displace enough oxygen to influence such fires significantly, since the 

strong winds that often occur during wildfires are likely to advect water vapour away from 

buildings. 

2.4.2 Evaporative Cooling of Unignited Fuels and Glazing 

Water can also effectively prevent fire spread onto unburnt fuels, by acting as a ‘heat sink’ (Grant, 

Brenton & Drysdale 2000).  Heat that is radiated or convected to wet surfaces from nearby fire is 

absorbed as the water rises in temperature, and removed in substantial quantities as it vaporises.  

Experimental studies, conducted by Glenn et al. (2012) and Urbas (2013), have investigated the 

protection of a number of building materials, garden plants and mulch from wildfire using water, 

foams and gels, with and without retardants.  However, they focused on a scenario where the 

materials are pre-wetted only (i.e. they did not investigate the effectiveness of continuous or 

intermittent wetting).  Results from these studies indicated that little benefit was offered by water 

or foam in this pre-wetting scenario, but some items coated with gel could withstand double the 

heat flux as compared to when untreated.  The addition of starch to foams and gels was found to 

reduce the tendency of these coatings to ‘slump’ after application, and acted as a retardant by 

forming an insulating layer of char.  Research on the continuous or intermittent application of 

water, foams and gels, to protect building elements from wildfire attack mechanisms, could not 

be found in open literature. 

The absorption and removal of heat by water can also prevent glass from breaking when heated 

by fire.  Several experimental studies have investigated the protection of glass windows by water 

sprays, in the context of structural fires (Beason 1986; Kim & Lougheed 1990; Kim, Taber & 

Lougheed 1998; Richardson & Oleszkiewicz 1987).  Sprinklers have typically been shown to 

prevent tempered glass from breaking, when exposed to radiant heat flux up to at least 25 kW    

m-2.  Plate and laminated glazing tended to break prior to the activation of automatic sprinklers in 

experiments, so it is not clear whether a continuous spray, activated prior to exposure, could 

protect such windows.  The risk of glass breakage due to thermal shock, when water is applied 



9 
 

after the glass has already risen sufficiently in temperature or when water is not applied to the 

entire glass surface, has also been identified.  This evidence suggests that, when applied 

appropriately, the cooling effect of water sprays could prevent windows from breaking during 

wildfires. 

The effectiveness of external water spray systems on fire trucks were tested in Australia between 

April 2002 and November 2003, by exposing full-scale truck cabins to simulated wildfire 

conditions produced using gas burners (Bowditch, Leonard & O'Brien 2004; Nichols et al. 2005).  

A rigorous matching of simulated radiant heat flux and flame temperature to measured values 

from wildfires is reported, but it does not appear as though strong winds were included in the 

simulated wildfire conditions.  Detailed results from these experiments do not appear to be 

publicly available.  However, Nichols et al. (2005) reported that ‘well-designed spray systems’ 

provided ‘useful gains in firefighter safety at low to moderate fire burnover scenarios’, and that 

‘an efficient spray system will consistently reduce glass surface heat load and the inside cabin 

temperature’.  The importance of complete, even water coverage on windows was also highlighted 

in this work.  Although quantitative evidence was not published, this previous research does 

provide anecdotal evidence that spray systems can cool glass surfaces significantly, even within 

the flame zone of a wildfire. 

2.4.3 Attenuation of Radiant Heat 

The capability of airborne water droplets to attenuate radiant heat has been well documented.  

Numerous studies have investigated this phenomenon in the context of indoor fire sprinklers              

(Boulet, Collin & Parent 2006; Chueng 2009; Coppalle, Nedelka & Bauer 1993; Dembele, Wen 

& Sacadura 2001; Murrell, Crowhurst & Rock 1995; Usui & Matsuyama 2014), and the use of 

fine, wide-angle sprays is an established method to reduce the radiant heat flux to firefighters 

(Rasbash 1962; Reischl 1979). 

For a given mass of water, maximum attenuation is achieved by droplets with diameters 

approximately equal to the radiant heat wavelength—typically in the order of 1 μm (Coppalle, 
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Nedelka & Bauer 1993; Dembele, Wen & Sacadura 2001; Murrell, Crowhurst & Rock 1995).  

The portion of radiant heat attenuated by sprays also depends on the spray ‘density’ (i.e. liquid 

volume fraction) and depth, which dictate the total mass of airborne droplets per unit of spray 

frontal-area.  Attenuation of 10%, 40% and 92% of incident radiation has been modelled for 

monodisperse sprays of 1 μm droplets, containing 0.5, 5 and 50 grams of liquid water per square-

metre of spray frontal-area, respectively (Coppalle, Nedelka & Bauer 1993).  (However, these 

should be considered as approximate values since the effects of droplet temperature and 

evaporation were not included in the calculations and several assumptions were made in regard 

to the emitting characteristics of the fire.)  Reductions of this magnitude in the radiant heat flux 

incident on a building could substantially reduce the risk of ignition during a wildfire.  However, 

sprays of such small (1 μm) droplets are likely to be unsuitable for the wildfire context, since the 

droplets would be very prone to being blown off-course by wind, thereby disrupting attempts to 

establish a ‘curtain’ of droplets between the fire and the building.  Larger droplets can also 

attenuate substantial radiant heat, when distributed in sufficient quantities, but it is unclear 

whether such quantities would be practicable for wildfire sprinkler systems, given the limited 

water resources that are typically available.  Additional research is required to determine whether 

radiant heat attenuation could be an effective mechanism of influence for wildfire sprinkler 

systems, given the various practical considerations relevant to such systems. 

2.4.4 Extinguishment of Airborne Embers 

It is likely that some droplets projected by wildfire sprinklers would collide with airborne embers 

during a wildfire.  However, the nature of embers produced by wildfires, including their size, 

shape, velocity, composition and flux ahead of the fire front, are still poorly understood (Caton et 

al. 2016; Manzello 2014).  Without such knowledge it is difficult to accurately predict the fraction 

of embers that could be intercepted by droplets in a given spray.  Furthermore, the collision of 

individual embers with airborne water droplets appears to have not been investigated previously.  

Observations of related phenomena, such as droplet impact on heated plates (Liang & Mudawar 

2017) and collision with other droplets (Frohn & Roth 2000; Orme 1997), indicate that this is 
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likely to be a complex interaction.  Factors such as droplet size and velocity are likely to influence 

the processes that are involved (which could include, for example, film boiling, droplet bouncing 

or splashing), which will in-turn influence the propensity for ember extinguishment.  

Investigations into the nature of ember showers, and the collision of water droplets with these 

embers, would allow an assessment of whether this is a mechanism that significantly influences 

the effectiveness of wildfire sprinklers. 

2.4.5 Indoor Sprinklers 

Indoor sprinklers or hybrid indoor/outdoor sprinkler systems may use limited water resources to 

greater effect than purely outdoor systems, since the enclosed environment offered by the building 

would allow the use of the type of heat-sensitive activation mechanisms that are already in 

common use in indoor sprinkler systems (e.g. glass bulbs that break when the liquid inside 

exceeds a known temperature), thereby allowing the deployment of water only when and where 

it is required.  Indoor sprinkler systems would also be functional in the event of a conventional 

structural fire, which contributes to their appeal in terms of risk reduction for a given financial 

investment. 

Anecdotal evidence suggests that buildings often burn ‘from the inside, out’ during wildfires 

(Leonard & McArthur 1999); i.e. combustion of buildings in wildfires is often relatively minor 

until the interior ignites, at which point an indoor fire begins to predominate and eventually 

destroys the building.  This behaviour could be attributed to the copious flammable materials 

present in common furnishings and the enclosed indoor space, which can allow hot combustion 

products to accumulate and reradiate heat to burning and unburnt fuels (Drysdale 2011).  Such 

fires can arise in three ways: 1) an ember enters the building through an opening (e.g. an 

unprotected vent or broken window); 2) sufficient radiant heat is transmitted through windows to 

ignite items within the building; or 3) combustion of external building surfaces forms openings 

in the building, allowing fire to spread inside.  Indoor sprinkler systems could suppress indoor 

fires in all three scenarios.  However, in the third case, it is not clear whether the combustion of 

external building surfaces would continue, or whether the damage already incurred by the 
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building would be acceptable.  Also, in all three cases, other protective measures may be 

preferable (e.g. covering vents and windows with screens, or installing external sprinklers), since 

they would not cause water damage inside the building.  Issues related to the availability of water 

supplies and resistance of pipework, etc. to bushfire attack are also relevant to indoor systems, 

and have been discussed in more detail in Section 2.6. 

New research is required to understand the effectiveness of indoor sprinklers at preventing 

damage to buildings during wildfire, in scenarios where fire ‘burns through’ the building 

envelope.  With such knowledge, and the ability to quantify the effectiveness of external wildfire 

sprinkler systems, it would be possible to compare the performance of internal and external 

sprinklers. 

2.5 Water Dispersion 

Prediction of the performance of a sprinkler system in wildfire conditions is complicated by 

processes such as wind drift (i.e. the influence of wind on droplet trajectories), evaporation, 

splashing, runoff and absorption, which all influence the dispersion of water from sprays.  In 

particular, wind drift is seen to influence wildfire sprinkler performance significantly (FEMA 

2008; FPAA 2000; Mitchell 2006; Potter & Leonard 2010; Standards Australia 2012). 

2.5.1 Wind Drift 

Provisions to address the effects of wind on wildfire sprinkler sprays have generally not been 

documented in great detail.   A number of sources recommend the use of sprinklers that produce 

large droplets to reduce wind drift (CFS 2011; FEMA 2008; GTVFD 2007; Potter & Leonard 

2010) or the use of a ‘run-down’ method whereby water is sprayed over a relatively short range, 

directly onto an inclined surface, and gravity is relied upon to spread the water (FPAA 2000).  

However, suitable droplet sizes have not been quantified and the importance of droplet initial 

velocity does not appear to have been investigated. 

A method to test the susceptibility of sprays to wind drift is presented in AS 5414-2012, which 

sets a limit on the acceptable deflection of each spray when it is installed on a building façade and 
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subjected to a constant 45 km h-1 (12.5 m s-1) cross-wind (Standards Australia 2012).  This wind 

speed is consistent with those measured at weather stations near major wildfires in Australia, but 

does not represent a ‘worst case’ wind speed for these events; winds of up to 70 km h-1 (19.4 m      

s-1) have been recorded near wildfires (Blanchi et al. 2010).  Performance tests of this nature can 

serve as a relatively simple means to address wind drift in wildfire sprinkler systems without 

obtaining a comprehensive understanding of the fluid dynamics that is involved.  However, they 

do not accurately replicate the hot, dry, turbulent air flows that occur during wildfires, nor do they 

take into account factors such as the wind angle of incidence with the building or the building 

shape.  Investigation into the importance of such factors could lead to more evidence-based 

recommendations and regulations, which may also take into account potential design 

optimisation, e.g. trade-offs between the propensity for wind drift and the capacity for radiant 

heat attenuation when considering droplet size. 

The ‘wind-enabled ember dousing system’ (WEEDS) proposed by Mitchell (2006) is notable in 

that it manages the effects of wind in a novel way, and that some analysis of these effects has 

been reported.  Rather than spraying water in a way that limits wind drift, this system directs a 

fine spray outwards from below the gutters of the building and relies on wind to blow the droplets 

back onto the structure.  Results from a set of simulations were reported, demonstrating an 

acceptable dispersion of water on the windward side of a building, at wind speeds between 20 km 

h-1 and 60 km h-1 (5.6–16.7 m s-1).  However, these simulations were greatly simplified models of 

reality in that the wind was modelled as a uniform, laminar flow which was unaffected by the 

building, i.e. the air was able to effectively pass through the structure.  It was claimed that this 

was a conservative assumption, which is not necessarily true given the acceleration of airflow that 

typically occurs around buildings in wind.  While the thermo-physical principles underlying the 

WEEDS concept may have merit, further research is required to determine the performance of 

such systems in real wind and to compare this performance with that of other wildfire sprinkler 

system designs. 
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2.5.2 Evaporation 

In-flight droplet evaporation is another process which could conceivably have a significant 

influence on the performance of wildfire sprinklers.  Molle et al. (2012) experimentally and 

analytically investigated the evaporation of airborne water droplets (with a mean diameter of 

approximately 3.65 mm) generated by an impact sprinkler.  They found that up to 10% of the total 

liquid volume could evaporate in that case.  A significantly larger portion could be expected to 

evaporate from some wildfire sprinkler sprays, given the hot, dry, windy conditions that typically 

occur during wildfires and the widespread use of sprinklers that produce much smaller droplets 

than the impact sprinkler studied by Molle et al. (2012).  Additional evaporation could then be 

expected to occur after the water impinges on a surface, where it may adhere or be transported 

further, as it continues to be exposed to a vapour-pressure deficit in the surrounding air.  

Depending on the mechanism by which a given system is intended to function, evaporation may 

be desirable (e.g. for the cooling of exposed building elements), however, it could lead to the 

waste of a substantial portion of the water that is available.  This aspect of wildfire sprinkler 

system operation does not appear to have been previously investigated. 

2.5.3 Post-Impact Transport of Water 

The effects of splashing, bouncing, runoff, absorption and re-entrainment on the dispersion of 

water by wildfire sprinklers have also seen very little attention in the literature.  Foam or gel-

forming agents could provide a means to minimise unwanted runoff.  As mentioned above, there 

have been some experimental investigations into the effectiveness of such agents when applied 

for a single, short period prior to exposure to wildfire attack (Glenn et al. 2012; Urbas 2013), but 

no studies relating to their continuous or intermittent application via sprinklers appear to have 

been published.  Other considerations relating to the transport of water post-impact, such as the 

critical velocities and impingement angles beyond which droplets bounce or splash from surfaces 

rather than adhering to them, have been investigated extensively from a fundamental scientific 

perspective (Yarin 2006).  However, there does not appear to currently be any published analysis 

of how these processes relate to the performance of wildfire sprinklers. 
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2.6 Water Supply Systems 

The reliability of wildfire sprinkler systems is dependent on the systems by which water is 

supplied to the sprinklers.  The relative complexity of sprinkler systems, compared to other 

wildfire protection measures, such as the establishment of defensible space or installation of non-

combustible, well-sealed façades, renders them more prone to malfunction during wildfire events.  

This additional risk constitutes one of the major challenges to the integration of sprinkler systems 

into building regulations and technical guidance for the protection of buildings from wildfire.  

However, the susceptibility of water supply systems to failure is also relatively well understood.  

Knowledge from other water-handling applications can be applied to systems for wildfire 

protection, and observations during and after wildfires have shed light on the specific 

requirements of systems that are to withstand the impact of wildfire.  As a result, much of the 

technical guidance available on wildfire sprinkler systems focuses on this aspect of their design.  

In particular, AS 5414-2012 (Standards Australia 2012) and a report by Potter and Leonard (2010) 

lay out explicit requirements for water sources, pumps and pipework that should be used. 

2.6.1 Water Supply Requirements 

Anecdotal evidence indicates that there are often substantial reductions in the water pressure 

available from public utilities networks and interruptions to the supply of grid electricity to 

buildings during wildfires (CFS 2011; FPAA 2000; Potter & Leonard 2010).  So it is important 

for wildfire sprinkler systems to have an independent source of water and a means to supply it at 

a suitable pressure that does not rely on electricity from the grid.  Technical guidance on the 

minimum permissible storage capacity for typical Australian systems varies from 16,000 L 

(FPAA 2000) to 36,000 L (Standards Australia 2012).  In practice, the required volume depends 

on the size and intended functions of the system, which could be more accurately prescribed were 

the influence of water sprays on wildfire attack mechanisms better understood.  There is an 

opportunity to recycle a portion of the water sprayed by wildfire sprinklers in cases where a 

rainwater collection system is present, however the potential contamination of collected rainwater 
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should be considered if, for example, pool water, dam water, retardant, foam or gel is to be used 

(Potter & Leonard 2010). 

It is important that the pressure drop along pipes be taken into account during the selection of 

pumps and design of pipework, to ensure that every sprinkler in the system is provided with water 

at sufficient pressure (Standards Australia 2012).  This aspect of wildfire sprinkler system design 

can be addressed using established engineering practices from other water-handling applications. 

2.6.2 System Resilience 

Water supply systems for wildfire sprinklers must also be designed to withstand the high 

temperatures and smoke that accompany wildfires.  The CSIRO has experimentally investigated 

the ability of water tanks to withstand radiant heat and direct flame contact (Blanchi et al. 2007).  

Results indicated that tanks should be of a metal or concrete construction; although, polyethylene 

tanks can withstand a low intensity of wildfire attack if certain mitigating steps are taken, and 

buried tanks may also be suitable (Blanchi et al. 2007; Potter & Leonard 2010). 

Post-fire surveys have also provided many insights into the resilience of sprinkler system 

components to wildfire attack (Blanchi & Leonard 2005; Blanchi, Leonard & Leicester 2006; 

Potter & Leonard 2010).  It has been observed that exposed plastic pipework can fail during a 

wildfire, even when water is flowing inside.  It is therefore advisable that all pipework used in 

wildfire sprinkler systems be of a metal construction, or be buried or otherwise protected.   

The failure of pumps and generators is another risk.  Many sources of technical guidance advocate 

the use of gravity-fed systems when practicable, and otherwise advise that any pumps and 

generators be appropriately located and shielded to avoid failure during the passage of a wildfire 

(FPAA 2000; Potter & Leonard 2010; Standards Australia 2012).  However, none of these sources 

provide specific information to guide the protection of pumps and generators.  Future research on 

this issue would allow the provision of more prescriptive guidance to system designers. 
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2.6.3 System Activation 

The activation of wildfire sprinklers is usually achieved manually, on-site.  This can be 

problematic in cases where the building occupants evacuate during a wildfire or are absent for 

other reasons, and can lead to systems either not being used at all or prematurely exhausting their 

supply of water.  To overcome these issues, a number of methods to achieve automatic or remote 

activation have been proposed.  These include the use of external smoke or heat sensors (Potter 

& Leonard 2010), pagers, radios and mobile telephones (CFS 2011; FEMA 2008; Mitchell 2006; 

Potter & Leonard 2010; Standards Australia 2012).  Little information has been published on the 

appropriate implementation of such technologies in wildfire sprinkler systems.  While it is likely 

to be relatively simple to test and confirm the correct operation of systems for remote manual 

activation, the design of effective automatic activation systems would be difficult for the 

layperson (who is not able to predict the likely distribution of smoke, heat, etc. during a wildfire 

and is not aware of the appropriate timing of system activation).  Detailed guidance would be 

required to enable non-specialist building owners to design such systems but there does not appear 

to be any published research on which to base such guidance currently.  Remote and automatic 

activation systems would also add to the complexity of wildfire sprinkler systems, thereby 

increasing the risk of system failure during wildfire events (if, for example, the local phone 

networks are interrupted or a heat sensor fails to operate correctly).  New research on the 

implementation of such technologies in the context of a wildfire would assist system designers in 

the consideration of these trade-offs. 

2.7 Conclusion 

A review of published research related to wildfire sprinkler systems has revealed only one peer-

reviewed publication and three technical reports that focused specifically on such systems.  It was 

discovered that many aspects of wildfire sprinkler systems are poorly understood (see Figure 2.3).  

As a result, the guidance that is currently available to system designers is not consistent or 

complete, and generally lacks detail.  
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No conclusive evidence was found indicating the effectiveness of wildfire sprinkler systems, 

although anecdotal evidence and documented building losses from one wildfire in Minnesota, 

USA (Johnson, Downing & Nelson 2008), do suggest that such systems can reduce the probability 

of building destruction significantly.  The mechanisms by which the effects of wildfire are 

mitigated by sprinklers have also not been clearly established.  Published research from related 

fields indicates that the cooling of burning and unburnt fuels, and the cooling of glass windows, 

are likely to be important mechanisms, and that it appears plausible that ‘curtains’ of airborne 

droplets could significantly reduce the radiant heat flux incident on buildings.  Further 

investigation is required to determine whether oxygen displacement, or the interception of 

airborne embers by droplets, can play a significant role in the function of wildfire sprinkler 

systems.   

 

FIGURE 2.3: Schematic summary of the various aspects of wildfire sprinkler systems that have 
been analysed herein; colour-coding is used to indicate the current state of scientific knowledge 

relevant to each aspect. 

It is likely that indoor sprinklers can assist in protecting buildings from wildfires, when ignited 

from within by embers or radiant heat, but their effectiveness in cases where the building exterior 

ignites and burns inwards does not appear to be known.  The water damage caused by indoor 

sprinklers may be another important consideration in the comparison between indoor and outdoor 

sprinkler systems for wildfire protection.  Technologies such as gels, foams and retardants have 

the potential to reduce the water resources required by wildfire sprinkler systems, and could also 



19 
 

improve their effectiveness.  However, previous studies of such products have not included 

scenarios where they are applied continuously or intermittently, as they would be by a sprinkler 

system. 

The dispersion of water from sprinklers in the hot, dry, windy conditions of a wildfire has also 

not been investigated in-depth.  The effects of wind drift are likely to influence the system 

performance significantly, but they have not yet been quantified.  The influence of evaporation, 

splashing, bouncing, runoff, etc. on wildfire sprinkler systems also appears to have not been 

investigated.  New research on how different systems disperse water in the conditions of a wildfire 

would provide a much more rigorous evidence base than is currently available, for guidance on 

the selection and arrangement of sprinklers. 

Requirements for the design of water supply systems for wildfire sprinklers are relatively well 

understood, since established practices from other water-handling applications can be applied, 

and a number of post-fire surveys and experimental campaigns have revealed which tanks and 

pipes can withstand the conditions of wildfires.  However, methods for the protection of pumps 

and generators do not appear to have been clearly established.  Mechanisms for automatic 

sprinkler activation (e.g. smoke or heat sensors) have been proposed.  However, the added 

complexity of such mechanisms would increase the risk of system failure, and no evidence 

appears to exist to guide the effective implementation of these technologies to the wildfire context.   

Wildfire sprinkler systems have the potential to prevent or extinguish building ignitions when the 

occupants are unable or unwilling to ‘stay and defend’ their property, or when they are absent for 

other reasons.  The additional protection provided by these systems could also prevent the 

destruction of buildings that are serving as a place of refuge during wildfire, thereby saving human 

lives.  An ability to quantify the effects of wildfire sprinkler systems would enable system 

designers to make better use of the available water and financial resources, and would allow 

residents to gain a more realistic understanding of the capabilities of such systems.  Given the 

current forecasts for an increase in wildfire frequency and intensity, and the growing number of 
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buildings in wildfire-prone areas, wildfire sprinklers are certainly worthy of immediate attention 

from the scientific community.  
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Chapter 3 Spray Characterisation 

Spray Characterisation 

This chapter describes an experimental investigation into the characteristics of six water sprays.  

Results from the study have been applied in Chapters 5 and 6, as inputs to CFD simulations.  The 

focus of this chapter is to: 1) describe the combination of new and existing methods that were 

found to be useful in characterising the sprays; and 2) present detailed descriptions of each spray, 

which have been applied in subsequent chapters of this thesis, and could be useful in other, similar 

research. 

3.1 Introduction and Literature Review 

3.1.1 Spray Characterisation 

Characterisation of liquid sprays is necessary for a wide range of engineering tasks.  With 

appropriate information, interactions between sprays and their surroundings can be predicted, 

which can allow the design of highly effective spray systems.  The details required for such work 

vary; from simple representations of droplet sizes, spray shape or droplet speeds, to highly 

detailed spatial and/or temporal distributions of droplet sizes and velocities. 

Primary atomisation processes, by which sprays are formed from a bulk liquid, are extremely 

complex and still not completely understood (Faeth, Hsiang & Wu 1995; Tharakan et al. 2013).  

Instabilities in the liquid are formed primarily by aerodynamic interactions with the surrounding 

gas, surface tension forces and the liquid momentum (Ashgriz, Li & Sarchami 2011; Lin & Reitz 
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1998; Reitz & Bracco 1986).  A dispersion of droplets is formed, which can interact effectively 

with the continuous gas phase through the transfer of momentum, energy and mass.  Droplets 

formed by the primary breakup process can also become unstable and undergo secondary breakup 

further from the spray source (Hsiang & Faeth 1992; Jain et al. 2015).  The balance of forces 

acting on the liquid throughout the atomisation process, and the eventual characteristics of the 

spray that is produced, are a product of the geometry of the atomisation device in use, the 

properties of the fluids involved and the operational conditions (e.g. liquid and gas temperatures 

and pressures). 

For many practical applications, the complex mechanisms by which a spray is formed are of less 

interest than the eventual characteristics of the spray after formation.  For example, simulations 

of sprays using computational fluid dynamics (CFD) often omit primary atomisation, and model 

the spray as a set of pre-formed discrete particles (e.g. Delele et al. (2007); Husted (2007); 

Meroney (2008); Montazeri, Blocken and Hensen (2015a); Nijdam et al. (2006); Sanjosé et al. 

(2011); Sidahmed, Taher and Brown (2005); Woo et al. (2008); Yoon, Kim and Hewson (2007)).  

Techniques do exist to explicitly simulate breakup processes using CFD (Gorokhovski & 

Herrmann 2008; Jiang et al. 2010; Tharakan et al. 2013), however, inclusion of the detailed 

physics of these processes, and resolution of the spatial scales involved, entails a significant 

computational cost and is often not required for the accurate simulation of the phenomena of 

interest. 

Spray characteristics, suitable for input into CFD simulations and other similar applications, can 

either be predicted using analytical or empirical models, estimated using numerical simulations, 

or measured experimentally.  Simulation of liquid atomisation, using techniques such as direct 

numerical simulation, can predict spray characteristics; although, as mentioned previously, the 

computational requirements of such simulations are extremely high.  Analytical models for the 

breakup of various liquid sheets and jets have been implemented to reduce the computational cost 

of numerical simulations, and combined with stochastic and/or empirical models to form stand-

alone models for the prediction of spray characteristics (Babinsky & Sojka 2002; Tharakan et al. 
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2013).  However, such models and simulation techniques are of limited use outside of the cases 

for which they have been validated, due to the existence of distinct breakup regimes, and the 

myriad different fluids, operating conditions and device geometries in common use (Babinsky & 

Sojka 2002; Tharakan et al. 2013).  Likewise, it has thus-far proven difficult to form empirical 

models that are applicable to atomisation devices, operational conditions or fluids other than those 

that have been measured.  Therefore, physical measurements remain the most reliable source of 

detailed information on spray characteristics in many cases, even though they are generally 

limited in applicability to the specific cases that were measured.  Bulk spray properties, such as 

the spray pattern and nozzle discharge coefficient, can be measured relatively easily and with a 

high degree of accuracy.  More labour-intensive measurements can record the sizes and velocities 

of individual droplets, beyond the primary breakup region. 

Previous experimental campaigns have focused on a limited selection of sprays, to cater for 

specific research needs.  Experimental data has been published, in various degrees of detail, 

describing: twin-fluid and multi-hole fuel injectors, used in internal combustion engines 

(Batarseh, Roisman & Tropea 2010; Gupta & Agarwal 2016; Igual et al. 2015; Koo & Martin 

1990; Mitroglou et al. 2006; Nouri & Whitelaw 2001; Pathania, Chakravarthy & Mehta 2016; 

Pitcher, Wigley & Saffman 1990); flat-fan, solid-cone and hollow-cone sprays, used for pesticide 

application (Dorr et al. 2013; Guler et al. 2007; Guler et al. 2012; Nuyttens et al. 2007; Sidahmed, 

Taher & Brown 2005; Vulgarakis Minov et al. 2016); impact sprinklers, used for irrigation 

(Bautista-Capetillo et al. 2014; Bautista-Capetillo et al. 2009; Molle et al. 2012; Salvador et al. 

2009); misting nozzles, upright sprinklers and pendant sprinklers, designed for fire suppression 

(Everest & Atreya 2003; Ren, Baum & Marshall 2011; Santangelo 2010; Sheppard & Lueptow 

2005; Widmann, Sheppard & Lueptow 2001; Yoon et al. 2011; You 1986; Zhou, D’Aniello & 

Yu 2014; Zhou, D’Aniello & Yu 2012); various aeroengine combustor sprays (Fdida et al. 2016; 

Jaegle et al. 2011; Sanjosé et al. 2011); a supersonic pressure swirl spray, for chemical processing 

(Marklund & Engstrom 2010); a containment spray for pressurised water reactors (Malet & 
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Parduba 2016); and a solid-cone spray, used for dust scrubbing (Kohnen et al. 2011).  

Nevertheless, a vast number of sprays have not been characterised with such rigor. 

Wildfire sprinkler systems employ a wide variety of spray nozzles and sprinklers, as discussed in 

Chapter 2.  Typically, sprinklers intended for garden irrigation, e.g. ‘impact’ or ‘butterfly’ 

sprinklers, are recommended for such systems (FPAA 2000; Johnson, Downing & Nelson 2008; 

Potter & Leonard 2010); although, traditional indoor fire sprinklers have also been recommended 

(FEMA 2008; FPAA 2000; Potter & Leonard 2010; Standards Australia 2012) and a number of 

purpose-built wildfire sprinklers are also currently available.  Detailed measurements of droplet 

sizes and velocities produced by an impact sprinkler have been published by Bautista-Capetillo 

et al. (Bautista-Capetillo et al. 2014; Bautista-Capetillo et al. 2009; Salvador et al. 2009).  

However, these measurements were taken at ground level, to investigate the properties of droplets 

impacting on crops during irrigation, so they do not provide the droplet ‘initial’ conditions that 

could be used to predict the performance of the spray in other contexts.  The flat-fan, hollow-cone 

and solid-cone pesticide sprays that have been characterised in detail do not match sprays 

mentioned specifically in documentation related to wildfire sprinkler systems.  However, the flow 

rates associated with these sprays, as well as the operational conditions and working fluids used 

to create them, are similar to those relevant to such systems.  Measured characteristics of indoor 

fire sprinkler sprays may be applied directly to indoor or outdoor spray systems designed for 

wildfires.  Other spray types commonly used in wildfire sprinkler systems, such as ‘butterfly’ 

sprinklers, do not appear to have been characterised in detail. 

3.1.2 Spray Measurement 

A diverse range of experimental methods have been applied to spray characterisation (Bachalo 

2000; Black, McQuay & Bonin 1996; Chigier 1991; Fansler & Parrish 2015; Tropea 2011).  

Optical techniques have been favoured in recent decades, for their ability to take non-intrusive, 

instantaneous measurements.  Many optical techniques infer droplet sizes by comparing measured 

patterns of scattered laser light to those predicted by theory for spherical particles (e.g.  phase 

Doppler interferometry); however, such models are not easily adapted to suit non-spherical 
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droplets (Frohn & Roth 2000; Tropea 2011).  Image-based techniques (involving photography or 

videography) are typically better-suited to measure such droplets, and also provide some 

qualitative insight into the nature of sprays, in addition to the quantitative measurement. 

True three-dimensional resolution is only achieved in image-based spray measurements that use 

holographic techniques, or multiple cameras to observe the spray from more than one angle (e.g.  

work by Meng et al. (2004) and Klinner and Willert (2012), respectively).  Alternatively, a single 

camera can be used to take pseudo-planar measurements through a spray by illuminating a thin 

volume with a ‘lateral’ sheet of light (parallel to the plane of the camera sensor), or by applying 

a focal criterion during image post-processing to eliminate droplets that were outside of a known, 

narrow depth of field (DOF).  A series of such measurements can resolve the spatial distribution 

of droplets, but not droplet extent or velocity components, in the dimension normal to the imaging 

plane.  Droplet velocities parallel to the imaging plane can be estimated, or measured directly, 

using particle image velocimetry (PIV) or particle tracking velocimetry (PTV) techniques, 

respectively, while the method for droplet size estimation depends on how the spray is 

illuminated. 

Determining the size of droplets from side-illuminated images is challenging.  Fluorescent tracers 

have been widely adopted for this purpose; droplet volumes either being estimated directly from 

the intensity of laser-induced fluorescence (LIF), or from the ratio of LIF intensity to that of Mie-

scattered light (Le Gal, Farrugia & Greenhalgh 1999).  The latter approach, usually termed ‘planar 

droplet sizing’, minimises the influence of light attenuation by other droplets and non-

uniformities in the intensity profile across the laser sheet, but is still sensitive to changes in dye 

concentration (due to evaporation for example), non-linear LIF response and multiple scattering 

(Fansler & Parrish 2015; Tropea 2011).  By contrast, use of focal criteria to set a DOF, rather than 

the width of a lateral sheet of light, allows the use of incoherent back-illumination.  Droplet sizes 

can be estimated relatively easily from the resulting images, based on the size of each droplet 

silhouette; although, some correction is required for size measurements from defocused images 

(Castanet et al. 2013; Fdida & Blaisot 2010; Lebrun, Touil & Özkul 1996; Malot & Blaisot 2000; 
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Ren et al. 1996).  Back-lit spray imaging is also typically less expensive and labour-intensive than 

side-lit techniques, since it does not require a precisely aligned, coherent light-source. 

Various focal criteria have been applied to back-lit spray images, removing defocused droplet 

images from analysis based on variables related to either: the contrast between the minimum and 

background grey-level intensities (Kim & Kim 1994; Koh, Kim & Lee 2001), or the grey-level 

gradient at the image boundary (Fantini, Tognotti & Tonazzini 1990; Hay, Liu & Hanratty 1998; 

Kashdan, Shrimpton & Whybrew 2003; Koh, Kim & Lee 2001; Lecuona et al. 2000; Legrand et 

al. 2014; Vulgarakis Minov et al. 2016).  It has been well documented that fixed thresholds, 

applied to such variables, result in DOFs that decrease with decreasing droplet size (Fantini, 

Tognotti & Tonazzini 1990; Kashdan, Shrimpton & Whybrew 2003; Kim & Kim 1994; Koh, Kim 

& Lee 2001; Lecuona et al. 2000; Lee & Kim 2004).  Previous studies have mitigated the resulting 

bias towards larger droplets by varying the focal criterion threshold as a function of droplet size 

(Fantini, Tognotti & Tonazzini 1990; Kim & Kim 1994; Lecuona et al. 2000; Vulgarakis Minov 

et al. 2016), or applying statistical corrections to the measurement data (Castanet et al. 2013; 

Kashdan, Shrimpton & Whybrew 2003).  One notable approach, first proposed by Blaisot and 

Yon (2005) and developed further in subsequent publications (Blaisot 2012; Fdida & Blaisot 

2010), avoids such bias altogether by imposing a threshold on the point-spread function (PSF) 

half-width—a measure of the image ‘blurriness’ that can be estimated using the image contrast 

and boundary gradient.  In this way, one distinct volume can be defined, in which droplets of all 

sizes are measured. 

The present study involved the detailed experimental characterisation of six sprays that are typical 

of those used in wildfire sprinkler systems.  A back-lit high-speed videography technique was 

employed and the videos were analysed using a combination of established and new techniques.  

The sprays that were characterised exhibit a range of droplet shapes, sizes, velocities and 

spatiotemporal distributions, including periodic behaviour.  Some relevant theoretical concepts 

are introduced in Section 3.2, the sprays that were investigated are described in Section 3.3, details 

of the experimental method are outlined in Section 3.4, and Section 3.5 contains detailed 
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descriptions of the spatiotemporal distributions of droplet sizes, speeds and volume flux within 

each spray. 

3.2 Theoretical Concepts Relevant to Droplets and Sprays  

Airborne droplets are acted on by drag, pressure, gravitational and surface tension forces.  The 

combination of these forces and internal viscous forces can influence the droplet inertia, causing 

acceleration, deformation, and/or breakup of the droplet.  Several dimensionless numbers have 

been developed to characterise these processes in a manner that is not dependent on fluid 

properties or scale.  Some of the most relevant of these dimensionless parameters are introduced 

below.  They have relevance to the sprays investigated in this chapter, and to the rest of this thesis, 

especially Chapter 5, in which different methods to model droplet trajectories are explored. 

Three distinct drag regimes have been observed in liquid droplets (Ishii & Zuber 1979; Mashayek 

& Ashgriz 2011; Turton & Levenspiel 1986).  The regime of a specific droplet can be determined 

using the droplet Reynolds number, given by: 

 𝑅𝑒ௗ ൌ
𝜌ୟ𝑢௥௘௟𝑑

𝜇ୟ
 (3.1) 

where 𝜌ୟ and 𝜇ୟ are the density and viscosity of the surrounding fluid (air, in the present case), 

respectively, 𝑢௥௘௟ is the relative velocity between the droplet and surrounding fluid, and 𝑑 is the 

droplet diameter.  When 𝑅𝑒ௗ ≲ 1, viscous forces dominate and Stokes’ Law is a good 

approximation of the real drag forces.  Under Stokes’ regime the drag coefficient decreases 

linearly with increasing 𝑅𝑒ௗ.  In Newton’s regime, delineated by 𝑅𝑒ௗ ≳ 103, inertial forces 

dominate and the drag coefficient for spherical particles becomes virtually independent of 𝑅𝑒ௗ.  

Between Stokes’ and Newton’s regimes, drag on spherical particles is influenced significantly by 

both viscous and inertial forces. 

Deformation of liquid droplets can cause drag forces to increase substantially.  Many 

experimental and numerical studies have investigated such effects (Guildenbecher, López-Rivera 
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& Sojka 2011; Hsiang & Faeth 1992, 1995; Jain et al. 2015; Mashayek & Ashgriz 2011; Stone 

1994).  Deformation and breakup of individual droplets can be correlated with the Weber number: 

 𝑊𝑒 ൌ
𝜌ୟ𝑢௥௘௟

ଶ 𝑑
𝜎

 (3.2) 

which represents the ratio of inertial forces (which destabilise the droplet) to surface tension 

forces (which stabilise the droplet), and the Ohnesorge number: 

 𝑂ℎ ൌ  
𝜇ୢ

ඥ𝜌ୢ𝑑𝜎
 (3.3) 

which represents the ratio of internal droplet viscous forces to surface tension forces.  Here, 𝑑 is 

the diameter of a sphere with equivalent volume to the deformed droplet, 𝜌ୢ and 𝜇ୢ are the density 

and viscosity of the droplet liquid, respectively, and 𝜎 is the droplet surface tension coefficient.  

As 𝑊𝑒 increases, droplets transition from having no significant deformation, to mild deformation, 

oscillatory deformation, and, eventually, breakup (Hsiang & Faeth 1992, 1995).  The correlation 

between these phenomena and 𝑊𝑒 is affected by viscous forces within the droplet when 𝑂ℎ ≳

0.1.  In the case of water droplets in air, when 𝑑 ≳ 1 μm, significant droplet deformation arises 

when 𝑊𝑒 ≳ 1 and droplet breakup occurs when 𝑊𝑒 ≳ 11 േ 2. 

The Stokes’ number, 𝑆𝑡, of a droplet represents the ratio of the droplet timescale to that of the 

continuous phase flow (Elghobashi 1994), e.g. the 𝑆𝑡 most relevant to wildfire sprinklers could 

be the ratio of droplet timescales to the timescale of wind flow over the building.  Lower Stokes’ 

numbers indicate a tendency for droplets to follow continuous phase streamlines. 

3.3 Sprays Investigated 

Six sprays were investigated, each produced by sprinklers similar to those mentioned in technical 

guidance, or other literature, related to wildfire sprinkler systems (see Figure 3.1 and Table 3.1).  

Sprays produced by a ‘butterfly’ sprinkler (spray B), and the main and auxiliary nozzles of an 

‘impact’ sprinkler (sprays IM and IA, respectively) represent two commonly available irrigation 

sprinklers that are often cited as being appropriate for use in wildfire sprinkler systems (CFS 

2011; FPAA 2000; GTVFD 2007; Johnson, Downing & Nelson 2008).  A hollow-cone spray 
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(spray HC) was investigated, which is very similar in design to those used in the ‘wind-enabled 

ember dousing system’ promoted by Mitchell (2006).  Sprays produced by a flat-fan nozzle and 

deflector-plate sprinkler (sprays FF and DP, respectively) were also investigated.  The flat-fan 

nozzle produced a fine, mist-like spray, similar to those recorded in a survey of wildfire sprinkler 

systems in a report by the Fire Protection Association Australia (FPAA 2000).  The deflector-

plate spray was of a similar design to ‘upright’ and ‘pendant’ sprinklers that are traditionally used 

in indoor fire-suppression systems, except that the deflector plate featured three concentric 

corrugations and did not have any ‘tines’ or ‘prongs’ at its edge.  Fire-fighting is cited as a typical 

application for both spray FF and spray DP in literature from their respective manufacturers. Each 

of the six sprays was characterised at one supply pressure, within the range recommended by the 

device manufacturers (see Table 3.1).  The devices were new at the time of measurement. 

 

FIGURE 3.1: Photographs of the (FF) flat-fan spray nozzle; (HC) hollow-cone nozzle; (B) 
‘butterfly sprinkler’; (DP) deflector-plate sprinkler; (IM) ‘impact sprinkler’ main nozzle; and 

(IA) ‘impact’ sprinkler auxiliary nozzle.  Both Cartesian coordinates (𝑥, 𝑦 and 𝑧) and spherical 
coordinates (elevation angle, 𝜂, and azimuthal angle, 𝜁) are defined, where applicable. 
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TABLE 3.1: Details of the sprinklers used to produce each spray and the operating pressures at 
which they were characterised. 

Spray Sprinkler model Pressure [kPa] Flow rate [L min-1] 

FF Tecpro KHW-1390 180° deflector flat-fan nozzle 400 4.1 

HC ½-inch Champion S9F hollow-cone nozzle 345 12.5 

B Holman ½-inch brass butterfly sprinkler 200 34 

DP Lechler 525.049 deflector-plate sprinkler 245 41.8 

IA Vyrsa VYR 35 ¾-inch 360° impact sprinkler auxiliary nozzle 250 5.4 

IM Vyrsa VYR 35 ¾-inch 360° impact sprinkler main nozzle 250 17.4 

 

All six sprays were produced using single-fluid nozzles (i.e. the nozzles were not air-assisted), 

and each nozzle achieved atomisation by a different mechanism as summarised below. 

 Spray FF was formed by a 1.8 mm diameter cylindrical liquid jet which was ejected 

onto an inclined surface, formed by a ‘notch’, machined into the sprinkler.  The radially 

expanding, semi-circular liquid sheet, that was produced, atomised a short distance from 

the nozzle.   

 Spray HC was formed by the atomisation of a continuous conical liquid sheet, formed 

by an annular orifice, the outer and inner diameters of which were 8 mm and 4.5 mm, 

respectively.   

 The ‘butterfly sprinkler’ formed spray B by ejecting liquid through a 6.5 mm circular 

orifice onto an asymmetric, ‘scooped’ deflector, which was free to rotate about the 𝑦-

axis.  The deflector was driven in a negative rotation about this axis by the flow of water, 

producing a swirling stream of droplets.   

 Spray DP was formed by an 8 mm diameter cylindrical liquid jet, which was ejected 

onto a deflector plate that featured three concentric corrugations.  The radially 

expanding, circular liquid sheet formed by this process atomised a short distance from 

the deflector plate.   

 The impact sprinkler main nozzle produced spray IM by emitting a 4.4 mm diameter 

cylindrical liquid jet onto a deflector paddle.  The paddle was forced to rotate out of the 
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jet by the water flow, and then forced back towards the liquid jet by a spring.  The result 

was a spray with two distinct modes, which it oscillated between periodically: an 

undisturbed cylindrical jet and a transient burst of sprays emitted through a wide range 

of 𝜁 and 𝜂.   

 The auxiliary nozzle on the same sprinkler produced spray IA by emitting a 2.4 mm 

diameter cylindrical jet into a short, 5 mm diameter cylindrical chamber.  The chamber 

axis was orientated at a lower elevation angle, 𝜂, than the jet, was open on one end and 

had a 1.5 mm slot machined along one side.  An uneven liquid sheet was emitted from 

the chamber, which atomised as it travelled away from the sprinkler.  Both spray IM and 

spray IA had a relatively slow, incremental, negative rotation about the 𝑦-axis, driven 

by the deflector paddle, which imparted an impulse on the sprinkler head with every 

oscillation. 

3.4 Method 

The characterisation procedure was comprised of eight steps: 

1. Videography of each spray; 

2. Videography of isolated droplets and discs, for model calibration and verification; 

3. Analysis of individual video frames, to locate and measure droplet images; 

4. Tracking of droplets between video frames, to measure their velocities and ensure that 

each droplet was only measured once; 

5. Implementation of the focal criterion; 

6. Identification and removal of spurious results; 

7. Correction for statistical bias in the results; and 

8. Interpretation of the results. 

A script was developed by the present author, for Matlab software (version R2016a), to undertake 

steps 3 to 7. 
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3.4.1 Videography 

Each spray was operated individually within a 3 m  1.8 m  2.4 m (high) enclosure shown in 

Figures 3.2 and 3.3.  The enclosure was used to contain water from the sprays, recirculate it to the 

supply pump and exclude light other than that which was introduced deliberately as back-lighting 

for spray characterisation.  The sprinklers were supplied with clean water via an electric pump 

with a pressure regulator installed 2 m upstream of the nozzle.  The water pressure directly 

downstream of the regulator was monitored using a Wika analogue pressure gauge and maintained 

within ±5% of the values reported in Table 3.1.  The pressure drop between the pressure sensor 

and sprinkler was estimated to have contributed an additional error of less than 3%.  The water 

flowrate through each sprinkler was measured using a Trimec TF015 positive-displacement flow 

meter, which was located upstream of the pressure regulator and gauge. 

      

FIGURE 3.2: Cross-section of the experimental arrangement used for spray videography. 

Back-illumination was provided to the sprays by four 185 W LED lights, which shone into the 

test enclosure through a diffuser.  A constant d.c. voltage was supplied via a GW Instek GPR-

6015HD linear power supply to the lights, to avoid flicker in the high-speed footage.  The sprays 

were videoed through a window on the opposite wall of the enclosure, producing silhouette 

images of droplets within the sprays.  A single Vision Research Phantom v611 high-speed camera 
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with colour sensor was used, fitted with a Tamron 90 mm f/2.8 macro lens.  The lens aperture 

was fully opened, giving a focal ratio of f/2.8.  Figure 3.2 depicts a cross-section of the 

experimental arrangement and Figure 3.3 shows a sprinkler being positioned the inside the test 

enclosure during its early development. 

 

FIGURE 3.3: Photograph taken inside the test enclosure that was used for spray videography. 

Camera settings, and the sprinkler location and orientation relative to the camera, were customised 

to suit each spray (see Table 3.2).  Optimisation of these variables was an iterative process in 

many cases.  Working distances (i.e. distances between the camera and focal plane) of either 122 

mm or 247 mm were used, depending on the spatial scale required to resolve the smallest typical 

droplet size in the spray, and whether there was substantial visual interference caused by water 

impingement on the window through which the camera recorded videos of the sprays.  The sprays 

were located and orientated such that the predominant droplet velocity within the DOF was 

parallel with the focal plane and light attenuation by highly defocused droplets was minimised.  

The framerate was set to the maximum value possible at full resolution (6,273 frames s-1 at 1280 

× 800 pixels) for all sprays except spray FF for which a higher framerate was used to capture the 

fast droplets in this spray in a sufficient number of frames to allow reliable droplet tracking.  

Exposure lengths were set to produce images that were bright but not overexposed, and to avoid 

blurred images of fast droplets; hence, the optimum exposure time was dependant on the degree 
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of light attenuation by defocused droplets, the working distance and the fastest droplet velocity 

in a given spray. 

TABLE 3.2: Test conditions set for each spray; sprays were produced using the flat-fan nozzle 
(FF), hollow-cone nozzle (HC), deflector-plate sprinkler (DP), butterfly sprinkler (B), impact 

sprinkler auxiliary nozzle (IA) and impact sprinkler main nozzle (IM). 

 FF HC B DP IA 
IM 

Disrupted Undisrupted 

Working distance [mm] 122 122 247 247 247 247 247 

Scale [pixels mm-1] 50.53 50.53 22.42 22.42 22.42 22.42 22.42 

Field of view (width; height) [mm] 
13.9; 
13.9 

25.3; 
15.8 

57.1; 
35.7 

57.1; 
35.7 

57.1; 
35.7 

57.1;    
35.7 

57.1;         
35.7 

Framerate [frames s-1] 11,104 6,273 6,273 6,273 6,273 6,273 6,273 

Exposure length [μs] 4 7 7 5 4 5 6 

Measurement distance from nozzle [mm] 100 326 533 221 536 300 6,000 

Assumed axis of symmetry 𝑥𝑦-plane 𝑦-axis 𝑦-axis 𝑦-axis - - - 

Number of regions videoed 160 23 24 22 74 12 20 

 

Videos of several overlapping regions were recorded within each spray, such that a series of 

videos could be combined to produce a pseudo-planar measurement, through a ‘slice’ of the spray 

(see Figure 3.4).  The processed regions were a fixed distance from each sprinkler (see Table 3.2), 

large enough to avoid unatomised sheets and ligaments of water.  The number of videos required 

to characterise each spray depended on the measurement distance from the nozzle, the pattern of 

the spray, the camera field of view and whether any assumptions could be made as to the 

symmetry of the spray.  The influence of the sprinkler frames on sprays DP and B, at azimuthal 

angles of 90° and 270°, was neglected.  Thus, sprays HC, DP and B were assumed to be 

approximately axisymmetric about the 𝑦-axis—when time-averaged, in the case of spray B—

which reduced the number of videos required to characterise these sprays significantly.  A 

comparatively large number of measurements was required to resolve 3-dimensional variations 

in sprays FF and IA, even though the number of measurements required for spray FF was halved, 

due to the assumption that it was symmetric about the 𝑥𝑦-plane. 
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FIGURE 3.4:  Schematic diagram showing how, by measuring a series of overlapping regions 
within a spray, droplets within a pseudo-planar region were measured. 

Three aspects of spray IM rendered it particularly difficult to characterise: i) the complex temporal 

variations caused by the combined oscillation of the deflector paddle and gradual rotation of the 

entire sprinkler head; ii) the large range of 𝜂 and 𝜁 through which droplets were emitted from the 

deflector paddle, the resolution of which would have required videography in several hundred 

locations; and iii) the long range (from the sprinkler) over which primary breakup of the 

undisrupted jet occurred.  The experimental method was adapted to address these issues. 

The two distinct modes of spray IM, i.e. when the liquid jet was disrupted by the deflector paddle 

and when it was not, were characterised separately.  Videography of the spray in both these modes 

was conducted with the sprinkler head restrained, to prevent rotation; the frequency with which 

the unrestrained sprinkler head rotated was measured in a separate experiment, using a stopwatch.  

Resolution of spatial variations in the disrupted spray would have required a prohibitively large 

number of videos; instead, twelve regions within the spray were videoed, to provide a sample of 

droplets rather than a full spatial characterisation. 

Observations of the undisrupted jet gave some insight into the mechanisms of primary and 

secondary breakup that produced spray IM (see Figure 3.5).  Significant perturbations grew on 

the (initially cylindrical) jet within 0.25 m of the sprinkler, and continued to grow until the jet 

separated into discrete droplets and ligaments at approximately 1 m from the nozzle.  This primary 

breakup mechanism is consistent with what has been defined as the ‘first wind-induced regime’ 

(Lin & Reitz 1998; Reitz & Bracco 1986; Reitz & Bracco 1982), and is driven by shear between 
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the liquid jet and surrounding gas.  Secondary breakup was also evident in the undisrupted jet; in 

particular, numerous examples of ‘bag breakup’ (Faeth, Hsiang & Wu 1995; Guildenbecher, 

López-Rivera & Sojka 2011; Hsiang & Faeth 1995; Jain et al. 2015) were observed 2–5 m from 

the sprinkler. 

 

FIGURE 3.5: Breakup of the liquid jet ejected from the impact sprinkler main nozzle (spray IM), 
when undisrupted, viewed at various distances from the nozzle; each image has been rotated, 

such that the liquid flow is from left to right.  Primary breakup is in the first wind-induced 
regime and bag-breakup of some larger droplets is evident further downstream.  Numerous 

ligaments and unstable droplets are visible as far as 4 m from the spray nozzle, which 
complicated the characterisation of this spray. 

Consequently, measurements of spray IM (when undisrupted) within ~6 m of the sprinkler 

contained many liquid sheets and ligaments, which were not well-suited to the video analysis 

script, and did not represent the eventual, fully-atomised character of the spray.  However, spray 

characteristics measured several metres from the sprinkler were more prone to influence from 
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ambient conditions than those measured closer to the source.  For these reasons, spray IM was 

not characterised definitively at one distance from the sprinkler; instead, the spray was measured 

through a vertical plane, 6m from the sprinkler, to provide data that could be used to validate 

simulations of the spray in still air, and the angle, diameter and flowrate of the liquid jet, as it left 

the sprinkler nozzle, were recorded.  The sprinkler was tilted forwards during videography of the 

undisrupted jet, such that ሺ𝜂, 𝜁ሻ ൌ ሺ15°, 0°ሻ was horizontal, to place the spray within the field of 

view. 

3.4.2 Calibration and Verification of the Video Analysis Procedure 

Videos were recorded of opaque discs and individual droplets, of known diameter.   The droplets 

and discs were positioned at a range of known distances in front of and behind the focal plane, 

and this process was repeated at each of the two working distances.  Images from the video footage 

were used to verify and calibrate the image analysis script, and to define variables for the focal 

criterion. 

The opaque discs came etched on a glass slide, designed for the calibration of imaging systems, 

and ranged in diameter from 0.15 mm to 3.5 mm.  Droplets were generated using a piezoelectric-

actuated drop-on-demand generator and three ‘dropper’ nozzles, which were a blunt 36-gauge 

hypodermic needle and the nozzles from the drip chambers of two intravenous administration 

sets.  Droplet volumes were determined by dividing the liquid flow rate (set using a syringe pump) 

by the rate at which droplets were produced. 

The drop-on-demand generator and each of the three dropper nozzles were fed with water, 

resulting in droplets with four different diameters: 47 μm, 1.58 mm, 3.17 mm and 4.57 mm.  

Droplets were also generated from a mixture of methanol and water (in a volume ratio of 80% 

methanol to 20% water) using the hypodermic needle.  This mixture has a similar refractive index 

to water (Herráez & Belda 2006) but a significantly lower surface tension (Vazquez, Alvarez & 

Navaza 1995).  Droplets separate from dropper nozzles when the weight of the accumulating 

droplet overcomes the restraining surface-tension forces holding it to the nozzle (Frohn & Roth 
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2000). Thus, the methanol/water mixture theoretically produces smaller droplets than pure water.  

In this study, it reliably formed droplets 1.27 mm in diameter. 

3.4.3 Image Analysis 

Frames from videos of the sprays, and calibration droplets and discs, were analysed individually.  

The method adopted for this analysis was modelled closely on that of Blaisot et al.  (Blaisot 2012; 

Blaisot & Yon 2005; Fdida & Blaisot 2010; Malot & Blaisot 2000), with some new techniques, 

developed to suit the large, often non-spherical droplets in this study.  Rather than analysing every 

frame from the spray videos, regularly spaced samples were analysed, each containing an equal 

number of sequential frames.  Droplets were measured with relatively fewer image analysis and 

droplet tracking iterations with this approach, since each new sample introduced an entirely new 

set of droplets, whereas analysis of a continuous sequence of frames would have accumulated 

new measurements gradually, at the rate that new droplets entered the field of view. 

The image intensity of the frame under analysis was first normalised and converted to grey-scale.  

Image normalisation involved the division of the frame by a ‘background’ image—the average of 

20 video frames of the back-illumination, with no spray in view.  Droplet images were located 

within each frame using a grey-level intensity threshold of 0.3, and by convoluting the image with 

three inverted ‘Mexican hat’ (i.e. Laplacian of Gaussian) wavelet functions, each with a different 

width.  The union of regions identified by these methods formed a collection of regions (or 

‘blobs’), which corresponded with regions in the frame that were dark or had a grey-level intensity 

profile that was highly concave.  Blobs that touched the border of the frame or were comprised 

of less than 3 pixels were disregarded, to avoid any incomplete droplet images or noise from being 

included in the measurement. 



39 
 

 

FIGURE 3.6: Preliminary treatment of a ‘blob’, corresponding to a droplet image.  Steps 
included: (a) segregation of a region surrounding the blob; (b) sub-pixel interpolation of the 

corresponding droplet image; and (c) definition of the droplet image boundary as the contour of 
0.5 relative level. 

Droplet images, corresponding to the remaining blobs were then analysed individually (see Figure 

3.6).  A bilinear sub-pixel interpolation was performed on a region encompassing the droplet 

image, to improve the precision with which the droplet boundary could be defined.  Regions 

corresponding to other blobs, near the image under analysis, were masked, to prevent them from 

influencing the analysis.  The droplet image local contrast was calculated using the method 

reported by Fdida and Blaisot (2010), and the boundary of the droplet was defined as the contour 

of 0.5 relative level (i.e. the line along which the grey-level intensity was half-way between the 

background and minimum intensities in the droplet image). 

Some droplet images overlapped, such that the boundary of 0.5 relative level erroneously 

combined their outlines.  Methods that had previously been used to automatically detect and 

separate overlapping droplet images, such as watershed algorithms (Castanet et al. 2013), the 

Hough transform (Lee & Kim 2004) and the division of droplet images between points of high 

boundary curvature (Blaisot 2012; Castanet et al. 2013; Fdida & Blaisot 2010), were trialled but 

performed poorly when applied to the non-circular droplet images common in this study.  A new 

method was developed, based on the spatial rate of change in grey-level gradient along the image 

boundary.  It involved four steps: 

1. Identification of potential ‘break points’ (see Figure 3.7a), by calculating the grey-level 

gradient at each pixel on the image boundary, smoothing and fitting a spline to the profile 

formed by these values, and identifying peaks in the absolute value of the derivative of 
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the spline.  Peaks that exceeded a threshold, τs, were considered as potential break points, 

and images with more than two potential break points were treated as the overlapping 

images of multiple droplets.  The threshold, τs, was tuned to suit each spray. 

2. Definition of secondary break points (see Figure 3.7b), translated from each of the 

original break points, towards the boundary segment in poorer focus, by a distance of 

⅔𝑆௉ௌி, where 𝑆௉ௌி is the PSF half-width of the droplet image in poorer focus. 

3. Completion of each droplet image boundary with arcs (see Figure 3.7c).  The arc radii 

were determined from the chord length between each pair of break points and the 

perimeters of the existing image boundary segments, such that the arc would complete a 

circular image correctly. 

4. Treatment of regions within each boundary as separate droplets thenceforth.  Regions 

defined by the intersection of multiple droplet images were included in calculations of 

droplet sizes, but were neglected when determining the local contrast of each image.  

 

FIGURE 3.7: Detection and separation of overlapping droplet images, based on the grey-level 
gradient at the image boundary.  Steps in the process included: (a) identification of potential 

‘break points’ on the image boundary; (b) definition of secondary break points, translated 
towards the image that was in poorer focus; and (c) completion of each droplet boundary with 

arcs. 

By separating overlapping droplet images in videos of the sprays, many inaccurate measurements 

of droplet size and local contrast were avoided.  Furthermore, overlapping image separation 

allowed each of the respective droplets to be tracked through frames in which overlap occurred, 
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thereby reducing the number of droplets that were measured twice or tracked incorrectly.  The 

method developed here was observed to be more robust than previously established methods that 

were also trialled, when applied to non-spherical droplets and images with a high degree of 

overlap, since it was not influenced by the shape of the image boundary.  Completion of droplet 

boundaries using arcs, rather than straight lines, could be expected to improve the accuracy with 

which each separated droplet was measured, especially those that overlapped to a large degree. 

Droplet volumes were estimated by dividing the region inside the droplet boundary into a large 

number of slices, assuming each slice to represent a disc and adding the volumes of the discs.  

The method for diameter correction of defocused droplet images proposed by Fdida and Blaisot 

(2010) was applied to the equivalent spherical diameters of each droplet.  This method is based 

on an analytical model, which considers each defocused image to be the convolution of a binary 

circular image and a Gaussian PSF, and has been shown to agree well with predictions made using 

Lorenz Mie theory (Ren et al. 1996).  However, the diameter correction method has typically 

overcorrected diameter measurements from actual droplets (Blaisot 2012; Blaisot & Yon 2005; 

Fdida & Blaisot 2010).  So, in this study, the method was first trialled on images of isolated 

droplets and discs of known diameter (during the verification and calibration of the video analysis 

script).  The corrected equivalent spherical diameter and location of each droplet were recorded. 

The PSF half-width of droplet images were estimated from the mean grey-level gradient at the 

image boundary and the local contrast, using the method proposed by Blaisot (2012).  The 

distance of each droplet from the focal plane was calculated from the PSF half-width, using 

models developed during the verification and calibration of the video analysis script. 

3.4.4 Droplet Tracking 

Once two subsequent video frames had been analysed, an attempt was made to pair any measured 

data obtained from the same droplet.  Pairing of data through a sequence of frames produced a set 

of ‘tracks’, each corresponding to one droplet that had been measured.  For each track, the 

cumulative sum of measured diameter values, droplet coordinates (𝜂 and 𝜁), distance from the 
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focal plane, and horizontal and vertical distances travelled between frames were recorded, so that 

the mean value of each parameter could be calculated at a later stage.  The cumulative sum of 

each parameter squared was also recorded, to allow calculation of the variance of measured values 

associated with each track. 

The method adopted to track droplets between frames was modelled closely on that outlined by 

Dalziel (1992) and implemented for PTV in the software ‘Digiflow’ (Dalziel 2006).  ‘Costs’ were 

calculated for the pairing of each droplet image in one frame to each of those in another, such that 

low cost values indicated a high likelihood that the images were of the same droplet.  The cost of 

pairing droplet 𝑖 from one frame to droplet 𝑗 in a subsequent frame was given by the sum of four 

sub-costs: 

 𝐶௜௝ ൌ  𝐶௟௢௖൫𝑛௜, 𝑝௜, 𝑝௝൯ ൅ 𝐶ௗ௜௔൫𝑝௜, 𝑝௝൯ ൅ 𝐶௙௢௖൫𝑝௜, 𝑝௝൯ ൅ 𝐶௙௘௘ሺ𝑛௜ሻ (3.4) 

where 𝐶௟௢௖, 𝐶ௗ௜௔ and 𝐶௙௢௖ are functions for costs associated with droplet location, diameter and 

focus, respectively, 𝐶௙௘௘ is a ‘joining fee’, 𝑝 represents the measured properties of a given droplet 

image, and 𝑛௜ is the number of video frames already spanned by the track associated with droplet 

image 𝑖. 

The location cost was defined by: 

 𝐶௟௢௖ ൌ max
 

ቊ  0 , 𝑊௟௢௖ ቆට൫𝑥௜ ൅ 𝑢௜𝛿௧ െ 𝑥௝൯
ଶ

൅ ൫𝑦௜ ൅ 𝑣௜𝛿𝑡 െ 𝑦௝൯
ଶ

െ 𝑇௟௢௖ቇቋ (3.5) 

where 𝑊௟௢௖ and 𝑇௟௢௖ are weighting and threshold parameters, 𝑥௜ and 𝑦௜ are the horizontal and 

vertical coordinates of droplet 𝑖, 𝑢௜ and 𝑣௜ are the horizontal and vertical velocity components of 

droplet 𝑖, and 𝛿𝑡 is the time period separating the two video frames.  Velocity components, 𝑢௜ and 

𝑣௜, were the average of those measured for the track associated with droplet 𝑖 in previous tracking 

steps; droplets with no velocity history (i.e. those that had not been paired with droplet images in 

previous frames) were assigned an estimated velocity, defined by constants 𝑢௘ and 𝑣௘.  The 

threshold parameter, 𝑇௟௢௖, was set as one of two values, depending on the length of the track 

associated with droplet 𝑖: 
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 𝑇௟௢௖ ൌ ൜
 𝑇௟௢௖,ଵ      𝑛௜ ൌ 1
 𝑇௟௢௖,ଶ      𝑛௜ ൐ 1 (3.6) 

By setting 𝑇௟௢௖,ଵ ൐ 𝑇௟௢௖,ଶ, new tracks could be established for droplets with a relatively wide range 

of velocities, but the continuation of existing tracks was more heavily constrained to maintain the 

established velocity history.  The weighting parameter, 𝑊௟௢௖, was a single fixed value.  The 

diameter cost was defined by: 

 𝐶ௗ௜௔ ൌ max
 

ቊ  0 , 𝑊ௗ௜௔ ቆ
2ห𝑑௜ െ 𝑑௝ห

𝑑௜ ൅ 𝑑௝
െ 𝑇ௗ௜௔ቇ ቋ (3.7) 

where 𝑊ௗ௜௔ and 𝑇ௗ௜௔ are weighting and relative threshold parameters, and 𝑑 is the droplet 

equivalent spherical diameter.  The focal cost was defined by: 

 𝐶௙௢௖ ൌ max
 

ቊ  0 , 𝑊௙௢௖ ቆ
2ห𝑧௜ െ 𝑧௝ห

𝑧௜ ൅ 𝑧௝
െ 𝑇௙௢௖ቇቋ (3.8) 

where 𝑊௙௢௖ and 𝑇௙௢௖ are weighting and relative threshold parameters, and 𝑧 is the droplet distance 

from the focal plane.  The joining fee was zero for droplets that had been paired with droplets in 

previous video frames, and a fixed positive value for those that had not: 

 𝐶௙௘௘ ൌ ൜
 𝐹        𝑛௜ ൌ 1
0        𝑛௜ ൐ 1  (3.9) 

By tuning the value of 𝐹, the propensity for tracks to be erroneously interrupted by droplets as 

they arrived within the field of view could be minimised. 

A single fixed cost, 𝐶଴, was also defined, for the pairing of any droplet with a hypothetical ‘out 

of view’ droplet.  Droplet images that could not be paired with a cost less than 𝐶଴ were paired 

with the ‘out of view’ droplet, which prevented them from interfering with the tracking of other 

droplets.  The parameters 𝑊௟௢௖, 𝑇௟௢௖,ଵ, 𝑇௟௢௖,ଶ, 𝑊ௗ௜௔, 𝑇ௗ௜௔, 𝑊௙௢௖, 𝑇௙௢௖, 𝑢௘, 𝑣௘, 𝐹 and 𝐶଴ were tuned 

to suit each spray. 

The final allocation of droplet images from one frame to those in another was that which 

minimised the sum total cost.  It was reached iteratively, by establishing an initial feasible 

solution, then progressively making changes that reduced the sum total cost until no more 

beneficial changes could be made.  For an allocation to be feasible, each droplet image needed to 
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be paired to one other droplet image—either one from the other video frame under analysis, or a 

hypothetical ‘out of view’ droplet.  The initial feasible solution was established by incrementally 

combining individual image pairs in order of increasing cost, except those that contained an image 

that had already been allocated, until every image was paired.  Incremental improvements were 

made to the initial solution by identifying and swapping the two image pairs that, if swapped, 

caused the greatest decrease in the sum total cost; such changes were made until the optimal 

allocation had been reached.  The number of potential changes was decreased by only considering 

pairs for which the cost was less than 𝐶଴, which sped up the tracking procedure substantially. 

After droplets had been tracked between two sequential frames (say, frames 𝑝 and 𝑝 ൅ 1), an 

attempt was made to pair any unpaired droplet images from the second frame (𝑝 ൅ 1) to those 

that had not been tracked forward in the previous tracking step (from frame 𝑝 െ 1 to frame 𝑝), 

using the same tracking procedure.  Thus, droplets that had not been detected in isolated video 

frames could still form uninterrupted tracks. 

3.4.5 Focal Criterion 

Droplets more than 1.5 mm and 3 mm from the focal plane were disregarded from measurements 

taken at a working distance of 122 mm and 247 mm, respectively.  The distance of a droplet from 

the focal plane was taken to be the mean of the values determined from each image of the droplet, 

which were calculated from measured PSF half-width values, as described in Sections 3.4.3 and 

3.5.1.  Thus, droplets that travelled into or out of the DOF, while in the field of view, were 

included in the measurement if they were within the DOF on average.  This approach avoided 

much of the ambiguity encountered when using a lateral sheet of light to define a control volume, 

where droplets can be partially illuminated, or can disappear from view altogether. 

3.4.6 Removal of Spurious Results 

The tracking procedure was generally very robust but did produce some spurious tracks, which 

connected images of different droplets.  Such tracks were typically due to the incorrect pairing of 

droplet images with no velocity history (i.e. those that formed new tracks).  They rarely persisted 
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for more than one tracking step, since this would require an otherwise unpaired droplet image, of 

similar size and degree of defocus to the two incorrectly paired images, to be located in the third 

frame so as to continue the erroneous droplet trajectory.  Tracks that spanned fewer than 3 frames 

were removed from analysis, to reduce the number of spurious results.  Tracks with a standard 

deviation in horizontal velocity exceeding 2 pixels per video frame were also identified as likely 

spurious tracks and removed. 

Spurious results were also caused by the presence of droplets in the field of view that had not 

originated directly from the nozzle.  Such droplets were either produced by water splashing on 

surfaces in the test enclosure, or had travelled from the sprinkler, beyond the region being 

measured, and then had been forced back into the field of view.   The influence of gravity on the 

larger of these droplets was relatively large, so they tended to fall, almost vertically, through the 

sprays, while the trajectories of smaller reentrained and splashed droplets were driven largely by 

drag forces (due to their low Stokes number), so they followed the induced airflow within the 

sprays more closely.  Many of the spurious results associated with larger droplets were removed 

by disregarding tracks with a direction of travel outside of an acceptable range, the bounds of 

which were tuned to suit each spray.  However, this is unlikely to have removed all spurious 

results associated with smaller reentrained droplets.  Thus, the results of this study may be 

somewhat biased towards smaller droplets. 

3.4.7 Correction for Sampling Bias 

Rather than analysing the entire video record from each spray, discrete samples of 𝑛𝑓 sequential 

video frames were taken from the video footage and analysed.  Hundreds of such samples were 

analysed from each video file, each initiated 𝑛𝑝 video frames after the start of the previous sample.  

The values 𝑛𝑓 and 𝑛𝑝 were set to 10 and 50, respectively, except when analysing time-varying 

sprays (i.e. spray B and spray IM when disrupted by the deflector paddle).  For these sprays, 𝑛𝑓 

and 𝑛𝑝 were set to 6 and 12, respectively, in order to improve the temporal resolution of the 

measurement.  This approach was chosen to reduce the computational expense of the video 
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analysis process (by a factor of approximately 𝑛𝑝 𝑛𝑓⁄ , which equalled 2 for time-varying sprays 

and 5 for all other sprays).  The number of droplets analysed was not reduced by such a large 

factor, since droplets typically had a residence time within the field of view in the order of 10 

frames, so many of the droplets recorded during the gaps between samples were also recorded 

within a sample. 

The sampling method outlined above introduced a bias towards slower droplets, which needed to 

be corrected for.  Slow droplets remained in the field of view for a greater number of video frames, 

so were more likely to be included in a sample.  The probability that a given droplet would appear 

in enough sampled frames to be included in the measurement was given by: 

 𝑃௜ ൌ
𝑛ௗ௜ ൅ 𝑛௙ െ 2𝑛௠௜௡

𝑛௣
 (3.10) 

where 𝑛𝑑𝑖 is the number of frames in which droplet 𝑖 was within the field of view and 𝑛𝑚𝑖𝑛 is the 

minimum number of frames with which tracks would be included (which was set equal to 3, to 

remove spurious results, as discussed in section 3.4.6).  The number of frames in which a droplet 

appeared could be estimated from the droplet speed: 

 𝑛ௗ௜ ൎ
𝑓ிோ𝑤ிை௏

𝑆௜
 (3.11) 

where 𝑓ிோ (s-1) is the framerate, 𝑤ிை௏ (m) is the width of the field of view on the focal plane and 

𝑆௜ (m s-1) is the speed of droplet 𝑖. 

Another source of bias influenced measurements of sprays HC, B and DP, which were assumed 

to be axisymmetric.  A greater portion of droplets emitted close to the axis of symmetry in these 

sprays were within the finite DOF than those emitted closer to 𝜂 ൌ 0° (see Figure 3.8).  Thus, 

results from the pseudo-planar measurements of axisymmetric sprays did not give an accurate 

representation of the distribution of liquid volume throughout the full range of 𝜂. 
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FIGURE 3.8: Geometry of measurements around axisymmetric sprays, which introduced bias 
towards droplets close to the axis of symmetry when results were converted to represent the 

distribution of liquid in the entire spray. 

The two sources of bias mentioned above were addressed by weighting the contribution of each 

track by a correction factor, defined as: 

 𝜙௜ ൌ
𝑊௜

𝑃௜
 (3.12) 

where 𝑊௜ is a factor for the correction of bias in data from axisymmetric sprays, given by: 

 𝑊௜ ൌ ൜
cos 𝜂௜             axisymmetric sprays
1                                     other sprays (3.13) 

where 𝜂௜ is the elevation angle at which droplet 𝑖 was measured.  Substitution of (3.10), (3.11) 

and 𝑛𝑚𝑖𝑛 ൌ 3 into (3.12) yields: 

 𝜙௜ ൌ ቆ
𝑆௜𝑛௣

𝑓ிோ𝑤ிை௏ ൅ 𝑆௜ሺ𝑛௙ െ 6ሻ
ቇ 𝑊௜ (3.14) 

3.4.8 Interpretation of Results 

Data from each spray was analysed in a number of ways.  Four representative diameters and one 

representative speed were calculated from the distributions of measured droplet diameters and 

speeds.  The arithmetic mean diameter was given by: 

 𝑑ଵ଴ ൌ  
∑ 𝜙௜𝑑௜

௡
௜ୀଵ

∑ 𝜙௜
௡
௜ୀଵ

 (3.15) 
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where 𝑑௜ is the equivalent spherical diameter of droplet 𝑖, 𝜙௜ is the weighting factor associated 

with droplet 𝑖, defined by (3.14), and 𝑛 is the number of droplet tracks measured in the spray.  

The volume mean diameter, i.e. the diameter of a spherical droplet with a volume equal to the 

mean volume of droplets in the spray, was given by: 

 𝑑ଷ଴ ൌ  ቆ
∑ 𝜙௜𝑑௜

ଷ௡
௜ୀଵ

∑ 𝜙௜
௡
௜ୀଵ

ቇ

ଵ
ଷൗ

 (3.16) 

The volume-length mean diameter, which has relevance to evaporation, was given by: 

 𝑑ଷଵ ൌ  ቆ
∑ 𝜙௜𝑑௜

ଷ௡
௜ୀଵ

∑ 𝜙௜𝑑௜
௡
௜ୀଵ

ቇ

ଵ
ଶൗ

 (3.17) 

The Sauter mean diameter, which represents the ratio of liquid volume to surface area, was given 

by (Frohn & Roth 2000): 

 𝑑ଷଶ ൌ  
∑ 𝜙௜𝑑௜

ଷ௡
௜ୀଵ

∑ 𝜙௜𝑑௜
ଶ௡

௜ୀଵ

 (3.18) 

The mean characteristic speed was defined as the volume-weighted mean droplet speed: 

 𝑆௖௛ ൌ  
∑ 𝑆௜𝜙௜𝑑௜

ଷ௡
௜ୀଵ

∑ 𝜙௜𝑑௜
ଷ௡

௜ୀଵ

 (3.19) 

where 𝑆௜ is the speed of droplet 𝑖. 

Continuous marginal distributions of droplet diameters, speeds, locations and, in the case of 

sprays B and IM, temporal locations, were formed using a kernel density estimation method.  

Gaussian kernels were used, the widths of which were tuned to avoid results that were noisy or 

overly smoothed.  The contribution of each track to the continuous distribution was also weighted 

by the correction factor 𝜙௜.  The distributions were scaled using the water flowrates measured 

using the flow meter, and thus represented the spray liquid volume flux as a function of various 

droplet characteristics. 

Variables representing the ‘local’ characteristic speed and ‘local’ Sauter mean diameter were 

defined, to allow two-dimensional spatial variations in droplet speed and diameter distributions 

to be plotted.  The local characteristic speed was defined as: 
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 𝑆ሗ௖௛ሺ𝛼, 𝜀ሻ ൌ  
∑ 𝑆௜𝜙௜𝑑௜

ଷ𝑒
ିቆ

ሺ఍ି఍೔ሻమାሺఎିఎ೔ሻమ

ଶఙ೏
మ ቇ௡

௜ୀଵ

∑ 𝜙௜𝑑௜
ଷ𝑒

ି൬
ሺ఍ି఍೔ሻమାሺఎିఎ೔ሻమ

ଶఙ೏
మ ൰

    ௡
௜ୀଵ

 (3.20) 

where 𝜁𝑖 and 𝜂௜ are the azimuthal and elevation angles given by the location of droplet 𝑖, and 𝜎ௗ 

is the standard deviation of a Gaussian kernel.  The local Sauter mean diameter was defined as: 

 𝑑ሗଷଶሺ𝛼, 𝜀ሻ ൌ
∑ 𝜙௜𝑑௜

ଷ𝑒
ିቆ

ሺ఍ି఍೔ሻమାሺఎିఎ೔ሻమ

ଶఙೄ
మ ቇ௡

௜ୀଵ

∑ 𝜙௜𝑑௜
ଶ𝑒

ି൬
ሺ఍ି఍೔ሻమାሺఎିఎ೔ሻమ

ଶఙೄ
మ ൰௡

௜ୀଵ

 (3.21) 

where 𝜎ௌ is the standard deviation of a Gaussian kernel.  The kernel widths 𝜎ௌ and 𝜎ௗ were tuned 

to produce functions that were not noisy or overly smoothed. 

Standard functional forms were fitted to the marginal distribution of droplet diameters in each 

spray.  Such functions allow the easy communication and comparison of droplet diameter 

distributions.  Previous studies have found that no single functional form fits all sprays well 

(Paloposki 1994; Putorti, Everest & Atreya 2004), so four functional forms (Equations 3.19–3.21, 

3.24) were trialled on data from the sprays in this study and the function that fit each dataset best 

was reported.  The Rosin Rammler distribution defined the fraction of liquid contained in droplets 

with diameter less than 𝑑, or ‘cumulative volume fraction’, as: 

 𝐹ோோሺ𝑑ሻ ൌ  1 െ 𝑒ିሺௗ ௗೃೃ⁄ ሻംೃೃ 
 (3.22) 

where 𝑑ோோ and 𝛾ோோ are size and distribution parameters, respectively.  The log-normal distribution 

defined the marginal distribution of liquid volume contained in droplets of diameter 𝑑 as: 

 𝑓௅ேሺ𝑑ሻ ൌ  
1

𝑑𝜎௅ே√2𝜋
𝑒

ିሺ୪୬ ௗିఓಽಿሻమ

ଶఙಽಿ
మ  (3.23) 

where 𝜇௅ே and 𝜎௅ே are size and distribution parameters, respectively.  The upper-limit log-normal 

distribution (Mugele & Evans 1951) defined the marginal distribution of liquid volume contained 

in droplets of diameter 𝑑 as: 

 𝑓௎௅௅ேሺ𝑑ሻ ൌ  
𝛿௎௅௅ே 𝑑௠௔௫

√𝜋𝑑ሺ𝑑௠௔௫ െ 𝑑ሻ
𝑒

ିఋೆಽಽಿ మቀ୪୬ቀ
௔ௗ

ௗ೘ೌೣିௗቁቁ
మ

 (3.24) 
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where 𝑑௠௔௫ is the maximum diameter in the distribution, 𝑎 is the ratio of 𝑑௠௔௫ to a size 

parameter, 𝑑௎௅௅ே: 

 𝑎 ൌ  
𝑑௠௔௫

𝑑௎௅௅ே
 (3.25) 

and 𝛿௎௅௅ே is a function of a distribution parameter, 𝜎𝑈𝐿𝐿𝑁: 

 𝛿௎௅௅ே  ൌ  
1

√2 ln 𝜎௎௅௅ே
 (3.26) 

A hybrid log-normal/Rosin Rammler distribution (Ren, Baum & Marshall 2011; You 1986) 

defined the cumulative volume fraction as: 

 𝐹௅ேோோሺ𝑑ሻ ൌ  ൞
1

√2𝜋
න

𝛾௅ேோோ

1.15χ

ௗ

଴
𝑒

൬
ିሺ୪୬ሺఞ ௗೡఱబ⁄ ሻሻమ

ଶሺଵ.ଵହ ఊಽಿೃೃ⁄ ሻమ൰
𝑑𝜒     ሺ𝑑 ൏ 𝑑௩ହ଴ሻ

1 െ 𝑒ି଴.଺ଽଷሺௗ ௗೡఱబ⁄ ሻംಽಿೃೃ                         ሺ𝑑 ൒ 𝑑௩ହ଴ሻ

 (3.27) 

where 𝛾௅ேோோ is a distribution parameter and 𝑑௩ହ଴ is a size parameter equal to the volume median 

diameter of the distribution.  The parameters from each function were reached iteratively, by a 

least squares approach, except for those in the upper-limit log-normal distribution, which was 

fitted by the procedure outlined by Mugele and Evans (1951). 

3.5 Results and Discussion 

3.5.1 Model Calibration and Verification 

The theoretical model for correction of diameter measurements from defocused droplet images, 

proposed by Fdida and Blaisot (2010), was found to perform poorly when applied to images of 

isolated droplets and opaque discs.  This result is consistent with other published works employing 

the same model (Blaisot 2012; Blaisot & Yon 2005; Fdida & Blaisot 2010) and, as in these other 

works, an empirical model was developed for the specific optical setup used in this study. 

The standard error of results obtained using the empirical diameter correction model was less than 

7% within a 3 mm DOF at 122 mm working distance (see Figures 3.9 and 3.1) and less than 2.5% 

within a 6 mm DOF at 247 mm working distance.  Outside of these DOFs, estimates of the 

diameter of droplets and discs were typically much less accurate (see, for example, outliers 10mm 
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behind the focal plane in Figure 3.1).  However, since the focal criterion was used to eliminate 

droplets outside a narrow DOF, these inaccuracies had no effect on measurements of the six 

sprays.  Some parallax error remained in the data after correction (visible in Figures 3.9 and 3.1, 

as a trend for objects closer to the camera to appear larger).  The use of a telecentric lens could 

have avoided this error (Fdida & Blaisot 2010), however the 90 mm macro lens used in this study 

introduced an error of less than 3.5% within the DOFs of interest. 

The diameter correction model served two functions: it corrected for the overestimation of droplet 

diameters from highly defocused images (see inset in Figure 3.9), and it corrected for inaccuracy 

in the scale used to convert droplet measurements from pixels to millimetres (observed as a 

common relative offset between raw and corrected values in Figures 3.9 and 3.1).  The former 

function, which is typically the stated purpose of PSF-based diameter correction models, 

substantially improved the accuracy with which small droplets were measured in this study.  

Images of larger droplets could reach higher degrees of defocus before the ‘blurred’ outer edges 

influenced the image centre, so were predominantly corrected for the inaccurate scale. 

 

FIGURE 3.9: Calibration results showing the measured, corrected and actual diameters of 
droplets, at various locations relative to the focal plane.  Data presented here is for a working 
distance of 122 mm.  The inset shows a magnified view of data in the lower part of the figure. 
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FIGURE 3.10: Calibration results showing the measured, corrected and actual diameters of 
opaque discs, at various locations relative to the focal plane.  Data presented here is for a 

working distance of 122 mm. 

The analytical model for estimation of PSF half-widths of droplet images, proposed by Blaisot 

(2012), performed well in this study.  A common linear trend, increasing with distance from the 

focal plane, was clearly evident in the calculated PSF half-widths from objects of all diameters 

(see Figure 3.11).  Within the DOF, linear models fitted to this data were able to predict the 

distance of objects from the focal plane with a mean absolute error of 0.075 mm.  These models 

provided a basis for a focal criterion that did not introduce bias towards larger or smaller droplets. 

 

FIGURE 3.11: Image point-spread function (PSF) half-width at varying degrees of defocus.  The 
model to estimate object distance from the focal plane, based on PSF half-width measurements, 
was based on a fit to this data and is specific to the optical setup and working distance that was 

used.  Data presented here is for a working distance of 122 mm. 
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3.5.2 Bulk Spray Properties 

Between 91,000 and 323,000 droplets were measured in each spray.  Most slow-moving droplets 

were relatively small (see Figure 3.12)—a trend that has been identified in data from other sprays 

(Dorr et al. 2013; Nuyttens et al. 2009; Zhou, D’Aniello & Yu 2012).  Nuyttens et al. (2009) 

attributed this to the diameter dependence of droplet relaxation times, meaning that smaller 

droplets are slowed more rapidly by drag forces, while travelling from where they were formed 

to where they were measured.  Such behaviour could also be expected in the sprays considered 

here.  This trend reveals a sensitivity in the experimental results to the distance from each nozzle 

at which measurements were taken.  Thus, the spray characteristics reported herein are specific 

to the locations at which measurements were taken. 

 

FIGURE 3.12: Comparison of droplet speeds and diameters measured in sprays produced by the 
flat-fan nozzle (spray FF), hollow-cone nozzle (spray HC), deflector-plate spray head (spray 
DP), butterfly sprinkler (spray B), impact sprinkler auxiliary nozzle (spray IA) and impact 

sprinkler main nozzle (IM).  Some outlying results have been omitted for clarity.  The majority 
of slow droplets that were observed were small, which could be explained by the relatively large 

influence of aerodynamic drag on these droplets. 

Marginal distributions of droplet diameters and speeds, presented in Figures 3.13–3.16, reveal the 

spatiotemporally averaged characteristics of each spray.  The sprays were dominated by droplets 

with diameters ranging from 100 μm to 1.8 mm, and speeds between 2 and 22 m s-1.  Compared 
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to other sprays used for fire suppression, spray B was the most similar to previously characterised 

‘pendant’ and ‘upright’ sprinklers (Zhou, D’Aniello & Yu 2014; Zhou, D’Aniello & Yu 2012), 

while sprays FF, HC and DP were comprised of smaller droplets, and sprays FF, IA and DP 

expelled droplets at higher velocities.  Sprays FF, HC and DP are near the upper limit of what is 

considered a ‘water mist’ in current fire protection standards (ISO 2005; NFPA 2010; Standards 

Australia 1999); although, they are not mists in a scientific sense (Mawhinney & Back 2016).  

Spray FF, in particular, could be considered a relatively coarse water mist, in the context of sprays 

for fire suppression.  Various metrics describing the sprays, including characteristic diameters, 

characteristic speeds and details of the standard functional forms found to fit the diameter 

distributions best, are presented in Table 3.3. 

 

FIGURE 3.13: Comparison of droplet diameter marginal distributions in sprays produced by the 
flat-fan nozzle (spray FF), hollow-cone nozzle (spray HC), deflector-plate sprinkler (spray DP), 

butterfly sprinkler (spray B), and impact sprinkler auxiliary nozzle (spray IA). 

Characteristics of spray IM were not heavily influenced by the disrupted mode (see Figures 3.15 

and 3.16), because that mode occurred for a small portion of the spray oscillatory period.  Despite 

having been taken 6m from the sprinkler nozzle, measurements of the undisrupted jet included a 

number of large (~5 mm) droplets, which were likely to have subsequently undergone secondary 

atomisation further downstream.  These large, unstable droplets significantly influenced the 

diameter distributions presented in Figure 3.15, due to the large volume that they comprised.  
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Consequently, none of the standard functional forms fitted data from spray IM with satisfactory 

accuracy. 

 

FIGURE 3.14: Comparison of droplet speed marginal distributions in sprays produced by the flat-
fan nozzle (spray FF), hollow-cone nozzle (spray HC), deflector-plate sprinkler (spray DP), 

butterfly sprinkler (spray B), and impact sprinkler auxiliary nozzle (spray IA). 

 

FIGURE 3.15: Comparison of droplet diameter distributions in spray IM when disrupted by the 
deflector paddle, and undisrupted, with the combined (i.e. time-averaged) data.  The disrupted 
jet had little effect on the time-averaged spray characteristics, as it occurred for only a 13% of 
the spray period.  A small number of large (~5 mm) droplets had not yet undergone secondary 

atomisation, but were measured in the undisrupted jet. 
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FIGURE 3.16: Comparison of droplet speeds measured in spray IM when disrupted by the 
deflector paddle, and undisrupted, with the combined (i.e. time-averaged) data.  The disrupted 
jet had relatively little effect on the time-averaged spray behaviour since it occurred for only 

13% of the spray period. 

TABLE 3.3: Characteristics of sprays produced by the flat-fan nozzle (FF), hollow-cone nozzle 
(HC), deflector-plate spray head (DP), butterfly sprinkler (B), impact sprinkler auxiliary nozzle 
(IA) and impact sprinkler main nozzle (IM).  Four common functional forms were trialled on 

the spray data; the functions that best fit each dataset are presented here, with the relevant 
parameters. 

 FF HC B DP IA 
IM 

Disrupted Undisrupted Combined 

Measurement distance 
from nozzle [mm] 

100 326 533 221 536 300 6,000 - 

Number of droplets 
measured (103) 

155 91 343 120 160 18 29 47 

Arithmetic mean 
diameter, d10 [μm] 

102 122 183 176 196 219 336 273 

Volume mean diameter, 
d30 [μm] 

159 263 341 273 354 336 912 720 

Volume-length mean 
diameter, d31 [μm] 

199 387 465 340 475 416 1,504 1,168 

Sauter mean diameter, 
d32 [μm] 

240 496 615 419 610 517 2,002 1,731 

Best functional fit to 
diameter distribution1 

LN/RR ULLN ULLN ULLN LN/RR - - - 

Size parameter, dRR, μLN, 
dULLN or dv50 

0.2899 0.9039 0.9917 0.5133 0.7496 - - - 

Distribution parameter, 
γRR, σLN, σULLN or γLNRR 

2.0163 2.1388 2.3027 1.9147 1.4825 - - - 

Maximum size 
parameter, dmax 

- 1.9114 4.3431 21.5965 - - - - 

Mean characteristic 
speed, Sch  [m s-1] 

18.5 11.3 9.1 13.2 13.9 9.7 11.8 11.7 

1 – Functional forms trialled on the spray data included the Rosin-Rammler distribution, log-normal distribution, 
upper-limit log-normal distribution (ULLN) and a hybrdid log-normal/Rosin-Rammler distribution (LN/RR). 
 



57 
 

3.5.3 Spatiotemporal Spray Variations 

Substantial spatial and temporal variations were evident in the distributions of droplet sizes, 

speeds and flow rates within the sprays (see Figures 3.17–3.23Error! Reference source not 

found.).  Such characteristics may influence the spray behaviour significantly, so could be vital 

to the accurate simulation of these sprays.   Analysis of spatiotemporal variations in the sprays 

also provided some insight into the physical processes involved in their formation. 

Each spray exhibited a core region of fast, polydisperse droplets.  Regions of slower droplets 

surrounded these core regions, except towards the centre of the hollow cone formed by spray HC 

and the top of spray IM when undisrupted.  Air flow, induced by the sprays, is likely to have been 

fastest in these core regions, due to the dense spacing of droplets and surrounding regions of 

induced air flow.  The resulting reduction in drag forces acting on droplets there could have caused 

the fast core regions to form.  It is possible that sufficient air movement was established in the 

central region encompassed by spray HC to substantially reduce the drag forces on droplets 

adjacent to this region as well.  Spray IM is likely to have induced air flow with particular 

efficiency, due to the relatively high liquid volume fraction in this spray.  Liquid in spray IM was 

also observed to travel more than 1 m before atomising (see Figure 3.5).  Combined, these two 

factors may explain the relative uniformity of droplet speeds observed 6 m from the impact 

sprinkler (see Figure 3.20Error! Reference source not found.). 

Spatial variations in droplet size distributions varied between the different sprays.  Generally, 

larger droplets tended to be concentrated towards the fast, core regions of the sprays.  However, 

regions at both ends of the ‘fan’ formed by spray FF, and at the end of the ‘fan’ extending to high 

azimuthal angles in spray IA, were dominated by relatively large droplets (see Figures 3.21 and 

3.22).  The formation of these two sprays was similar, in that a liquid jet was projected onto an 

inclined surface, producing a liquid sheet which subsequently atomised.  The large droplets were 

produced through the primary breakup process at the ends of the liquid sheets that were produced. 
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Rotation of the impact sprinkler head about the 𝑦-axis occurred with a mean period of 27.7 s, 

which influenced sprays IM and IA.  Oscillation of the deflector paddle, into and out of the liquid 

jet in spray IM, occurred with a mean frequency of 4.89 Hz.  Spray IM was disrupted by the 

deflector paddle for only 13% of the resulting 0.2045 s period; hence the relatively small influence 

that characteristics of the disrupted jet had on time-averaged data for this spray (see Figures 3.15 

and 3.16).  The butterfly sprinkler deflector rotated with an average frequency of 43.56 Hz, 

producing an outward-moving spiral of droplets, with a spacing of approximately 255 mm.  

Smaller droplets in spray B typically travelled slower and lagged somewhat behind larger droplets 

in the spiral, to an extent that the smallest droplets formed a constant, slow (< 6 m s-1) flow 

throughout the spray (see Figure 3.23Error! Reference source not found.).  The relatively large 

influence of aerodynamic drag on small droplets is likely to have caused them to slow and lag 

behind the spiral of larger droplets in this manner.  However, complexities in the breakup process 

and re-entrainment of small droplets into the spray (see Section 3.4.6) may have also contributed 

to the constant flow of small, slow droplets observed 533 mm from the butterfly sprinkler. 

 

FIGURE 3.17: Spatial distributions of the liquid volume flux, 326 mm from the hollow-cone 
nozzle, for a number of discrete a) diameter (𝑑) and b) speed (𝑆) classes.  These profiles, rotated 

about the axis of symmetry (𝜂 = 90°), represent the distribution of droplets within spray HC. 

a) 

b) 
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FIGURE 3.18: Spatial distributions of the liquid volume flux, 221 mm from the deflector-plate 
sprinkler, for a number of discrete a) diameter (𝑑) and b) speed (𝑆) classes.  These profiles, 

rotated about the axis of symmetry (𝜂 = 90°), represent the distribution of droplets within spray 
DP. 

 

FIGURE 3.19: Spatial distributions of the liquid volume flux, 533 mm from the butterfly 
sprinkler, for a number of discrete a) diameter (𝑑) and b) speed (𝑆) classes.  These profiles, 

rotated about the axis of symmetry (𝜂 = 90°), represent the time-averaged distribution of 
droplets within spray B. 

a) 

b) 

a) 

b) 
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FIGURE 3.20: Spatial distributions of liquid volume flux through the vertical centre plane (i.e. at 
𝜁 ൌ 0°) of the spray generated by the impact sprinkler main nozzle, measured 6 m from the 

nozzle.  Results are presented in terms of the liquid volume flux per solid angle, for a number of 
discrete a) diameter (d) and b) speed (S) classes.  The sprinkler was inclined forward during 
measurement, such that ሺ𝜂, 𝜁ሻ ൌ ሺ15°, 0°ሻ was horizontal.  Separate measurements found the 
sprinkler rotation period to be 27.7s.  The initial mean velocity of the jet was 19 m s-1 at 𝜂 ൌ

26°. 

 

FIGURE 3.21: Spatial distributions of: a) liquid volume flux, b) local Sauter mean diameter 
(𝑑ሗଷଶ), and c) local characteristic speed (𝑆ሗ௖௛), 100 mm from the flat-fan nozzle (in spray FF). 

a) 

b) 

a) 

b) 

c) 
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FIGURE 3.22: Spatial distributions of: a) liquid volume flux, b) local Sauter mean diameter 
(𝑑ሗଷଶ), and c) local characteristic speed (𝑆ሗ௖௛), 536 mm from the auxiliary impact sprinkler nozzle 

(in spray IA).  The sprinkler was restrained during measurement, to prevent rotation about the 
𝑦-axis. 

 

FIGURE 3.23: Temporal variations in spray B, measured at a fixed azimuthal angle (𝜁 = 0), 533 
mm from the sprinkler, and plotted for one rotation of the sprinkler deflector.  Results are 

expressed in terms of the volume flow rate of droplets within discrete a) diameter (𝑑) and b) 
speed (𝑆) classes.  Slower, smaller droplets tended to lag behind the predominant, outward-

moving spiral of droplets in this spray. 

a) 

b) 

c) 

a) 

b) 
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3.6 Conclusion 

Six sprays have been experimentally characterised.  Each spray was produced by a sprinkler 

similar to those mentioned in reports and technical guidance related to wildfire sprinkler systems.  

Droplet diameters and speeds were measured at a fixed distance from each sprinkler; each 

sprinkler was supplied with water at one pressure.  Kernel density functions and standard 

functional forms were fitted to the marginal distributions of droplet diameters and speeds.  Spatial 

and, where relevant, temporal variations in the distributions were also investigated.  Such 

information on the characteristics of each spray is suitable for use in defining spray source 

conditions for CFD simulations, or other, similar work.  Moreover, this new evidence appears to 

be the first of its kind for the sprinklers investigated here.  Results presented here are specific to 

the five sprinklers investigated, at one operating pressure and distance from the sprinkler nozzle 

in each case.  Nevertheless, accurate simulations of these sprinklers are now made possible, and 

the methods developed in doing so may be extended to other sprinklers in the future. 

A back-lit high-speed videography technique was employed to measure the sprays.  A focal 

criterion, based on the point-spread function half-width of defocused droplet images, was used to 

define a distinct DOF for the measurements.  This experimental approach proved to be a relatively 

inexpensive method to obtain detailed information pertaining to droplet properties, beyond the 

primary breakup region of a spray.  Furthermore, the experimental method was particularly well-

suited to large, non-spherical droplets, which were common in the sprays investigated.  

Experimental parameters, such as working distance, frame rate, spray orientation and the distance 

from the sprinkler at which measurements were taken, needed to be optimised for each spray.  A 

detailed calibration procedure was also necessary; however, this was only required once for a 

given optical setup. 

A custom-built script was developed to analyse videos of the sprays.  The combination of new 

and existing methods that were employed proved to be effective and accurate within the DOFs of 

interest.  A new method to automatically detect and separate overlapping droplet images, based 

on the grey-level gradient at the image boundary, performed better than previously established 
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methods based on watershed algorithms or the curvature of image outlines, especially when 

applied to images of non-spherical droplets.  Tracking of droplets between video frames was 

formulated as an optimisation problem, using cost functions based on droplet image properties. 

A number of potential sources of error were identified and addressed in the characterisation 

procedure.  Spurious results, caused by incorrect initial pairings in the tracking process, were 

removed by disregarding droplets that had been tracked between fewer than three frames, or had 

a high standard deviation in horizontal velocity.  Some droplets, formed by splashing on surfaces 

in the test enclosure, or reentrained back into the field of view, were eliminated from the results 

by setting limits on the acceptable droplet direction of travel.  However, smaller reentrained and 

splashed droplets tended to follow the bulk flow of droplets more closely, so they were not all 

removed.  Thus, results presented here may include some bias towards smaller droplets.  Such 

bias could be reduced in future studies through the use of a larger test enclosure.  Bias in the data 

towards slower droplets, due to the video sampling procedure that was adopted, and droplets close 

to the axis of symmetry, in axisymmetric sprays, were eliminated by weighting the influence of 

each measured droplet on the results. 
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Chapter 4 Wind–Spray Interaction:    Full-Scale Experiments 

Wind–Spray Interaction:    
Full-Scale Experiments 

This chapter presents an experimental study into the dispersion of water, emitted by a sprinkler, 

around a bluff body that is immersed in the atmospheric boundary layer (ABL).  The primary aim 

of the study was to produce data suitable for the validation of CFD simulation methodologies, 

intended for the analysis of bushfire sprinkler system operation in windy conditions.  Results from 

the experiments have been used to validate a simulation methodology in Chapter 5. 

4.1 Introduction 

The field of wind engineering has developed significantly since the pioneering work on boundary 

layer flows by von Karman, Prandtl and Taylor in the early 1900s (Baker 2007).  Improved 

technology and techniques have enabled researchers to better understand the complex physical 

phenomena involved in wind flow over the surface of the earth, which has, in-turn, led to more 

sophisticated designs for buildings and other human-made structures.  In particular, the 

application of computational fluid dynamics (CFD) techniques to wind engineering has enhanced 

the ability of researchers to model complex problems, by enabling them to obtain comprehensive 

‘whole flow field’ data, at full-scale and under well-controlled conditions (Blocken 2014).  

However, the numerous sources of uncertainty that must be understood and minimised to produce 

accurate results with CFD have been widely acknowledged, and it is also recognised that 
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erroneous CFD results can often be interpreted as realistic or accurate by unskilled researchers 

(Blocken 2014; Britter & Schatzmann 2007; Franke et al. 2007; Stathopoulos 2002; Tominaga & 

Stathopoulos 2013).  Thus, high-quality experimental data remains indispensable to the field of 

wind engineering, for use in the validation of CFD methodologies and development of empirical 

sub-models, as well as for purely experimental investigations. 

Measurements of ABL flow around buildings can be obtained through full-scale experiments in 

natural wind, or at reduced scale in boundary layer wind tunnels.  Both approaches have 

advantages and disadvantages.  Wind tunnels can produce flows with specific characteristics and 

replicate the same flow for comparison studies.  However, due to the reduced scales involved, it 

can be extremely difficult or impossible to produce air flow in a wind tunnel that accurately 

matches every important characteristic of the ABL flow of interest, especially in cases involving 

additional physical phenomena, e.g. significantly non-isothermal or multiphase flows (Cermak 

2003; Holmes 2015; Tanaka 1990; Tieleman 2003).  In contrast, full-scale, on-site experiments 

do not require compromises to be made in terms of flow similitude, but they offer little or no 

control over test conditions and no opportunity to exactly reproduce conditions from past 

experiments. 

Ideally, test cases for CFD validation are as simple as possible, in terms of the flow geometry, 

physical phenomena involved and influence on the flow from outside of the region of interest, 

while still capturing the fundamental details that are of interest.  Many previous experimental 

campaigns in the field of wind engineering have focused on boundary layer flow around cubes 

and over trenches, e.g. Castro and Robins (1977); Jiang et al. (2003); Li and Meroney (1983); 

Meinders, Hanjalic and Martinuzzi (1999); Oke (1988); Pavageau and Schatzmann (1999); 

Richards et al. (2007); Richards, Hoxey and Short (2001).   The ability of different simulation 

techniques to replicate the complex features of flow around isolated buildings and urban street 

canyons can be tested, by comparison to results from such studies.  Cubes have often been adopted 

to represent buildings in such studies, since they are simple in form but have similar sharp edges 

to those that establish the dominant flow features that form around buildings. 
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The work described in this chapter was undertaken to produce validation data for simulations of 

water spray dispersion around buildings in windy conditions.  Experiments were conducted using 

a 2.4-metre sharp-edged cube, exposed to natural wind.  Isolated sprinklers were operated near 

the cube and measurements were taken of water deposition at various locations on the cube and 

ground surfaces.  ABL properties were also measured near the cube during the experiments.  

Sprays that were characterised in Chapter 3 were used in this study, so that they could be 

accurately represented in simulations of the test cases investigated here.  Details of the 

experimental method are outlined in Section 4.2, and detailed results are presented in Section 4.3. 

4.2 Method 

4.2.1 Experimental Site 

The experiments were conducted in a field, with a relatively long, flat, unobstructed fetch to the 

north-east (see Figure 4.1 and Figure 4.2).  The cube was orientated with one face pointing north-

east and experiments were conducted only when the mean wind direction was approximately from 

that direction.  Thus, the nearest 200 m of terrain to the cube, in the upwind direction, was 

typically characterised by short (~100mm high) grass, and a further 120 m was unobstructed by 

buildings or large vegetation.  In experiments with a more northerly wind direction, a carpark 

containing irregularly spaced cars was 75 m upwind and two four-storey buildings were located 

200 m upwind.  A meteorological mast, fitted with equipment to measure the ABL, was located 

15.6 m south-east of the cube. 

 

FIGURE 4.1: Photograph of the cube and meteorological mast, looking north-east. 
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FIGURE 4.2: Map of the experimental site (top) and a corresponding aerial photograph (bottom).  
Heights on contour lines on the map refer to height above the ground level surrounding the 

cube.  The cube and meteorological mast were not installed when the photograph was taken. 
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4.2.2 Test Cases 

Experiments were conducted with an isolated sprinkler operating near the cube.  Four cases were 

investigated involving the butterfly and hollow-cone sprinklers characterised in Chapter 3, each 

was operated at two different locations relative to the cube (see Figure 4.3 and Table 4.1).  The 

butterfly sprinklers were upright for all tests, and the hollow-cone sprinklers were orientated such 

that the centre of the cone pointed in the negative 𝑥 direction (i.e. north-east). The water supply 

to the sprinklers was maintained at pressures within ±5% of the values reported in Table 4.1 

during the experiments, using a centrifugal pump, pressure regulator and Wika™ analogue 

pressure gauge. 

 

FIGURE 4.3: Outdoor spray test geometries.  The butterfly sprinkler was upright in cases A and 
C, while the hollow-cone sprinkler was orientated such that the centre of the cone pointed in the 

negative 𝑥 direction in cases B and D. 
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TABLE 4.1: Details of the four test cases (A, B, C and D). 

Case Sprinkler model Location Pressure [kPa] Flow rate [L min-1] 

A Holman ½-inch brass butterfly sprinkler Windward 200 34 

B ½-inch Champion S9F hollow-cone nozzle Windward 345 12.5 

C Holman ½-inch brass butterfly sprinkler Leeward 200 34 

D ½-inch Champion S9F hollow-cone nozzle Leeward 345 12.5 

 

Four separate experiments were conducted for each case.  The exact locations of the sprinklers 

varied somewhat between experiments, and the locations for each test are listed in Table 4.2.  

Images of the experiments were analysed, to determine the sprinkler locations in the 𝑧-𝑥 plane 

with more accuracy than was practicable at the time of the tests (see Table 4.2).  However, it was 

not possible to accurately determine the lateral location of the sprinklers (i.e. in the 𝑦-direction) 

from the photographs.  Therefore, an uncertainty of approximately ±100 mm applies to the 𝑦-

locations presented in Table 4.2, except for those relating to Case B since the sprinkler was 

mounted directly to the cube, at exactly 𝑦 = 0 in that case. 

TABLE 4.2: Sprinkler locations in each experiment.  The butterfly sprinkler was upright in cases 
A and C; the hollow-cone sprinkler was orientated such that the centre of the cone pointed in the 

negative 𝑥 direction in cases B and D. 

 Experiment 

 A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 

Case A A A A B B B B C C C C D D D D 

𝒙 [m] -1.87 -1.87 -1.91 -1.90 0 0 0 0 4.26 4.26 4.19 4.19 3.33 3.33 3.31 3.31 

𝒚 [m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

𝒛 [m] 1.87 1.87 1.86 1.88 2.43 2.43 2.43 2.43 1.95 1.95 1.94 1.94 1.83 1.83 1.81 1.81 

 

4.2.3 Wind Measurement 

The meteorological mast was fitted with two Gill WindMaster three-axis, ultrasonic anemometers 

(see Figure 4.4), located at heights of 2 m and 10 m and with a sampling frequency of 20 Hz, and 

a two-axis Vaisala WMT700 Windcap anemometer, which took measurements of horizontal wind 

velocity, 6 m from the ground, at a frequency of 4 Hz.  The ambient dry-bulb and wet-bulb 
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temperatures (referred to hereafter as T and TWB, respectively) were measured once per 

experiment, at a height of 1 m, 1 m from the base of the mast. 

 

FIGURE 4.4: Photograph of the experimental setup, showing the meteorological mast near the 
cube.  Three-axis ultrasonic anemometers were fitted at heights of 2 m and 10 m on the mast, 

and a two-axis ultrasonic anemometer was fitted at a height of 6 m. 

Data from the three anemometers was analysed, to determine time-averaged properties of the 

ABL, as well as various turbulence characteristics.  The mean wind direction, relative to the 

normal to the upwind face of the cube, 𝜃̅, was determined for each experiment using air velocity 

measurements taken at 𝑧 ൌ 10 m and the measured velocity components, 𝑢, 𝑣 and 𝑤, were 

transposed into streamwise, lateral and vertical components (𝑈, 𝑉 and 𝑊, respectively).  The 

mean streamwise velocity, 𝑈ഥሺ𝑧ሻ, was evaluated at the height of each anemometer, for each 

experiment.  The turbulence intensity at each elevation was also calculated, as follows (Stull 

1988): 

 𝐼௜ሺ𝑧ሻ ൌ
𝜎௜ሺ𝑧ሻ
𝑈ഥሺ𝑧ሻ

 (4.1) 
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where 𝐼௜ and 𝜎𝑖 are the turbulence intensity and root mean-square (RMS) of velocity fluctuations 

in coordinate direction 𝑖, respectively.  Note that in the streamwise direction, velocity fluctuations 

were defined as deviations from the mean, i.e: 

 𝜎௎ ൌ ටሺ𝑈 െ 𝑈ഥሻଶതതതതതതതതതതതത ൌ ටሺ𝑈′ሻଶതതതതതതത (4.2) 

Turbulence was further characterised by estimating the Eulerian integral scales of time and length 

from each velocity time-series.  The Eulerian integral timescale of turbulence in 𝑖th coordinate 

direction was defined as: 

 𝜏௜ሺ𝑧ሻ ൌ න 𝑅௜,௭ሺ𝑠ሻ

ஶ

଴

𝑑𝑠 (4.3) 

where 𝑅𝑖,𝑧 is the temporal autocorrelation of the velocity fluctuations in the 𝑖th coordinate 

direction, at height 𝑧.  Solution of the semi-infinite integral in (4.3) is often not possible in 

practice, since 𝑅𝑖,𝑧ሺ𝑠ሻ cannot reliably be evaluated for 𝑠 ≳ 𝑃௧ 2⁄ , where 𝑃௧ is the length of the 

time-series, and 𝑅𝑖,𝑧 often contains oscillatory components that decay slowly with respect to 𝑠.  

O’Neill et al. (2004) compared four methods to approximate the integral length scale within a 

finite domain, which is analogous to the estimation of an integral timescale from a finite time-

series, and concluded that integration of 𝑅 to the first zero-crossing produced consistent results.  

In this study, a linear function was first fitted to, and then subtracted from, the time-series of 

velocity measurements.  Integral timescales were then estimated by numerically integrating the 

autocorrelation of each pre-processed time-series, from zero to the first zero-crossing. 

Eulerian integral length scales were estimated by invoking Taylor’s ‘frozen turbulence’ 

hypothesis, which states that turbulent eddies are approximately stationary relative to the mean 

flow (Taylor 1938).  Thus, the turbulence integral length scale in the 𝑖th coordinate direction was 

given by: 

 Λ௜ሺ𝑧ሻ ൎ  𝜏௜ሺ𝑧ሻ𝑈ഥሺ𝑧ሻ (4.4) 

Turbulence energy spectra were also analysed.  Velocity data, from which linear trends had 

already been removed, were further pre-processed by imposing a ‘bell taper’, formed using a sine 
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curve, to the first and last 10% of the duration of each time-series.  Discrete spectral energy 

profiles were calculated from the pre-processed data using the fast Fourier transform (Ogata 1998) 

and continuous energy density spectra were estimated from the discrete profiles.  Each energy 

density spectrum was smoothed using a moving-average filter, the width of which was increased 

with increasing frequency, for presentation in a log-log space. 

4.2.4 Water Deposition Measurement 

Spray deposition gauges were designed and built to collect water that impinged on regions of the 

cube external surfaces.  A preliminary design was developed (see Figure 4.5), based on that of 

many ‘horizontal rain gauges’ that have been used to measure wind-driven rain on building 

facades (Blocken & Carmeliet 2004, 2006).  Water that struck, adhered to and then flowed from 

the 200 mm × 200 mm collection plate was funnelled into a measuring cylinder.  Blocken and 

Carmeliet (2006) found that, counterintuitively, vertical rain gauges with collection plates made 

of hydrophilic materials, such as glass, retained less water than surfaces that were more 

hydrophobic.  This was due to the contact angle of droplets adhered to the collection surfaces; 

hydrophilic materials produced a lower contact angle, thereby reducing the volume of adhered 

droplets.  Any water retained on the collection surfaces of the spray gauges would not flow down 

to the measuring cylinder, and thus would not be measured.  For this reason, the preliminary spray 

gauge design of the present project featured a glass collection plate. 

Testing of the prototype spray gauge revealed that a substantial portion of water impinging on the 

collection plate was not measured due to splashing.  A second spray gauge design was developed 

(see Figure 4.6), based on one presented by Högberg (2002) and included in the review of Blocken 

and Carmeliet (2006).   It featured a deep collection chamber rather than a collection plate, to 

minimise splashing losses.  Testing of the second spray gauge design confirmed that much less 

water was splashed from that gauge than was from the preliminary design.  ‘Vertical’ and 

‘horizontal’ versions of the second gauge design were developed, to collect water that would 

otherwise strike the cube walls or top surface, respectively. 
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FIGURE 4.5: Vertical spray gauge preliminary design.  A substantial portion of the water 
impinging on to the gauge collection plate was observed to splash beyond the gauge during 

early trials, so an improved design was developed. 

The gauges and measuring cylinders were designed to be almost entirely contained within the 

cube, to minimise their influence on air flow around the cube.  However, the gauge openings were 

deliberately made to project 10 mm beyond the cube outer surfaces, so as to form channels that 

would prevent water from flowing from the cube external surfaces into the gauges.  Gaps between 

the gauges and the cube outer surfaces were sealed with tape, to prevent airflow into or out of the 

cube.  Gaps between the spray gauges and measuring cylinders were also sealed, to prevent air 

flow through the gauges. 

Immediately prior to each experiment, the spray gauges were sprayed with water, to prime the 

gauge internal surfaces with adhered water, thereby offsetting error caused by water left on those 

surfaces after the experiments.  The total volume of water collected by each spray gauge, during 

each experiment, was read directly from the measuring cylinders.  Mean deposition fluxes were 

calculated from the volumetric measurements, gauge opening areas (which were accurately 

measured from photographs) and the duration of each experiment. 
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FIGURE 4.6: Horizontal (a) and vertical (b) spray gauges that were used to measure water 
deposition.  The deep collection chambers formed by these gauges were located within the cube 

during experiments, which minimised their influence on airflow around the cube. 

Water was also collected at ground level during experiments of Cases C and D (i.e. when 

sprinklers were located on the leeward side of the cube).  Plastic containers, each with an open 

top approximately 130×100 mm2 in size, were placed in a frame that was buried below ground 

level, such that the container openings protruded ~10mm above ground level (see Figure 4.7).  

The outer rim of each container opening was formed into a sharp edge, to reduce the portion of 

droplets that would be partially collected after striking the edge and splashing.  The mass of each 

ground collection container, when empty, was measured before and after the full set of 

experiments, and the total volume of water deposited in the containers was determined by 

weighing the plastic containers after each experiment and subtracting the relevant empty container 

a) 

b) 
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masses.  Volumetric measurements from the ground collectors were treated in the same way as 

volumetric measurements from the spray gauges, i.e. they were divided by the relevant container 

opening area (which was accurately measured from photographs) and the duration of the relevant 

experiment, to produce mean volumetric fluxes. 

 

FIGURE 4.7: Photograph of the experimental setup for case D.  Ground collectors are visible in 
the foreground (set in a frame and separated by sections of black plastic sheet). 

Three horizontal spray gauges and three vertical spray gauges were installed on the cube for all 

sixteen experiments.  The locations of the gauges varied between windward and leeward cases 

(see Figures 4.9 and 4.8), and were selected to resolve visible variations in the water flux incident 

on the cube.  Ground collectors were installed in four pairs, at distances of 1 m, 3 m, 3.5 m and 4 

m from the cube leeward face in experiments of case C, and distances of 2 m, 2.5 m, 3 m and 3.5 

m from the cube leeward face in experiments of case D (see Figure 4.8).  Experiments were 

continued until any one of the spray gauge measuring cylinders, or ground collection containers, 

was close to full capacity.  The duration of each experiment was recorded, so that mean deposition 

fluxes could be calculated. 
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FIGURE 4.8: Spray gauge and ground collector locations for cases C and D (i.e. when sprays 
were implemented on the leeward side of the cube).  Gauge reference numbers are indicated on 
the gauge.  Dimensions are given to the centre of each gauge and collector; all dimensions are in 

mm. 
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FIGURE 4.9: Spray gauge locations for cases A and B (i.e. when sprays were implemented on 
the windward side of the cube).  Gauge reference numbers are indicated on the gauge.  
Dimensions are given relative to the centre of each gauge; all dimensions are in mm. 

4.3 Results and Discussion 

In total sixteen experiments were conducted and the duration of experiments ranged from 451 s 

to 1,566 s, and averaged 840 s.  In addition to measurements of water deposition and wind 

characteristics, a number of qualitative observations were also made. 

4.3.1 Qualitative Observations 

The relatively large influence of drag on small droplets, compared to larger droplets, was clearly 

visible during the experiments.  Streams of large droplets were observed to travel several metres 

upwind of the spray source, whereas finer water droplets of the sprays were entrained into the air 

flow before travelling 0.5 m from the sprinklers (see Figure 4.10).  The influence of the cube on 

the surrounding air flow was also evident, due to spatial and temporal variations in the 

concentration of small airborne droplets, which allowed a number of flow features to be 

visualised.  A highly turbulent, unsteady flow was observed near the cube leeward face (see Figure 
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4.10), for example, and a point of flow separation, fixed by the sharp leading edge of the cube, 

was also clearly visible (see Figure 4.11). 

   

   

FIGURE 4.10: Series of photographs from experiment C4 (𝑈ഥ(10) = 5.04 m s-1), taken at 10 s 
intervals, illustrating the unsteady airflow near the cube leeward face and the relatively large 
influence of drag on the trajectories of small droplets, compared to larger droplets.  Air flow 

was from right to left. 

   

FIGURE 4.11: Photographs from experiments A4 (left; 𝑈ഥ(10) = 3.38 m s-1) and B4 (right; 𝑈ഥ(10) = 
3.97 m s-1), showing flow separation from the cube leading edge.  Air flow was from right to 

left. 

The unsteady spray produced by the butterfly sprinkler was comprised of a ‘swirl’ of droplets, 

emitted from the rotating deflector plate within the sprinkler (see Figure 4.12).  However, the 

dispersion of droplets tended to become more homogeneous with increasing distance from the 
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sprinkler, so very little periodicity was observed in the stream of droplets impinging on the cube 

and ground surfaces.  Fluctuations in the wind velocity were observed to cause much larger 

temporal variations in water deposition fluxes than those resulting from the unsteady flow from 

the deflector plate.  Gusts of wind frequently caused the location of regions of intense water 

deposition to move up to several metres, in all four of the cases that were tested. 

  

FIGURE 4.12: Photograph from Experiment A1, showing the concentrated ‘swirl’ of droplets 
emitted by the butterfly sprinkler. 

4.3.2 Wind Characteristics 

The mean wind speed, measured at a height of 10 m and averaged over the duration of each 

experiment, ranged from 3.32 m s-1 to 7.17 m s-1 (see Figure 4.13 and Table 4.3), which 

corresponded to Reynolds numbers between 5.3×105 and 1.2×106 based on the characteristic cube 

length of 2.4 m.  These wind speeds did influence droplet trajectories significantly in the 

experiments but do not represent the full range of wind speeds that occur during wildfires (Blanchi 

et al. 2010); therefore, further testing at higher wind speeds would be worthwhile.  Mean wind 

direction during the experiments, 𝜃, ranged from -7.9° to 20.9°.  Two four-storey buildings and a 

ground level open carpark were upstream of the cube when 𝜃 ≳ 17° (see Figure 4.2).  However, 

there was no discernible correlation between mean wind direction and the vertical velocity profile, 

turbulence intensity, integral length or time scales, or energy spectra.  It was concluded that the 

buildings and carpark did not significantly affect air flow around the cube during any of the 

experiments. 
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FIGURE 4.13: Measured mean streamwise wind velocities and directions from each experiment.  
Error bars show the RMS fluctuation in streamwise velocity, 𝜎௎, (top) and standard deviation in 

streamwise direction (bottom). 

A distinct anisotropy was observed in the turbulence measurements, with vertical components 

characterised by lower intensity and smaller length scales.  Such anisotropy is a well-documented 

feature of boundary layer flow and is attributable to the disruption of large, low-frequency eddies 

by the ground (Stull 1988).  Streamwise and lateral turbulence intensities were typically similar, 

averaging between 18% and 25% at the heights of all three anemometers.  Vertical turbulence 

intensity was significantly lower, with mean values of 12% at 𝑧 ൌ 10 m and 8% at 𝑧 ൌ 2 m.  The 

integral length scale of vertical turbulence was approximately equal to 𝑧 at both 𝑧 ൌ 10 m and 

𝑧 ൌ 2 m, while horizontal turbulence exhibited similar integral length scales at all three heights 

(i.e. at 2 m, 6 m and 10 m), the magnitude of which varied between experiments, but was on the 

order of 10–100 m (see Figures 4.14 to 4.16).   Measured turbulence energy spectra were similar 

in the streamwise and lateral directions, but vertical turbulence contained significantly less energy 

at lower frequencies (see Figure 4.17). 
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TABLE 4.3: Mean wind characteristics for each experiment, measured at three heights (𝑧 [m]).  
Results include the mean wind direction (𝜃̅), mean streamwise velocity (𝑈ഥ(𝑧)), three 

components of turbulence intensity (streamwise 𝐼௎(𝑧), lateral 𝐼௏(𝑧) and vertical 𝐼ௐ(𝑧)), dry-bulb 
temperature (T) and wet-bulb temperature (TWB). 

 Experiment 

 A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 

𝜽ഥ [°] 13.2 17.4 -7.9 10.7 19.0 17.0 5.9 14.8 20.9 14.5 10.7 14.5 3.2 14.1 1.5 8.1 

𝑼ഥ(10) [m s-1] 7.17 6.10 3.32 3.38 5.80 5.12 5.81 3.97 4.91 4.89 5.13 5.02 4.31 4.37 5.53 5.28 

𝑼ഥ(6)/𝑼ഥ(10) 0.937 0.940 0.934 0.904 0.903 0.909 0.934 0.931 0.904 0.927 0.944 0.935 0.921 0.891 0.913 0.954 

𝑼ഥ(2)/𝑼ഥ(10) 0.777 0.797 0.788 0.766 0.749 0.735 0.798 0.813 0.706 0.704 0.768 0.769 0.735 0.727 0.771 0.813 

𝑰𝑼(10) [%] 19.8 27.6 35.0 26.0 22.4 22.6 20.4 30.7 24.7 22.2 23.5 24.5 22.2 23.4 21.8 22.0 

𝑰𝑽(10) [%] 21.7 21.6 42.3 25.5 22.5 24.6 24.1 33.6 27.4 28.8 20.5 20.3 24.1 25.3 19.4 20.1 

𝑰𝑾(10) [%] 10.5 11.3 15.5 13.1 11.1 11.5 10.6 14.0 10.7 11.0 11.7 12.6 11.4 11.4 11.9 12.7 

𝑰𝑼(6) [%] 18.8 24.3 34.2 25.1 19.9 18.7 19.3 28.9 22.3 21.3 23.2 24.4 21.4 20.4 20.8 21.5 

𝑰𝑽(6) [%] 20.2 20.5 30.7 25.8 20.1 21.1 22.2 25.5 17.2 18.6 11.1 12.7 17.7 15.8 8.7 11.0 

𝑰𝑼(2) [%] 18.5 21.8 32.7 23.2 20.0 17.9 18.5 26.0 21.4 19.3 20.3 22.9 20.7 19.5 19.7 21.1 

𝑰𝑽(2) [%] 17.1 17.6 27.9 17.5 16.8 17.6 18.0 26.0 18.9 19.5 17.9 19.7 16.3 18.0 19.7 21.2 

𝑰𝑾(2) [%] 7.3 7.0 9.4 7.9 7.4 7.6 7.4 8.4 7.3 7.5 7.9 8.0 7.8 7.5 8.0 8.3 

T [°C] 25.9 25.9 29.0 25.9 25.1 25.1 28.5 30.5 23.0 29.6 24.5 23.5 22.0 20.6 26.1 25.2 

TWB [°C] 19.2 19.2 20.0 20.2 20.0 20.0 20.7 20.6 17.0 16.1 17.4 16.9 18.0 17.2 17.8 17.6 
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FIGURE 4.14: Integral a) time and b) length scales of streamwise turbulence, measured at three 
heights. 

 

FIGURE 4.15: Integral a) time and b) length scales of lateral turbulence, measured at three 
heights. 

a) 

b) 

a) 

b) 
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FIGURE 4.16: Integral a) time and b) length scales of vertical turbulence, measured at two 
heights. 

The inertial subrange was identifiable, in all measured turbulence spectra, as a region of -5/3 slope 

(see Figure 4.17).  The inertial subrange represents a range of frequencies through which there is 

very little turbulence production or dissipation; most turbulent energy is generated at lower 

frequencies, and then ‘cascades’ through the inertial subrange, transferring energy to smaller and 

smaller eddies, until it approaches the Kolmogorov scale, where it is dissipated as heat (Stull 

1988).  Therefore, little turbulence production was evident at frequencies greater than 2×10-2 

(corresponding to a timescale of 50 s) in the measured energy spectra, except in the vertical 

direction, where the inertial subrange was confined to higher frequencies.  Such deviation of 

vertical spectra from those in other directions is likely to have been a transition to a low-frequency 

range where vertical turbulent energy is dominated by large detached eddies and the blocking 

effect of the wall, so does not in-fact indicate the production of turbulent energy by shear 

(Högström, Hunt & Smedman 2002). 



 

84 

 

FIGURE 4.17: Turbulence energy spectra calculated from streamwise (𝑈ሺ𝑧ሻ), lateral (𝑉ሺ𝑧ሻ), and 
vertical (𝑊ሺ𝑧ሻ) velocity measurements, taken at three heights (𝑧 [m]).  Lines of -5/3 slope are 

also shown, indicating the spectral slope predicted for the inertial subrange by similarity theory.  
Deviations from the general trend that are evident at the high-frequency end of each spectrum 

were introduced by the smoothing algorithm.  In reality, the spectra are likely to have 
maintained a steady trend through the inertial subrange, to a frequency corresponding to the 

Kolmogorov scale (at ~5 kHz, corresponding to ~1 mm (Garratt 1994)). 

4.3.3 Water Deposition 

Mean water deposition fluxes, measured using the spray gauges and ground collectors, are 

presented in Figure 4.18.  It was difficult to assess the repeatability of the water deposition results 

since the wind characteristics were different during each experiment.  However, the mean absolute 

correlation between deposition flux and wind speed was 0.986 and 0.911 in cases A and D, 

respectively.  In both of these cases there was a significant difference in mean wind speed between 

the first two experiments (A1 and A2, or D1 and D2, respectively) and the last two experiments 

(A3 and A4, or D3 and D4, respectively), which produced the correlations that have been 

observed.  If the experiments were not repeatable, no such correlation could be expected. 
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FIGURE 4.18: Mean water deposition fluxes measured during each experiment.  The numbers 
used to identify spray gauges correspond to those presented in Figures 4.9 and 4.8, and the 
distances used to identify ground collectors indicate the collector distance from the cube 

leeward face (see Figure 4.8). 

4.4 Conclusion 

An experimental campaign was undertaken to investigate the dispersion of an isolated water spray 

around a bluff body located on the ground and immersed in an atmospheric boundary layer flow.  

Sixteen experiments were conducted, with either a butterfly sprinkler or a hollow-cone sprinkler 
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implemented on either the windward or leeward side of a 2.4 m cube, producing four distinct test 

cases.  The cube was located in a flat, open field, with an unobstructed upwind fetch of 

approximately 200 m.  Detailed (4-20 Hz) measurements of wind velocity were taken at three 

heights near the cube, and the ambient temperature and humidity were also measured.  Water was 

collected using custom-designed spray deposition rate gauges on the cube walls and roof, as well 

as at various locations at ground level. 

Mean wind speeds at a height of 10m ranged from 3.32 m s-1 to 7.17 m s-1 during the experiments, 

with an angle of incidence on the cube windward face between -7.9° and 20.9°.  Turbulence 

intensities were of the order of 20%, except in the vertical direction where they were closer to 

10%.  Turbulence integral time and length scales, and energy spectra, also exhibited this 

anisotropy, with vertical length scales approximately equal to the height at which they were 

measured and a noticeable deficit at the low-frequency end of vertical energy spectra.  The 

anisotropy measured in the present experiments aligned closely with previous literature on this 

well-documented feature of boundary layer flow. 

Water deposition fluxes on the cube and ground surfaces ranged up to ~32 mL m-2 s-1.  Some 

observations can be made as to the distribution of water from the sprinklers under various wind 

conditions, however, that was not the primary purpose of this study.  Rather, the primary aim of 

the experimental campaign was to produce data suitable for validation of CFD spray simulations, 

and a detailed comparison of the experiments and CFD simulations in the present study is 

presented in Chapter 5.  In addition, the detailed results presented above may prove useful to other 

CFD researchers in future validation studies.  
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Chapter 5 Wind–Spray Interaction: Simulation Methodology 

Wind–Spray Interaction: 
Development and Validation 
of a Simulation Methodology 

This chapter presents a comparison of various methods to simulate wildfire sprinkler systems 

operating in windy conditions using CFD.  Test cases from the experiments reported in Chapter 

4 were simulated, and the capabilities of different simulation methodologies were assessed by 

comparing the simulations to experimental results.  The most suitable methodology developed 

here was then applied to the assessment of the performance of several wildfire sprinkler 

configurations, as described in Chapter 6. 

5.1 Introduction 

For the effectiveness of wildfire sprinkler systems to be properly evaluated, the influence of wind 

and evaporation on the dispersion of water droplets must be understood.  Investigation of the fluid 

dynamics processes involved is challenging, since there is no straight-forward and safe method 

to replicate the conditions of a wildfire while conducting full-scale experiments at reasonable 

cost, and the coupled behaviour of the continuous phase (i.e. air) and discrete phase (i.e. water 

droplets) cannot be accurately represented at a reduced scale.  Thus, simulation techniques such 

as CFD offer the only viable methodology to determine the likely effectiveness of wildfire 

sprinklers at the present time. 
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Two issues were encountered in the application of CFD to the investigation of wildfire sprinklers 

in the present work: 

1. The accuracy of different CFD methods, when applied to the dispersion of droplets 

around bluff bodies immersed in a turbulent boundary layer, had not previously been 

established; and 

2. There was no clearly established method to translate the characteristics of specific sprays, 

such as those presented in Chapter 3, into boundary/input conditions for CFD simulations. 

A simulation study was therefore undertaken to address these issues.  The investigation focused 

on CFD methods that were relatively inexpensive in terms of computational cost, since it was 

desirable that a methodology for design or performance assessment purposes be developed.  

Various CFD techniques were compared, to assess:  

1. Whether sprays with time-varying characteristics can be accurately represented by quasi-

steady simulations;  

2. Whether the influence of turbulence on droplet dispersion can be replicated by time-

averaged turbulence models; and 

3. Whether the influence of sprays on the surrounding air flow can be ignored without 

significant reductions in simulation accuracy.   

The sensitivity of simulations to the initial locations and velocities of droplets was also 

investigated, so as to provide some insight into how spray characteristics determined in 

‘quiescent’ laboratory conditions (i.e. without externally forced airflow) could best be applied in 

CFD simulations involving wind. 

The present work focused on simulations of atmospheric boundary layer flows around isolated 

buildings, and the dispersion and evaporation of airborne water droplets within such flows.  Water 

transport after droplet impacts with solid surfaces (e.g. via processes such as splashing, runoff, 

absorption and post-impact evaporation) were outside the scope of this study, however some 

modelling of such processes has been included in Chapter 6.  The influence of strong localised 
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sources of heat in close proximity to the building, such as flames or accumulated embers, were 

also not included in the simulation study reported here.  The buoyancy-driven flow and heat 

transfer caused by such heat sources could affect sprinkler performance significantly during the 

passage of a wildfire, but are likely to have less of an effect for the majority of the duration of 

sprinkler operation, prior-to and after the passage of the fire front. 

Details of the simulation study are presented in the proceeding sections of this chapter.  First, a 

brief overview of the CFD method is provided and relevant CFD methods are discussed with 

reference to previous research.  The simulation study methodology and results are then discussed, 

and several important conclusions are outlined. 

5.2 A Brief Overview of CFD 

Fluid flow is governed by three fundamental laws: i) mass is conserved, ii) energy is conserved, 

and iii) the net force acting on the fluid equals the product of its mass and acceleration (known as 

Newton’s second law).  Expressed mathematically, these laws form a set of partial differential 

equations known as the Navier-Stokes equations, which can be solved numerically to simulate 

the fluid flow within a finite spatial domain if adequate information is defined in terms of 

‘boundary conditions’ (i.e. details of the flow at the bounds of a finite spatial domain) and ‘initial 

conditions’ (i.e. a complete description of fluid properties within the domain at one point in time).  

The term ‘computational fluid dynamics’ describes the variety of methods used to simulate fluid 

flows in this way.  A wealth of information is publicly available on CFD, including many books 

that cover the fundamentals comprehensively, e.g. Anderson (1995), and Versteeg and 

Malalasekera (1995).  For this reason, a detailed account of the underlying mathematics and basic 

principles has not been included in this thesis.  However, a few key concepts from CFD have been 

described very briefly below, and aspects of CFD modelling that are particularly pertinent to the 

simulation of wildfire sprinklers have been covered in more detail in Section 5.3. 

CFD allows the solution of the Navier-Stokes equations at a discrete set of locations within the 

domain, which are defined by a computational ‘grid’ (or ‘mesh’).  The partial differential Navier-
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Stokes equations can be ‘discretised’, i.e. approximated algebraically at each grid point, in relation 

to neighbouring grid points, using either finite difference, finite volume or finite element 

formulations.  The form of the discretised governing equations varies, depending on which of 

these formulations is used, and the type of flow being simulated (e.g. compressible or 

incompressible, viscous or inviscid, etc.).  The range of methods able to solve the equations 

depends on their form, and the selection of a method from within the range that is appropriate is 

usually based on a compromise between accuracy, stability and computational efficiency.  Due to 

the large number of solution methods used in CFD, they have not been reviewed in detail here; 

the interested reader is directed to the books cited earlier, (Anderson 1995; Versteeg & 

Malalasekera 1995). 

One particularly challenging aspect of CFD is the simulation of turbulence.  Exact reproduction 

of turbulence requires an extremely fine computational grid and short time step, in order to fully 

resolve turbulence structures down to the Kolmogorov scale; this approach is termed ‘direct 

numerical simulation’ (DNS).  A much more economical approach is to resolve only the time-

averaged flow, and use numerical models to approximate the most important properties of 

turbulence throughout the domain and the effects of that turbulence on the mean flow.  This 

separation of mean and turbulent flow behaviour is achieved using the Reynolds-averaged Navier-

Stokes (RANS) equations.  Large-eddy simulation (LES) offers a compromise between the 

complete representation of turbulence achieved by DNS and the computational efficiency of 

RANS by resolving the larger scales of turbulence, which tend to have the largest effect on mean 

flow properties, and modelling smaller eddies.  Hybrid RANS/LES methods also exist, such as 

detached-eddy simulation (DES), which provide CFD practitioners with more options with regard 

to this compromise between accuracy and computational cost. 

A variety of turbulence closure models (often referred to simply as ‘turbulence models’) have 

been developed for use with the RANS equations.  ‘One-and-a-half order’ eddy viscosity models 

approximate the influence of local turbulence stresses using an additional viscous term.  Examples 

of such models include various versions of 𝑘-𝜀 model, which calculate the transport of turbulence 
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kinetic energy, 𝑘, and turbulence dissipation rate, 𝜀, as well as 𝑘-𝜔 models, which utilise 𝑘 and 

the turbulence specific dissipation rate, 𝜔, (sometimes referred to as the mean turbulence 

frequency).  Second-order closure models, such as Reynolds stress models (RSM), offer a more 

complete description of local turbulence properties, but entail a larger computational cost than 

eddy viscosity models. 

Ultimately, the most appropriate method to represent turbulence CFD depends on the case at hand.  

None of the RANS, LES or hybrid methods developed so far can exactly model turbulence, so it 

is important that CFD practitioners understand what kinds of flow each model has been validated 

for, in order to minimise the errors introduced by turbulence modelling.  The commercial CFD 

code ANSYS Fluent 14.5 was used in the present work.  This code adopts a finite volume method 

and offers a wide range of solution methods and options for the representation of turbulence.  A 

more detailed discussion of these options, and evidence from previous studies as to their 

appropriateness for simulations of wildfire sprinklers, is provided in the following section.   

5.3 Review of Appropriate CFD Methods 

A review of published literature related to numerical simulations of wind flow around buildings 

and liquid sprays was undertaken.  No previous validation studies were found that focused 

specifically on the simulation of spray dispersion around buildings by wind, but simulation 

methodologies for a number of other relevant types of flow have been reported.   

Several previous studies have used CFD to simulate the dispersion of droplets from indoor fire 

sprinklers; for example, see (Chatterjee & Geiman 2017; Chen et al. 2015; Chow 1999; 

McGrattan, Hamins & Evans 1998; Myers, Trouvé & Marshall 2018; Novozhilov et al. 1997; 

O'Grady & Novozhilov 2009; Yuan & Smith 2015).  However, these previous studies differ from 

the cases of interest here in that wind was not present. 

Previous research into the wind drift of agricultural sprays (used for the application  of pesticides 

and irrigation) has included numerous simulation studies, such as: Baetens et al. (2007); Butler 

Ellis and Miller (2010); Delele et al. (2007); Holterman et al. (1997); Molle et al. (2012); 
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Walklate (1992); Weiner and Parkin (1993).  However, these studies were concerned with the 

dispersion of sprays in open fields, and therefore did not include the influence of large bluff bodies 

like buildings.   

A range of approaches to the simulation of wind-driven rain deposition on building facades have 

been published (Abuku et al. 2009; Blocken & Carmeliet 2007; Blocken & Carmeliet 2010; 

Blocken, Poesen & Carmeliet 2006; Briggen, Blocken & Schellen 2009; Choi 1993; Huang & Li 

2010; Kubilay et al. 2013, 2014; Kubilay et al. 2015a; Kubilay et al. 2015b).  However, the 

relatively uniform spatial distribution of droplets in rain differs from that formed by concentrated 

droplet sources like sprinklers.  Therefore, simulation techniques developed for wind-driven rain 

may not be well suited to simulations of wildfire sprinkler systems, which, for example, are likely 

to involve localised regions of relatively strong air entrainment.   

Water dispersion from rooftop cooling towers is also a potentially relevant flow type. This has 

been investigated by Meroney (2006), who proposed a set of guidelines for CFD simulations of 

this type of flow, and has also been looked at more recently by others (Consuegro et al. 2014).  

Methods developed for such cooling tower simulations are not necessarily suitable for simulations 

of wildfire sprinkler systems, since the droplet sources in such simulations have typically been 

distributed in large, upward-moving air jets, representing the cooling tower outlet flow. 

Despite differences between the abovementioned spray dispersion scenarios and those considered 

here, much of the physics is similar.  The selection of CFD simulation techniques that were tested 

in the present study was informed by the findings of previous studies reported in the literature, 

i.e. those related to the dispersion problems mentioned above, and from the broader fields of 

computational wind engineering and spray simulation.  A summary of relevant findings from 

previous research is presented below. 

5.3.1 Simulation of the Continuous Phase 

CFD has been used to investigate atmospheric flow at a wide range of spatial scales.  Simulations 

concerned with flow around individual buildings or small groups of buildings with computational 
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domains ranging from approximately 100 m to several kilometres are typically classified as 

‘microscale’ simulations (Blocken 2014; Blocken, Tominaga & Stathopoulos 2013; Toparlar et 

al. 2017).  The discussion in the following sections is focused on such microscale simulations, 

since they are most relevant to the present case of wildfire sprinkler systems. 

Turbulence 

Both turbulence-resolving techniques, such LES, and time-averaged techniques based on the 

RANS equations, are often employed in simulations of air flow around buildings.  The RANS 

approach involves a significantly lower computational cost, but cannot accurately replicate all 

physical processes.  Comparisons between RANS and turbulence-resolving techniques in the field 

of computational wind engineering have typically shown the latter to produce results that are more 

accurate, especially near the side, top and leeward surfaces of buildings where flow separation 

occurs (Liu & Niu 2016; Meroney 2009; Tominaga & Stathopoulos 2010, 2013; van Hooff, 

Blocken & Tominaga 2017).  However, the simpler RANS-based simulations have produced 

results of comparable accuracy in some cases, e.g. in the cross-ventilation of simple structures 

(Meroney 2009) and in pollutant dispersion near buildings (Lateb et al. 2014).   

Thus, the choice between RANS and turbulence-resolving approaches should be made on a case-

by-case basis, and should take into account both the computational cost and required accuracy of 

results.  This conclusion has been stated in a number of relevant best-practice guidelines and 

review papers (Blocken 2014; Franke & Hellsten 2011; Tominaga et al. 2008; Tominaga & 

Stathopoulos 2013).  The suitability of RANS for simulations of wildfire sprinkler systems was 

investigated in the present work. 

Turbulence Stationarity and ‘Inactive’ Turbulence 

Simulation of transient flows as simplified, pseudo-steady cases was found to be a common 

approach adopted in the CFD studies that were reviewed.  This approach reduces the 

computational cost of simulations significantly, and can reproduce the flow features of interest in 

many cases.  However, pseudo-steady CFD simulations not only neglect changes in the mean 

flow field over time, they also fail to account for the influence of turbulence structures with spatial 
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scales much larger than the computational domain, since the influence of such structures would 

appear in the computational domain as fluctuations in the mean velocity field.  Turbulence at such 

scales has often been referred to as ‘inactive’ turbulence in the literature (Bottema 1997; 

Bradshaw 1967; Högström, Hunt & Smedman 2002; Katul & Albertson 1996; Richards & Norris 

2011; Townsend 1961). 

Wind-tunnel experiments have demonstrated that some time-averaged variables (e.g. pressure 

coefficients across buildings) are not significantly affected by inactive turbulence (Durbin & Hunt 

2006; Melbourne 1979; Richards et al. 2007; Richards & Norris 2011).  However, in the present 

case, it was conceivable that fluctuations in the local mean velocity field could disperse sprayed 

water over a larger area, thereby influencing the performance of wildfire sprinkler systems.  For 

this reason, the sensitivity of simulated results to inactive turbulence was assessed in the present 

work. 

Turbulence Closure 

When RANS-based CFD techniques are adopted to simulate air flow around buildings, the choice 

of turbulence model can influence results significantly, as has been demonstrated in many 

comparison studies (Meroney 2009; Murakami 1993; Tominaga & Stathopoulos 2009).  No single 

turbulence model has consistently performed better than others, so it is good practice to base the 

selection of turbulence models on comparison studies involving flows very similar to that which 

is to be simulated.  No such comparison study was found for simulations of particle dispersion 

near buildings, so one was conducted in the present work.  The set of candidate models for 

comparison was selected based on studies of similar flow cases. 

The standard k-ε model (Launder & Spalding 1974) has repeatedly been shown to perform poorly 

in regions of flow separation, including those triggered by building edges (Meroney 2009; 

Murakami 1993; Tominaga & Stathopoulos 2009).  Revised versions of the 𝑘-𝜀 model, 

particularly the renormalisation group (RNG) and realisable 𝑘-𝜀 models, have typically produced 

more accurate results.  Similarly, the standard 𝑘-𝜔 model has typically not performed as well as 
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the shear stress transport (SST) 𝑘-𝜔 model in simulations of wind flow around buildings 

(Meroney 2009; Ramponi & Blocken 2012b). 

RSM can be adopted to resolve turbulence anisotropy, but they entail a higher computational cost 

than the abovementioned ‘one-and-a-half order’ eddy viscosity models.  Previous studies have 

shown that turbulence anisotropy is important in simulations of the dispersion of pollutants 

(Tominaga & Stathopoulos 2013) and fine particles (Dehbi 2008a, 2008b).  However, RSM have 

typically been found to offer little-to-no benefit over the simpler ‘one-and-a-half order’ models 

(Blocken 2014; Bradshaw 1999; Richards & Norris 2011; Tominaga & Stathopoulos 2013).  This 

was highlighted by Bradshaw (1999) and later quoted by Richards and Norris (2011), “it is so 

obvious that stress-transport models are more realistic in principle than eddy viscosity models 

that the improvements they give are very disappointing”. 

In the present investigation, comparisons were made between the performance of the RNG and 

realisable 𝑘-𝜀 models in simulations of wildfire sprinklers.  These comparisons formed the basis 

for selection of a turbulence model in subsequent simulations. 

Wall Treatment 

Wall functions are employed in the vast majority of ABL simulations, due to the high Reynolds 

numbers and large spatial scales involved.  The wall functions available in commercial CFD 

packages (including ANSYS Fluent 14.5, which was used in the present work) are generally based 

on ‘sand-grain’ roughness coefficients, derived from pipe flow experiments.  Blocken, 

Stathopoulos and Carmeliet (2007) identified four conflicting requirements for accurate 

simulations of the ABL using such wall functions: 1) a sufficient wall-normal resolution in the 

computational mesh to capture the flow behaviour of interest; 2) boundary layer flow upstream 

and downstream of the region of interest that is horizontally homogeneous; 3) computational cells 

immediately adjacent to the wall that are larger than the physical ‘sand grain’ roughness imposed 

at the wall; and 4) appropriate selection of physical ‘sand grain’ roughness values for the 

aerodynamic roughness length of the terrain.  The authors noted that it is often impossible to meet 

all four of these requirements, but that it is advisable to ensure that 1, and 3 are satisfied, and to 
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check the boundary layer horizontal homogeneity in an empty computational domain before 

undertaking the final simulations.  These guidelines were adhered to in the present work.  

5.3.2 Representation of the Discrete Phase 

Discrete particles can be represented in several ways in CFD simulations.  Particles that follow 

the continuous-phase flow very closely can be treated as a miscible fluid and tracked by 

calculating the particle concentration in each computational cell.  This approach can be extended 

to flows involving particles that do not follow the continuous-phase streamlines exactly, by 

calculating a representative discrete-phase velocity in each cell.  Thus, momentum transfer 

between the phases can be simulated.  Further complexity can be added to simulate heat and mass 

transfer, as well as particle breakup and collisions.  This group of approaches can be classified as 

Eulerian-Eulerian, since both phases are dealt within an Eulerian framework. 

Lagrangian-Eulerian simulations take a different approach, in which individual particle 

trajectories are calculated within a Lagrangian framework.  Typically, a relatively small number 

of particles are tracked and each is used to represent a set of similar trajectories within the particle 

field.  Particles are often considered as point-masses in this approach, although volume-resolved 

methods do exist.  As with Eulerian-Eulerian simulations, various physical processes can be 

included or neglected in Lagrangian-Eulerian simulations, as needed.  The interested reader is 

directed to the comprehensive reviews of Loth (2000), Elghobashi (1994), Balachandar and Eaton 

(2010) and Subramaniam (2013) for more detailed descriptions of the Eulerian and Lagrangian 

approaches. 

The Eulerian-Eulerian approach was adopted in several previous studies, for simulations of wind-

driven rain (Huang & Li 2010; Kubilay et al. 2013, 2014; Kubilay et al. 2015a; Kubilay et al. 

2015b).  The authors reported a good agreement with experimental results and a significantly 

reduced computational cost, compared to Lagrangian-Eulerian simulations.  However, a 

comparison of the two approaches in simulations of a single solid-cone spray revealed that the 

accuracy and computational cost of Lagrangian-Eulerian and Eulerian-Eulerian simulations were 
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very similar in that case (Nijdam et al. 2006).  Nijdam et al. (2006) also noted two potential 

disadvantages of the Eulerian-Eulerian approach for simulations of sprays:  

1. Simulations requiring many discrete size classes could become prohibitively expensive, 

since transport equations would need to be solved for each size class throughout the entire 

domain. 

2. Spray interactions may not be accurately represented, since a single representative 

velocity would be calculated for each size class in each computational cell, prohibiting 

droplets of the same size from passing close by each other. 

The latter issue could be addressed by representing droplets from different sprays as separate 

phases, but this would exacerbate the former issue.  The vast majority of spray simulations that 

were reviewed in the present study adopted the Lagrangian-Eulerian approach. 

In the present study, the considerations outlined above, and an inspection of the droplet Stokes’ 

numbers, 𝑆𝑡, formed the basis of decisions related to the representation of the discrete phase.  

5.3.3 Interactions between Phases 

Coupling between the discrete and continuous phases can be classified as one, two or four-way.  

Two-way coupled simulations allow a two-way interaction between the phases, while one-way 

coupling only allows the continuous phase to influence the discrete phase.  ‘Four-way’ coupling 

implies that particles are able to collide with each other, in addition to two-way coupling between 

the phases.  A general ‘rule of thumb’ has been proposed, which suggests that two-way coupling 

should be employed in cases where the particle volume fraction, Φ, is greater than 10-6, and 

particle collisions should be taken into account when Φ ≳ 10-3 (Elghobashi 1994).  In reality, the 

sensitivity of CFD results to interphase coupling settings will depend on other aspects of the flow 

as well as the particle volume fraction. 

Momentum Transfer 

Regardless of the coupling option chosen, a variety of analytical and empirical drag laws can be 

used to model momentum transfer between phases (Ishii & Zuber 1979; Mashayek & Ashgriz 
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2011; Turton & Levenspiel 1986).  The appropriate choice of drag law depends on the drag regime 

being simulated, which can be estimated using 𝑅𝑒ௗ (see Section 3.2).  Droplet deformation should 

also be considered, since drag forces on deformed droplets can be significantly different to those 

that act on spherical droplets with the same volume.  The dimensionless parameters 𝑊𝑒 and 𝑂ℎ 

provide some insight into droplet stability and the propensity for deformation (see Section 3.2).  

In the present study, 𝑅𝑒ௗ, 𝑊𝑒 and 𝑂ℎ were used to form the basis of decisions as to whether 

droplets could be accurately represented by spherical particles, and whether droplet breakup 

should be modelled in simulations.  

Heat and Mass Transfer 

Heat and/or mass transfer can be included in both Eulerian and Lagrangian spray simulations.  

Particles are generally assumed to be isothermal and homogeneous in composition.  Convective 

heat transfer can be modelled using theoretical heat transfer coefficients, e.g. Ranz and Marshall 

(1952).  Droplet vaporisation can be modelled in a similar manner, if it is assumed that the 

continuous phase gas is saturated at the droplet surface, and latent cooling can be calculated from 

the vaporisation rate. 

The accuracy of heat and mass transfer models in CFD simulations of sprays has been investigated 

by Sureshkumar, Kale and Dhar (2008b), and Montazeri, Blocken and Hensen (2015b).  Both 

groups simulated a hollow-cone spray operating in a wind tunnel, and compared the air 

temperature and humidity downwind of the spray to the experimental results of Sureshkumar, 

Kale and Dhar (2008a).  Both simulation studies produced results that qualitatively matched the 

experimental results.  However, quantitatively, the CFD results varied from experimental results 

by up to 30%. 

Droplet Collision 

Droplet collisions in sprays can result in bouncing, splashing, persistent coalescence or 

coalescence followed by breakup (Brenn 2011; Frohn & Roth 2000; Orme 1997).  Modelling of 

such phenomena in simulations, where droplet fields are represented by Eulerian phases or sets 
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of Lagrangian point-particles, is largely based on geometry and empirical relations (Nijdam et al. 

2006; O'Rourke 1981; Ruger et al. 2000). 

The importance of coalescence in spray simulations has not been quantified in many previous 

studies.  Ruger et al. (2000) showed that, within two hollow-cone sprays, coalescence was 

probably the primary cause of an increase in Sauter mean diameter with increasing distance from 

the spray nozzles.  The droplet collision model used for simulations in that study reduced the 

discrepancy between experimental and CFD results by approximately 50%.  However, droplet 

collisions were not included in the majority of studies reviewed in the present work, and no other 

direct comparison was found between experimental measurements and CFD results obtained with 

and without droplet collision models. 

Droplet Breakup 

As discussed in the context of momentum transfer above, the breakup of droplets can be predicted, 

based on the dimensionless parameters 𝑊𝑒 and 𝑂ℎ.  Thus, the importance of breakup in spray 

simulations can be assessed quite easily, given a cursory understanding of the flow and its 

boundary conditions (e.g. droplet initial sizes and velocities).  Several models can be used to 

account for spray breakup, e.g. (O'Rourke & Amsden 1987; Reitz 1987).  These models have not 

been reviewed in-detail here, since they were not required in the present work.  Detailed 

descriptions of the models can be found in the abovementioned references, and several other 

sources, e.g. ANSYS (2014).  For further information on the physics of droplet breakup, the 

interested reader is directed to the numerical simulations of Jain et al. (2015) and the experimental 

work of Faeth, Hsiang and Wu (1995); Hsiang and Faeth (1992, 1995). 

5.3.4 Turbulence and Droplet Dispersion 

In RANS-based simulations of sprays, the interphase interactions described in the previous 

section only take the mean continuous-phase flow field into account.  However, in reality, 

turbulent eddies can influence the dispersion of droplets significantly.  It is therefore often 
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necessary to augment the drag forces calculated in the discrete phase momentum balance, to 

model the effects of turbulence on droplet trajectories. 

Turbulent dispersion models for Lagrangian-Eulerian simulations can be categorised into two 

groups: 1) eddy-interaction models, which aim to replicate the effects of a succession of turbulent 

eddies on each particle by introducing terms with a stochastic component into the particle 

momentum balance; and 2) particle ‘cloud’ tracking models, which compute the probability 

distribution associated with each particle’s location directly.  Eddy-interaction models can be 

further categorised as either: a) discrete random-walk (DRW), b) continuous random-walk 

(CRW), or c) Langevin stochastic differential equation models.  Differences between models have 

not been described in-detail here; the interested reader is directed to the summaries produced by 

of Loth (2000); MacInnes and Bracco (1992), as well as works on DRW models by: Call and 

Kennedy (1992); Dehbi (2008a); Gosman and loannides (1981); Graham (1998, 2001); Kallio 

and Reeks (1989); discussion on CRW models by Amani and Nobari (2013); the Langevin 

stochastic differential equation model proposed by Dehbi (2008b); and the work on ‘cloud’ 

tracking models by Jain (1998); Litchford and Jeng (1991). 

There is no established method to determine whether particular flow simulations require a 

turbulent dispersion model, or to select the most appropriate model when one is required.  As with 

many decisions in CFD, the computational cost and accuracy of each option should be understood, 

and an appropriate compromise made.  In the case of wildfire sprinkler simulations, some insight 

was available in previous published works concerned with similar flows. 

Kubilay et al. (2015a) demonstrated the importance of turbulent dispersion in simulations of 

wind-driven rain deposition on building facades; they noted a decrease in the deviation between 

experimental and CFD results from 24% to 15% when a DRW turbulent dispersion model was 

included.  CFD studies of particle deposition in idealised wall-bounded flows were also relevant, 

some of which had noted the importance of turbulence anisotropy (Call & Kennedy 1992; Dehbi 

2008a, 2008b; Parker, Foat & Preston 2008; Tian & Ahmadi 2007).  When the continuous phase 

flow field is calculated using RANS and ‘one-and-a-half’ order eddy viscosity models (which do 
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not resolve anisotropy), modelled velocity components can force droplets directly into walls, 

whereas, in reality, wall-normal velocity fluctuations are dampened.  The authors reported 

improvements in the accuracy of simulated wall-deposition rates when RSM were adopted.  

However, for particle diameters greater than 10 μm, simulations conducted with RSM and ‘one-

and-a-half’ order models produced similar results (Parker, Foat & Preston 2008; Tian & Ahmadi 

2007). 

In the present work, the importance of turbulent dispersion in simulations of wildfire sprinkler 

systems was investigated.  The investigation scope was limited to include only the DRW model 

implemented in ANSYS Fluent 14.5 (ANSYS 2014) and turbulence anisotropy was not 

considered. 

5.4 CFD Simulation Methodology 

CFD simulations were conducted, to compare the performance of various modelling approaches 

to wildfire sprinkler system analysis.  Steady-state RANS CFD simulations were conducted using 

the CFD code Ansys Fluent 14.5.  The coupled pressure-based solver was used, with least-squares 

‘cell-based’ (as opposed to node-based) spatial discretisation of gradients and second order 

discretisation of advection terms in all governing equations. 

5.4.1 Test Cases 

Five test cases were defined for the simulation study.  Four were taken from Chapter 4, each 

involving either a Holman ½-inch brass butterfly sprinkler or a ½-inch Champion S9F hollow-

cone nozzle, operating in wind, at either the windward or leeward side of a 2.4 m cube.  

Simulations of the butterfly sprinkler were included, to assess whether time-averaged 

representations of such periodic sprays could provide accurate CFD results.  Experiments A2, B3, 

C1 and D4 were selected, and have been hereafter referred to as Cases A, B, C and D, respectively.  

The fifth test case involved the undisturbed liquid jet emitted from a Vyrsa VYR 35 ¾-inch 360° 

impact sprinkler main nozzle, replicating the characterisation experiment described in Chapter 3.  

In that experiment, the sprinkler was inclined forwards (towards the main nozzle) by 15° and the 
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deflector paddle was restrained so that it did not rotate into the path of the liquid jet, thus also 

preventing rotation of the sprinkler head.  Thus, the fifth test case was a steady liquid jet, emitted 

into quiescent air at an angle of 11° above the horizontal. 

5.4.2 Computational Domain and Mesh 

One computational domain was defined for simulations of Cases A–D, i.e. the cases involving a 

cube immersed in the atmospheric boundary layer.  The domain dimensions were set according 

to recommendations found in relevant best-practice guidelines (Franke et al. 2007; Tominaga et 

al. 2008), with boundaries located 5𝐻 above, 5𝐻 laterally and 15𝐻 downstream from the cube 

(see Figure 5.1), where 𝐻 is the cube edge length.  The upstream boundary was located 3𝐻 from 

the cube, instead of the generally recommended distance of 5𝐻.  Such a reduction in the extent of 

the domain has been shown to have negligible effect on simulations of flow around isolated 

buildings, and can reduce the effects of boundary layer inhomogeneity in cases where the ground 

roughness does not maintain the inlet profiles of velocity or turbulence (Blocken, Carmeliet & 

Stathopoulos 2007; Blocken, Stathopoulos & Carmeliet 2007; Ramponi & Blocken 2012a; 

Ramponi & Blocken 2012b).  The generation of inlet boundary conditions is described later, in 

Section 5.4.5. 

 

FIGURE 5.1: Computational domain used for simulations of Cases A, B, C and D.  Dimensions 
are expressed in terms of the cube edge length, H, which was 2.4 m. 
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A second computational domain was defined for simulations of the impact sprinkler.  This domain 

was a rectangular prism, 25 m long, 10 m wide and 8 m high.  The sprinkler nozzle was located 

1 m from the base of the domain and 5 m from three of its sides (see Figure 5.2). 

 

FIGURE 5.2: Computational domain used for the impact sprinkler test case.  Dimensions are 
shown in metres. 

Computational meshes were generated in each domain (see Figure 5.3 and Figure 5.2).  The 

meshes were designed for use with wall functions, so, in the cube domain, elements in contact 

with the ground surface were formed with sufficient height to ensure that the centre of each 

element was further from the ground than the sand-grain roughness length set there.  The cube 

surfaces and the ground surface in the impact sprinkler domain would be set as smooth walls, so 

no such constraint was relevant to those surfaces.  A grid sensitivity analysis was conducted using 

three versions of each mesh, which had incrementally refined grid spacing, according to a grid 

refinement ratio of approximately 1.5.  Grid sensitivity study was conducted with all sub-models 

(e.g. turbulent droplet dispersion), to test the sensitivities of these models to grid spacing as well. 
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FIGURE 5.3: Computational mesh used for Cases A–D.  The top two images show isometric 
views of the mesh on solid boundaries (mean flow from bottom-left to top-right), the lower two 
images show the mesh on the streamwise vertical centre-plane (mean flow from left to right).  
Meshes with finer and coarser grid spacing than that shown here were also trialled during the 

mesh sensitivity analysis. 

 

FIGURE 5.4: Computational mesh used for the impact sprinkler case.  The top image shows an 
isometric view of the mesh on the solid boundary, the lower image shows the mesh on a centre-

plane.  Meshes with finer and coarser grid spacing than that shown here were also trialled 
during the mesh sensitivity analysis. 
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5.4.3 Continuous Phase Modelling 

The continuous phase flow field was simulated using the incompressible RANS equations.  The  

realisable k-ε (ANSYS 2014; Shih et al. 1995) and RNG k-ε (ANSYS 2014; Yakhot et al. 1992) 

models have performed best in previous validation studies concerned with pollutant dispersion 

around buildings (Tominaga & Stathopoulos 2009), especially near the top, side and leeward 

surfaces of building-like objects. Therefore, these two turbulence models were compared in the 

present work.  Unless stated otherwise, simulations in this chapter were conducted using the 

realisable k-ε model. 

The continuous phase was modelled as a mixture of dry air and water vapour using the ‘species 

transport’ method in Fluent.   Thus, the mass-fraction of water vapour in each computational cell 

was calculated from advection, diffusion and production terms, but the velocity and temperature 

of water vapour was assumed to be equal to those of dry air in each cell. 

5.4.4 Discrete Phase Modelling and Interphase Coupling 

The sprays were modelled as sets of pre-formed droplets by tracking point-particles in a 

Lagrangian framework.  Sensible heat transfer, droplet evaporation and the associated latent 

cooling were included in the simulations. 

The Stokes’ numbers, 𝑆𝑡, and liquid volume fractions, Φ, relevant to Cases A–D were estimated 

using: i) the droplet diameter measurements from Chapter 3; ii) the mean 10 m-elevation wind 

speed from the measurements in Chapter 4; and iii) the cube side-length of 2.4 m.  The calculated 

𝑆𝑡 were between 3×10-7 and 3×10-4, and Φ ranged from approximately 3×10-4 to 2×101 (see Figure 

5.5).  According to the ‘rules of thumb’ described in Sections 5.3.2 and 5.3.3, these values 

indicated that: i) some particle trajectories were likely to follow continuous-phase streamlines 

quite closely, while others would not; ii) droplets were likely to have a significant effect on the 

local air flow; and iii) droplet collisions were unlikely to have a large effect on the sprays.  Based 

on these observations, both one and two-way coupled CFD simulations were run in the present 

work and the results were compared, but droplet collisions were not simulated. 
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FIGURE 5.5: Stokes number plotted against liquid volume fraction, estimated from the 
measurements of the butterfly and hollow-cone sprays in Chapter 3, wind measurements in 

Chapter 4 and the cube side-length (2.4 m).  Different flow regimes are also shown, based on 
general ‘rules of thumb’ for simulations of particle-laden flow proposed in the literature 

(ANSYS 2014; Elghobashi 1994). 

Drag coefficients were calculated using the expression proposed for spherical particles by Morsi 

and Alexander (1972).  This approach was justified by an analysis of droplet Reynolds numbers, 

𝑅𝑒ௗ, and Weber numbers, We, which were calculated from the relevant droplet velocities and 

diameters reported in Chapter 3, with an assumption that the ambient air was quiescent.  This 

simplified approach neglected wind and air entrainment into the spray, but provided some insight 

into the cases of interest.  Calculated Reynolds numbers, Red, ranged from 1×10-1 to 3×103 (see 

Figure 5.6), i.e. from Stokes’ drag regime to the onset of significant droplet deformation (Ishii & 

Zuber 1979).  The majority (>95%) of calculated Weber numbers were less than 0.6 (see Figure 

5.7), indicating that a spherical drag law may be appropriate.  The simplified analysis adopted 

here could have overestimated 𝑅𝑒ௗ and 𝑊𝑒 by neglecting air entrainment into the sprays, but 

could also have underestimated these values by neglecting wind.  Considering the air and droplet 

velocities involved in the cases of interest, such simplifications are unlikely to have influenced 

the calculated 𝑅𝑒ௗ and 𝑊𝑒 by more than factors of ~0.4 and ~2, respectively.  Based on the ranges 

of 𝑅𝑒ௗ and 𝑊𝑒, and the ‘rules of thumb’ outlined in Section 5.3.3, the CFD simulations were 

conducted with drag laws for spherical particles and droplet breakup was not considered. 
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FIGURE 5.6: Reynolds numbers of spherical droplets travelling through still air.  Data obtained 
from measurements (described in Chapter 3) of sprays produced by the butterfly, hollow-cone 

and impact sprinklers are presented, with an assumption that the ambient air was quiescent.  
Actual droplet Reynolds numbers would have been different in the test cases, due to the effects 

of air entrainment into the sprays and wind. 

  

FIGURE 5.7: Weber numbers of spherical water droplets travelling through still air.  Data 
obtained from measurements (described in Chapter 3) of sprays produced by the butterfly and 

hollow-cone sprinklers are presented, with an assumption that the surrounding air was still.  
Actual droplet Weber numbers would have been different in the test cases, due to air 

entrainment into the sprays and wind. 

Simulations were run with and without a turbulent dispersion model, and with various numbers 

of stochastic iterations, 𝑛௧ௗ, to investigate the sensitivity of results to these settings.  The DRW 

model available in ANSYS Fluent 14.5 (ANSYS 2014) was used. 
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5.4.5 Boundary Conditions 

For Cases A–D the velocity, turbulence kinetic energy (𝑘), turbulence dissipation rate (𝜀ሻ, 

temperature and water vapour mass fraction were fixed at the inlet boundaries.  The vertical 

profiles of velocity, 𝑘 and 𝜀 were defined by the standard power law (Tominaga et al. 2008), fitted 

to measured values from the experiments corresponding to each case (see Figure 5.8).  The 

standard 𝑘 profiles were of a similar magnitude as the measured values, but differed significantly 

in shape.  To investigate whether such discrepancies had a significant effect on the CFD results, 

simulations were run with the standard profiles and with custom profiles, which fitted the 

experimental data more closely.  The custom profiles did not have a basis in boundary layer 

theory, and were unrealistic in that 𝑘 approached infinity with increasing height, but they did 

match the measured values well close to the ground, in flow surrounding the sprays.  The 

temperatures and water vapour mass fractions assigned to inlet boundaries were constant with 

height, and matched the temperature and humidity measurements from the relevant experiments.   

The outlet boundaries in Cases A–D, downstream of the cube, were assigned constant pressure.  

The top boundary was assigned the same fixed parameters that were set at the top of the inlets.  

In the impact sprinkler case, all four side boundaries and the top boundary were set with fixed 

pressure, since there was no wind in that case. 

Solid boundaries were set as adiabatic, non-slip walls in all five cases.  The wall functions outlined 

by (Launder & Spalding 1974) were adopted, with a correction to enforce a logarithmic velocity 

profile when the dimensionless wall distance was below 11.225, which was referred to as 

‘scalable wall functions’ in the ANSYS Fluent documentation (ANSYS 2014).  The aerodynamic 

roughness of the cube surfaces in Cases A–D and the ground in the impact sprinkler case were set 

as zero (smooth walls), and the roughness of the ground in Cases A–D were set to match the inlet 

boundary layer profiles.  Droplets that hit any boundary (solid or open) were removed from the 

simulation. 
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FIGURE 5.8: Vertical profiles of a) mean streamwise velocity and b) turbulence kinetic energy 
for simulations of Cases A–D, compared to results from the corresponding experiments in 
Chapter 4.  Two sets of turbulence kinetic energy profiles were trialled, those matching the 

standard power-law boundary layer (labelled ‘std.’) and those fitted to the experimental data 
(labelled ‘fit’).  Height has been non-dimensionalised using the cube height, 𝐻 ൌ 2.4 m. 

The effect of inactive turbulence on the dispersion of droplets in Cases A–D was also investigated, 

by running nine simulations with different inlet boundary conditions for each case and combining 

the results into weighted averages.  In this way, results were obtained that represented the each 

case with varying mean wind velocities, without incurring the significant computational cost of 

particle tracking throughout transient simulations spanning ~10 min.  Clearly, this approach was 

unlikely to generate exactly the same results as transient simulations, but it did give an indication 

of the magnitude of error that was introduced by not including inactive turbulence in the 

individual steady simulations. 

Inlet boundary conditions were defined for each set of nine simulations by a 5-step process: 

1. The turbulent length scale modelled by the DRW turbulent dispersion model was 

determined, using the relation: 𝐿௘ ൌ ൫𝐶ఓ
ଷ ସ⁄ 𝑘ଷ ଶ⁄ ൯ 𝜀⁄ , where 𝐶ఓ ൌ 0.09 is the 𝑘-𝜀 model 

constant, and 𝑘 and 𝜀 were evaluated at the reference height, 10m. 

2. The relation: 𝑡௘ ൌ 𝐿௘ 𝑈ഥ⁄  was used to estimate a time scale corresponding to 𝐿௘; here, 𝑈ഥ 

is the mean velocity, also evaluated at the reference height. 

a) b) 
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3. A low-pass filter, with a cut-off frequency of 1 𝑡௘⁄ , was applied to the time-series of 

velocity measurements taken at the reference height during the relevant experiment, 

thereby removing velocity fluctuations that would be accounted for by the turbulent 

dispersion model. 

4. Within the set of wind speeds and directions in the large-scale ‘inactive’ fluctuations that 

remained, nine evenly spaced reference velocities were defined, using each combination 

of the mean, mean plus 4/3 the standard deviation, and mean minus 4/3 the standard 

deviation, of wind speed and direction, respectively (see Figure 5.9). 

5. The direction and magnitude of the inlet velocity profiles were set according to the nine 

reference velocities.  Vertical profiles of 𝑘 and 𝜀 were also affected by these adjustments, 

due to their reliance on the velocity magnitude to the power-law ABL profile equations. 

 

FIGURE 5.9: Filtered wind speed and direction measurements, taken at a height of 10m during 
the experiment corresponding to Case A, and the nine velocities selected for use in steady 

simulations of that case.  High-frequency fluctuations have been filtered out, since they would 
be modelled by the turbulent dispersion model. 

Results from each set of nine simulations were combined into one weighted-average.  Weighting 

factors were assigned to each result according to probability density estimates, which represented 

the portion of time during the experiment that the wind velocity (at 10 m) had been close to the 
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simulated value.  A kernel-based estimating method with Gaussian kernels was used to generate 

the probability density estimates. 

5.4.6 Droplet Sources 

Each spray was represented by a relatively small number of pre-formed droplets, which were 

defined by initial locations, velocities, diameters and temperatures, as well as mass flow-rates 

(since each one represented a set of similar droplets).  For each simulation, a set of 𝑛ௗ distinct 

initial diameters was selected, and a set of 𝑛௦ spatially unique source points were defined within 

the computational domain.  During each tracking procedure, one droplet with each of the initial 

diameters was tracked from each source point.  The mass flow-rate and initial velocity associated 

with each of these 𝑛ௗ𝑛௦ droplets were calculated from the probability density functions reported 

in Chapter 3.  Thus, distributions of diameter and velocity that had been measured in the actual 

sprays were replicated in the simulations, as were correlations between diameter and velocity, and 

spatial variations thereof.  All droplet initial temperatures were set as 24.5°C, which was within 

±2°C of values measured during the experiments. 

Simulation of the impact sprinkler case by such a method was not straight-forward, since the spray 

characteristics had been measured 6 m from the sprinkler, beyond the regions of primary and 

secondary breakup.  If the droplet source points were implemented so far from the sprinkler in 

simulations with wind, the effects of the wind would be greatly underestimated.  Two alternative 

approaches were to define droplet source points much closer to the sprinkler, or to introduce a 

liquid jet into the domain and simulate its breakup.  The former approach was tested in the present 

study.  A set of droplets, with appropriate distributions of diameter and mass-flow, were released 

from a single source point (𝑛௦ ൌ 1) at the sprinkler location (see Figure 5.10).  The initial velocity 

of all droplets was set in the direction of the liquid jet flow, with a magnitude matching the initial 

jet speed. 
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FIGURE 5.10: Challenges associated with the application of measured spray characteristics to the 
simulation of the liquid jet emitted by the impact sprinkler.  Droplet characteristics had been 

measured 6m from the sprinkler.  If droplet source points were located so far from the sprinkler 
in simulations involving wind, the effects of wind would likely be underestimated.  The 

approach tested in the present study was to release pre-formed droplets from a single point at the 
sprinkler location, with velocities equal to the jet initial velocity. 

This approach was highly simplified.  Two potential issues were identified with it: 1) the spray 

may not penetrate as far as it should into the domain, since drag forces on discrete droplets are 

significantly different to those that act on a liquid column; and 2) the only mechanism by which 

the trajectories of droplets with the same initial diameter would deviate from each other would be 

the stochastic forces introduced by the turbulent dispersion model, while, in reality, droplet 

trajectories would deviate as a product of the breakup process.  However, the approach did 

produce a spray with a diameter distribution matching that which had been measured, and it 

allowed interaction between the phases through the full droplet trajectories.  The method tested 

here also avoided the computational expense associated with simulating liquid jet breakup.  The 

results of simulations were compared to the measurements taken 6 m from the sprinkler in Chapter 

3, to determine whether accurate results could be obtained, despite the highly simplified approach 

that had been taken.  The sensitivity of results to the number of distinct initial diameters, 𝑛ௗ, was 

also tested. 
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In Cases A–D, droplet source points were located on a sphere, with the sprinkler at its centre and 

the droplet initial velocities directed radially outwards.  The source points were evenly spaced in 

a lattice pattern throughout the range of solid angles in which droplets had been measured.  The 

sensitivity of results to the number of initial diameters, 𝑛ௗ, and spatially unique source points, 𝑛௦, 

was investigated, to ensure that the final results were not significantly affected by these settings. 

The radius of the sphere on which the droplet source points were located, hereafter referred to as 

the ‘spray source radius’, was also varied between simulations, to investigate the influence of this 

parameter on results.  In the same line of reasoning as has been presented for the impact sprinkler 

case above, it was possible that simulations in which droplets were introduced ‘as measured’, i.e. 

some distance from the sprinkler, could underestimate the effects of wind (see Figure 5.11).  A 

spray source radius reduction factor, 𝛿, was defined, such that: 

 𝑟௦ ൌ 𝛿𝑟௠ (5.1) 

where 𝑟௦ is the spray source radius and 𝑟௠ is the distance from the sprinkler at which 

measurements had been taken (326 mm and 533 mm for the hollow-cone and butterfly sprinklers, 

respectively).  Several simulations were conducted for each case, with progressively reduced 

spray source radius according to 𝛿 ൌ ሼ1, 0.8, 0.6, 0.4, 0.2ሽ. 

Reduction of the spray source radius led to another research question: should droplet initial 

velocities be set ‘as measured’ when the droplets are released from points closer to the nozzle, or 

should the velocities be augmented somehow, to correct for the acceleration they would undergo 

before reaching the point at which measurements were taken?  Previous studies had reported 

significant changes in droplet velocity distributions in the near-field, close to spray nozzles (Dorr 

et al. 2013; Nuyttens et al. 2007; Nuyttens et al. 2009).  Augmentation of the droplet initial 

velocities may be beneficial in simulations with reduced spray source radius, since it could correct 

for such acceleration.  To test this theory, simulations with reduced spray source radius were run 

with initial droplet velocities implemented ‘as measured’ and in an augmented form, and the 

results were compared. 
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FIGURE 5.11: Challenges associated with the application of ‘still-air’ spray measurements to 
simulations with wind, and the spray source reduction factor, δ, that was trialled to address these 

challenges.  Reduction of the droplet source radius does not replicate reality, but does allow 
some momentum, mass and energy transfer between phases closer to the nozzle, which may 

replicate a wind-affected spray more accurately.  This hypothesis was tested. 

It was not possible to calculate a set of augmented droplet initial velocities that would correct for 

the reduction in spray source radius exactly, since the air velocity field close to the sprinkler was 

not known.  However, a simple method was developed which approximately corrected for the 

acceleration that the simulated droplets would undergo while travelling from 𝛿𝑟௠ to 𝑟௠.  The 

droplets were assumed to be spherical and all forces except drag were neglected—the effect of 

gravity was assumed to be negligible compared to drag over the short trajectory of interest.  The 

local air velocity was also assumed to be aligned with the droplet direction of travel.  Thus, the 

acceleration of each droplet could be calculated in one-dimension.  The change in droplet 

momentum over time was given by: 

 𝑚ௗ
𝑑𝑢
𝑑𝑡

ൌ ିଵ   
ଶ

𝐶ௗ𝜌௔ሺ𝑢 െ 𝑢௔ሻଶ𝐴ௗ (5.2) 

where 𝑚ௗ, 𝑢 and 𝐴ௗ are the mass, velocity and frontal area of the droplet, respectively, 𝐶ௗ is the 

drag coefficient, 𝑡 is time, and 𝜌௔ and 𝑢௔ are the density and local velocity of the air, respectively.  

Substitution of equations for the droplet mass and area, and replacement of 𝑑𝑢 𝑑𝑡⁄  with 𝑢 𝑑𝑢 𝑑𝑟⁄  

yielded: 
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 𝜌ௗ
𝜋𝑑ଷ

6
𝑢

𝑑𝑢
𝑑𝑟

ൌ ିଵ
଼

𝐶ௗ𝜌௔ሺ𝑢 െ 𝑢௔ሻଶ𝜋𝑑ଶ (5.3) 

where 𝑟 represents the droplet distance from the sprinkler and 𝜌ௗ is the droplet density.  An 

expression containing the new, augmented, initial droplet velocity, 𝑢ଵ, was obtained by 

rearranging (5.3) and integrating both sides from the point of release to the point at which 

measurements had been taken: 

 න
𝑢

𝐶ௗሺ𝑢 െ 𝑢௔ሻଶ

௨೘

௨భ

𝑑𝑢 ൌ
െ3𝜌௔

4𝜌ௗ𝑑
න 𝑑𝑟

௥೘

ఋ௥೘

 (5.4) 

Here, 𝑢௠ droplet velocity that was measured in Chapter 3. 

Two issues prevented the direct solution of (5.4) to find 𝑢ଵ: 1) the local air velocity, 𝑢௔, was 

unknown and could vary along the path of the droplet; and 2) the drag coefficient, 𝐶ௗ, varies as a 

function of 𝑢.  To overcome these issues, 𝐶ௗ was assumed to be constant for each droplet and was 

calculated based on the average of 𝑢ଵ and 𝑢௠.  𝑢௔ was also assumed to be constant along the path 

of each droplet.  It was observed that the magnitude of  𝑢௔ would be likely to lie between 0 (still 

air) and the lowest measured droplet speed in that region of the spray—typically the speed of a 

very small droplet, which would act somewhat like a tracer particle (Melling 1997).  Thus, the 

constant air velocity was estimated using the expression: 

 𝑢௔ ൌ 𝑓௔𝑢௠,௠௜௡ (5.5) 

Here, 𝑓௔ is a factor between 0 and 1, and 𝑢௠,௠௜௡ is the minimum droplet velocity that was 

measured in the region of the spray surrounding the droplet of interest.  There was no obvious 

basis for the selection of a value for 𝑓௔.  A value of 0.95 was adopted, based on the thesis that the 

smallest, slowest droplets within the sprays were small enough and had travelled far enough from 

the breakup region to act acceptably well as tracer particles. 

Integration and simplification of (5.4) then yielded: 

 lnሺ𝑢ଵ െ 𝑢௔ሻ െ
𝑢௔

𝑢ଵ െ 𝑢௔
ൌ

3𝜌௔ሺ1 െ 𝛿ሻ𝑟௠𝐶ௗ

4𝜌ௗ𝑑
൅ lnሺ𝑢௠ െ 𝑢௔ሻ െ

𝑢௔

𝑢௠ െ 𝑢௔
 (5.6) 
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This equation was solved numerically, by iteratively recalculating 𝑢௔ until the solution 

converged.  The empirical relationship for spherical particles proposed by Morsi and Alexander 

(1972), and implemented in ANSYS Fluent, was used to calculate 𝐶ௗ. 

It is acknowledged that the procedure described above contains several important assumptions.  

Its use in the present work was intended to provide an approximate correction for the effects of a 

reduced spray source radius, thereby allowing the influence of such velocity augmentation to be 

estimated.  It may be that more sophisticated methods exist, which reduce the uncertainty in the 

augmented velocity, 𝑢ଵ. 

5.4.7 Post-Processing of CFD Results 

The details of droplets were recorded when they impacted on solid surfaces during the CFD 

simulations.  However, it was only possible to record the values one time-step prior to impact.  

To estimate the location of each impact, the droplets were assumed to maintain a constant velocity 

during their final time-step—typically covering a distance of several millimetres.  The recorded 

diameter, temperature and mass flow-rate of such droplets were not changed.  A kernel density 

estimation method with Gaussian kernels used to convert the droplet impact data into continuous 

deposition fluxes on the solid surfaces.  Band-widths of the kernels were tuned, to produce 

deposition flux profiles that were relatively smooth, but not overly so. 

A dimensionless deposition flux was defined using the local water deposition flux on a surface, 

𝑞 [L s-1 m-2], water flow rate through the sprinkler, 𝑄 [L s-1], and the height of the cube, 𝐻 ൌ 2.4 

m, as follows: 

 𝑞∗ ൌ
𝑞𝐻ଶ

𝑄
 (5.7) 

This variable has been used to compare results in the following sections.  The standard deviation 

of simulated 𝑞∗ in sets of results, 𝜎௤∗, has also been referred to at some points in the following 

discussion, as a measure of the repeatability of results. 
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5.5 Results and Discussion 

Simulations of the five test cases were qualitatively similar to the corresponding experiments (see 

Figure 5.12).  The relatively large influence of drag forces (including the effects of the turbulent 

dispersion model) on smaller droplets was evident in all four cases involving wind (Cases A–D).  

Figure 5.13 displays an example of the continuous water deposition flux data obtained from the 

simulations.  Fluxes in regions corresponding to the collection gauge apertures have been 

compared to experimental results through the remainder of this chapter. 

 

 

 

   

FIGURE 5.12: Comparison of CFD simulations with the corresponding experiments, for Cases 
A–D.  Only a small sample of simulated droplet trajectories have been shown, coloured 
according to diameter (mm).  The mean wind flow is from right to left in each image. 
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b 

c 
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b 
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Droplet diameter [mm] 
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FIGURE 5.13: Simulated water deposition flux on the cube and ground surfaces in Case B. 

5.5.1 Mesh Sensitivity 

Water deposition fluxes simulated using coarse, medium and fine meshes were qualitatively very 

similar (see Figure 5.15 and Figure 5.14).  The mean deviation between results obtained using the 

medium and fine meshes ranged from 3.1% to 5.9%, while the coarse meshes generated results 

that deviated from the fine-mesh results by 4.3% to 15.2%, on average.  The largest variations 

were observed downwind of the cube in Case C and in the impact sprinkler case.  Case C involved 

relatively large, slow droplets, which were emitted in the highly turbulent region at the leeward 

side of the cube, so it is likely that much of the variation in results from that case was caused by 

stochastic elements of the turbulent dispersion model.  Droplets were able to penetrate further 

into the domain in the impact sprinkler case when a finer mesh was used, since regions of air 

entrainment around the concentrated stream of droplets could be resolved more accurately.  The 

medium meshes were deemed to provide an acceptable degree of accuracy for the present 

investigation, so they were used for all subsequent simulations. 

Wind 

Hollow‐cone sprinkler,  
pointed upwind 
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FIGURE 5.14: Sensitivity of simulated water deposition flux to refinement of the computational 
mesh, for the impact sprinkler case.  Results have been sampled along a line at the base of the 

domain, starting directly below the sprinkler. 
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FIGURE 5.15: Sensitivity of simulated water deposition flux to refinement of the computational 
mesh.  Results have been sampled along a line across the centre of the cube windward, top and 

leeward faces, starting on the ground, a distance 2H upwind of the cube and ending on the 
ground, 4H downwind of the cube, where H is the cube height of 2.4 m.  Each plot presents 

results from one of the four cases: (a) butterfly sprinkler windward of the cube, (b) hollow-cone 
spray windward of the cube, (c) butterfly sprinkler leeward of the cube, and (d) hollow-cone 

spray leeward of the cube. 
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5.5.2 Horizontal Homogeneity 

Simulations conducted in a long, empty, two-dimensional domain demonstrated that the 

computational mesh, turbulence model and boundary conditions could maintain a horizontally 

homogeneous velocity profile fairly well, but that the inlet profiles of 𝑘 and 𝜀 deteriorated 

significantly within several cube edge-lengths of the inlet (see Figure 5.16).  The deterioration of 

atmospheric boundary layer turbulence profiles in RANS-based CFD simulations has been well 

documented (Blocken, Stathopoulos & Carmeliet 2007; Richards & Norris 2011).  As discussed 

in Section 5.4.2, the upstream extent of the domain was set 3𝐻 from the cube in simulations of 

Cases A–D, which minimised differences between the boundary layers incident on the cube and 

those measured in the field.  The most significant deviations from the standard boundary layer 

profiles observed 3𝐻 from the domain inlet were reductions in 𝑘 close to the ground.  Such 

deviations from the standard 𝑘 profile actually brought the 𝑘 profile into closer agreement with 

measured values (see Section 5.4.5 and Figure 5.8), so they were not considered to be a cause for 

significant concern. 

 

FIGURE 5.16:  Horizontal homogeneity of vertical profiles of a) velocity, b) turbulent kinetic 
energy, and c) turbulent dissipation rate, when implemented in a long, empty, two-dimensional 

domain.  Profiles are compared from several horizontal distances from the domain inlet (𝑥).  
Lengths have been non-dimensionalised using the cube edge length, 𝐻 ൌ 2.4 m. 

a) b) c) 
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5.5.3 Sensitivity to Inlet Turbulence Kinetic Energy Profile 

Simulations of Cases A–D conducted with the standard and custom inlet profiles of 𝑘 produced 

results that were very similar (see Figure 5.17).    The standard profiles produced results that 

agreed more closely with experimental results on the ground behind the cube in Cases C and D, 

and on the leeward face of the cube in Case D.  Flow in these regions was highly turbulent, but 

much of the turbulence was introduced by flow interactions with the cube.  It is likely that some 

of the variation that was observed in results was caused by stochastic elements of the turbulent 

dispersion model.  However, the consistency with which results leeward of the cube were 

improved by adopting the standard profiles did indicate that such changes may also be important.  

All subsequent simulations were conducted with the standard inlet profiles of 𝑘. 

 

FIGURE 5.17: Water deposition fluxes simulated with the standard turbulence kinetic energy (𝑘) 
profile for the power-law boundary layer, and with a custom 𝑘 profile fitted to experimental 
data, plotted against the corresponding experimental results.  Results are presented for four 

cases: a) butterfly sprinkler windward of the cube, b) hollow-cone spray windward of the cube, 
c) butterfly sprinkler leeward of the cube, and d) hollow-cone spray leeward of the cube. 
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5.5.4 Sensitivity to Droplet Source Settings 

In Cases A–D, simulations with increasing numbers of droplet source points, 𝑛௦, and size classes, 

𝑛ௗ, produced distributions of water deposition flux that appeared to converge towards a limit (see 

Figure 5.18).  Simulations with fewer than 10 droplet size classes or 1,000 source points produced 

results that deviated significantly from the reference results, which were obtained with 𝑛௦ ൌ 

10,000 and 𝑛ௗ ൌ 20.  Considering each case separately, the mean deviation of results obtained 

using 𝑛௦ ൌ 1,000 and 𝑛ௗ ൌ 10 from the reference results ranged from 2.9% to 5.3%, while those 

obtained using 𝑛௦ ൌ 3,160 and 𝑛ௗ ൌ 15 deviated from the reference by between 1.4% and 3.7%. 

 

FIGURE 5.18: Sensitivity of simulated water deposition, on and around the cube, to the number 
of spatially unique droplet source points (ns) and the number of droplet size classes (nd).  Results 
are presented for four cases: (a) butterfly sprinkler windward of the cube, (b) hollow-cone spray 

windward of the cube, (c) butterfly sprinkler leeward of the cube, and (d) hollow-cone spray 
leeward of the cube. 

Similar results were obtained in the impact sprinkler case, except that all simulations of that case 

were conducted with 𝑛௦ ൌ 1.  Simulations conducted with fewer than 20 droplet size classes 

deviated significantly from the reference simulation, which was run with 𝑛ௗ ൌ 30 (see Figure 
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5.19).  The mean deviation of water deposition fluxes simulated with 𝑛ௗ ൌ 20 and 𝑛ௗ ൌ 25 from 

the reference result, were 4.7% and 2.7%, respectively. 

 

FIGURE 5.19: Sensitivity of simulated water deposition on the ground near the impact sprinkler, 
to the number of droplet size classes (nd).  The number of spatially unique droplet source points 

(ns) was fixed as 1 for simulations of the impact sprinkler. 

The total number of particles tracked per iteration was given by the product of 𝑛௦, 𝑛ௗ and, when 

the turbulent dispersion model was implemented, the number of stochastic iterations, 𝑛௧ௗ.  Thus, 

the computational cost of simulations was strongly influenced by changes to 𝑛௦ or 𝑛ௗ, and 

selection of values for 𝑛௦ or 𝑛ௗ is a balance between accuracy and computational cost.  In the 

present study, all subsequent simulations of Cases A–D were conducted with 𝑛௦ ൌ 3,160 and 

𝑛ௗ ൌ 15, and simulations of the impact sprinkler case were conducted with 𝑛ௗ ൌ 25. 

The spray source radius also had a significant effect on simulated water deposition flux.  

Simulations of Cases B and C were observed to deviate more from experimental results when the 

droplet source points were located closer to the sprinkler nozzle (see Figure 5.20).  Simulations 

of Cases A and D were improved by small (20–40%) reductions in the source radius but began to 

deviate more from the experiments when the source radius was reduced further.  When droplet 

initial velocities were augmented to account for the reduced spray source radius, the mean error 

in Cases B and C was affected less by reductions in the spray source radius, and simulations of 

Cases A and D exhibited gradual improvement as the droplet sources were moved closer to the 

sprinkler.  One and two-way coupled simulations were effected similarly by changes in the droplet 

source radius. 
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FIGURE 5.20: Influence of spray source radius on simulation accuracy.  Droplets were 
introduced into the simulations at various distances from the sprinkler nozzle, defined by       

𝑟 ൌ 𝛿𝑟௠௘௔௦, where 𝑟௠௘௔௦ is the distance from the sprinkler nozzle at which the sprays were 
characterised in Chapter 3.  In some simulations the initial velocities of the droplets were equal 

to those measured in Chapter 3, and in others they were augmented to account for any 
acceleration between the point of release and 𝑟௠௘௔௦.  Results are presented for four cases: (a) 
butterfly sprinkler windward of the cube, (b) hollow-cone spray windward of the cube, (c) 

butterfly sprinkler leeward of the cube, and (d) hollow-cone spray leeward of the cube.  

It was not possible to reach a definitive conclusion based on the results presented here, as to 

whether droplet source points in all CFD simulations of sprays should be located ‘as measured’ 

or closer to the spray nozzle.  However, the results did highlight the sensitivity of some spray 

simulations to such choices, and the benefits that augmentation of initial droplet velocities can 

have when the droplet source locations are not set ‘as measured’.  In the four cases examined 

here, the best overall agreement with experimental results was obtained with reduced spray source 

radii, such that 𝛿 ൌ 0.2, and augmented initial droplet velocities.  With these settings, the mean 

deviation of Cases A and D from experimental results was reduced by 24% and 46%, respectively, 

compared to simulations with droplets released ‘as measured’, while the deviation between 
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simulations of Cases B and C and the corresponding experiments was increased by 35% and 22%, 

respectively.  These settings were used for all subsequent simulations in the present work. 

5.5.5 Influence of Turbulent Dispersion 

Simulations of all five cases exhibited decreased sensitivity to the number of stochastic iterations 

used in the DRW turbulent dispersion model, 𝑛௧ௗ, as 𝑛௧ௗ was increased (see Figure 5.21 and 

Figure 5.22).  Increases in 𝑛௧ௗ above approximately 20 had a relatively small effect on the 

repeatability of simulated water deposition fluxes, since a good statistical representation of the 

spray had been established.  Similar to 𝑛ௗ and 𝑛௦, selection of 𝑛௧ௗ was a compromise between 

computational cost and accuracy.  All subsequent simulations employing the turbulent dispersion 

model were conducted with 𝑛௧ௗ ൌ30. 

 

FIGURE 5.21: Influence of the number of stochastic iterations, ntd, used in the discrete-random-
walk turbulent dispersion model, on the repeatability of simulated water deposition fluxes.  

Each data point represents the normalised standard deviation of water deposition fluxes 
predicted, at a single point, by 20 simulations run with the same settings.  Results are presented 
for four cases: (a) butterfly sprinkler windward of the cube, (b) hollow-cone spray windward of 
the cube, (c) butterfly sprinkler leeward of the cube, and (d) hollow-cone spray leeward of the 

cube. 
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FIGURE 5.22: Influence of the number of stochastic iterations, ntd, used in the discrete-random-
walk turbulent dispersion model, on the repeatability of simulated water deposition fluxes in the 

impact sprinkler case.  Each data point represents the normalised standard deviation of water 
deposition fluxes predicted, at a single point, by 20 simulations run with the same settings. 

Comparison of results obtained with and without the turbulent dispersion model revealed that, in 

some cases, the agreement between CFD and experimental results was improved significantly by 

the turbulent dispersion model (see Figure 5.23).  The most notable improvements were observed 

on the ground at the leeward side of the cube in Cases C and D, on the leeward surface of the cube 

in Case D, on the windward surface of the cube in Case B and on the top surface of the cube in 

Case A.  Turbulence could be expected to have the largest influence droplet trajectories in such 

regions, since turbulence would have been significantly more intense in regions of separated flow, 

close to the top cube surface and at the leeward side of the cube, and near the stagnation point at 

the cube windward surface. 

Droplets travelling directly from the butterfly sprinkler to the nearest cube surface (i.e. the 

windward surface in Case A and leeward surface in Case C) were also influenced significantly by 

the turbulent dispersion model, but with no clear improvement in the correlation between CFD 

and experimental results.  This may have been caused by the simplified representation of that 

spray in simulations, as a steady conical spray rather than the swirling stream of droplets that it 

was in reality.  The dense grouping of droplets within the actual spray would have been influenced 

less by the mean airflow, and turbulent fluctuations thereabout, than the time-averaged version of 

the spray that was simulated. 
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FIGURE 5.23: Water deposition fluxes simulated with and without the turbulent dispersion 
model (TD) enabled, plotted against the corresponding experimental results.  Results are 

presented for four cases: a) butterfly sprinkler windward of the cube, b) hollow-cone spray 
windward of the cube, c) butterfly sprinkler leeward of the cube, and d) hollow-cone spray 

leeward of the cube. 

5.5.6 Comparison of Turbulence Models 

Results obtained using the RNG k-ε turbulence model were qualitatively very similar to those 

produced using the realisable k-ε model (see Figure 5.24).  Neither model was distinctly superior 

for a majority of the test cases, although some individual results did differ by up to 2 mL s-1 m-2, 

which amounted to a relative difference of 50% in the case of one result.  The RNG k-ε model did 

replicate experimental deposition fluxes on the top cube surface with slightly better accuracy in 

Cases A, B and D, which may indicate that the RNG model simulated the separated flow above 

the cube more accurately.  However, comparison to a larger experimental dataset would be 

required before such a conclusion could be made with confidence.  For the sake of consistency, 

and since the performance of both turbulence models was acceptable in the cases tested here, 

subsequent simulations in the present work were run using the realisable k-ε turbulence model. 
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Figure 5.24: Comparison of water deposition fluxes simulated with the realisable k-ε (R k-ε) and 
renormalisation group k-ε (RNG k-ε) turbulence models.  Results are presented for four cases: a) 

butterfly sprinkler windward of the cube, b) hollow-cone spray windward of the cube, c) 
butterfly sprinkler leeward of the cube, and d) hollow-cone spray leeward of the cube. 

5.5.7 Interphase Coupling 

Simulations of Cases A–D conducted with one-way coupling produced results that were within 

10% of two-way coupled solutions, in 31 of the 32 results that were compared (see Figure 5.25).  

The largest differences were observed on the windward and leeward cube surfaces, in cases where 

the sprinklers were emitting droplets directly towards these surfaces.  This was probably due to 

the high liquid volume densities and velocities in the regions between the sprinklers and cube in 

such cases, which would have had a relatively large influence on the local air flow. 

The results presented here indicate that, for many cases, acceptable accuracy may be achieved 

using one-way coupled simulations.  This is a significant finding, since the computational 

requirements of such simulations can be 1–2 orders of magnitude less than those of two-way 

coupled simulations.  However, it is apparent that the relative importance of droplet-air influence 
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can be greater in cases involving spray impingement onto solid surfaces from a relatively close 

range.  Furthermore, two-way coupled simulations must be used for cases in which the heat and/or 

mass transfer from droplets to the continuous phase is important, e.g. for cases in which the 

cooling effect of sprays on the air flow is of interest, or when the local accumulation of water 

vapour may have a significant effect on droplet evaporation rates. 

 

FIGURE 5.25: Water deposition fluxes from one and two-way coupled simulations, plotted 
against the corresponding experimental results.  Results are presented for four cases: a) butterfly 

sprinkler windward of the cube, b) hollow-cone spray windward of the cube, c) butterfly 
sprinkler leeward of the cube, and d) hollow-cone spray leeward of the cube. 

Simulations of the impact sprinkler case were strongly influenced by the interphase coupling 

setting (see Figure 5.26).  In two-way coupled simulations, droplets were subjected to reduced 

drag forces due to induced air flow within the spray, which caused them to penetrate further into 

the domain.  The trajectories of small droplets were influenced more by the difference in drag 

than larger droplets.  Consequently, two-way coupled simulations produced a narrower stream of 

droplets, with much higher liquid volume density but with a lower mean droplet diameter.  
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Droplets 6 m from the sprinkler were also travelling slower in the one-way coupled simulation, 

due to the large drag forces to which they were subjected. 

 

FIGURE 5.26: Comparison of simulated and experimental: a) liquid volume flux (q), b) local 
Sauter mean diameter (d’32), and c) local characteristic speed (S’ch), for the impact sprinkler.  

These profiles were sampled along an arc in the vertical centre-plane of the spray, centred at the 
sprinkler nozzle and with a radius of 6 m. 

Both one and two-way coupled simulations failed to produced liquid volume flux distributions 

similar to the measured profile from Chapter 3 (see Figure 5.26).  Two-way coupled simulations 

produced a narrow stream of droplets, similar to the real spray, but the liquid volume flux in the 

vertical centre-plane was approximately five times larger than the measured value.  One-way 

coupled simulations produced a stream of droplets that was much more widely dispersed in the 

vertical direction, and that also contained a higher total liquid volume flux in the vertical centre-

plane than had been measured in the real spray.  The simulated sprays had the same total liquid 

flow-rate as the real spray, so the larger fluxes observed in the vertical centre-plane indicated that 

both one and two-way coupled simulations had greatly under-predicted the lateral dispersion of 

droplets.  This was probably due to the highly simplified method that was adopted to simulate the 

impact sprinkler spray, in which pre-formed droplets were emitted from the sprinkler location.  In 

a) b) c) 
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the absence of an external force, such as wind, the only mechanism by which droplets could 

disperse laterally in such simulations would be in response to velocity fluctuations imposed by 

the turbulent dispersion model.  The results presented here indicate that a concentrated stream of 

pre-formed droplets cannot be used to accurately represent a liquid jet undergoing breakup.  It is 

possible that in simulations with stronger global turbulence (e.g. simulations of the impact 

sprinkler in wind) the turbulent dispersion model would disperse droplets in a manner more 

similar to the breakup processes, but no reliable experimental data was available in the present 

study to investigate such a possibility.  

The failure of the turbulent dispersion model to accurately replicate droplet dispersion, which 

was, in reality, caused by liquid breakup processes as well as turbulent velocity fluctuations, is 

also evident in the profiles of local Sauter mean diameter in Figure 5.26.  The simulated droplet 

streams clearly exhibit decreasing droplet mean diameter with decreasing elevation angle, which 

was caused by the relatively large influence that drag had on the velocities of small droplets.  The 

turbulent dispersion model did not cause enough small droplets to travel to the top of the stream 

to significantly reduce the mean diameter there, while the profile measured from the actual spray 

exhibits mean diameters that decreased above and below a core stream of relatively large droplets. 

5.5.8 Inactive Turbulence 

Changes to the mean wind speed and/or direction, within the range of measured values from the 

experiments, influenced simulated water deposition fluxes significantly in some cases (see Figure 

5.27).  However, the weighted average of results from such simulations did not differ significantly 

from results obtained from the single, steady simulations.  It is possible that transient simulations, 

taking the effects of ‘inactive’ turbulence into account by imposing a constantly varying inlet 

velocity, would have produced different results from the weighted averages presented here.  It is 

also possible that ‘inactive’ turbulence did have a significant effect on water deposition in some 

or all of the test cases, just not at the locations at which measurements were taken.  However, in 

the absence of contradictory evidence, the results presented here indicate the accuracy of results 

would not be improved by taking the effects of ‘inactive’ turbulence into account. 
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FIGURE 5.27: Simulation sensitivity to ‘inactive’ turbulence.  Results are presented from 
simulations with the measured mean wind speed and direction; with altered mean wind speeds 
and/or directions, which were taken from within the range of measured values (labelled ‘other 
wind’); and the weighted average of results from such ‘other wind’ simulations.  Results are 
presented for four cases: a) butterfly sprinkler windward of the cube, b) hollow-cone spray 
windward of the cube, c) butterfly sprinkler leeward of the cube, and d) hollow-cone spray 

leeward of the cube. 

5.6 Conclusion 

A literature review and simulation study were conducted, to investigate whether steady, RANS-

based CFD techniques could accurately simulate spray dispersion around buildings in wind, and 

how computational cost could be minimised by simplifying such simulations, without 

compromising the accuracy of results.  Different methods to implement measured spray 

characteristics in CFD simulations were also tested.  Two questions of particular interest where 

whether transient sprays, such as those produced by ‘butterfly’ sprinklers, could be accurately 

simulated in a time-averaged form, and whether a range of sprays, including liquid jets, could be 

accurately simulated without modelling primary or secondary breakup processes. 
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Simulations of five test cases were compared to experimental results.  Four of the cases (Cases 

A–D) involved atmospheric boundary layer flow around an isolated 2.4m cube, with a single 

hollow-cone or butterfly sprinkler operating close to the windward or leeward cube surfaces.  

Water deposition fluxes on the cube surfaces, and on the ground nearby, were compared to 

measured values.  The fifth case involved a steady liquid jet, emitted into quiescent air at an angle 

of 11° above the horizontal.  Simulated results were compared to measured liquid volume flux, 

droplet diameter and droplet velocity measurements that had been taken 6m from an impact 

sprinkler emitting such a jet. 

Reasonably good agreement was observed between the CFD and experimental results of Cases 

A–D.  Simulated deposition fluxes on the cube walls and ground were all within ±50% of the 

measured values, and 17 out of 20 of such results were within ±15% of the experimental results.  

Simulated deposition fluxes on the cube top surface did not match the experimental values as 

closely; they were generally over-predicted in simulations involving a sprinkler upwind of the 

cube and under-predicted in simulations involving a sprinkler downwind of the cube.  Considering 

the simplified nature of the simulations, including the representation of a transient ‘butterfly’ 

sprinkler spray as steady, such results do not entirely diminish the value of RANS-based methods 

in simulating cases such as those considered here.  Thus, the combination of methods adopted in 

the present study is capable of predicting water deposition by wildfire sprinkler systems in windy 

conditions, with an uncertainty of approximately ±50% in the deposition flux magnitude at any 

given point.  Further validation studies would be warranted, and further investigation into 

discrepancies in the deposition flux on the roofs of structures would be very worthwhile. 

Simulation of the steady liquid jet as a concentrated stream of pre-formed droplets did not produce 

results that matched the experimental measurements.  Reliance on the turbulent dispersion model 

to disperse droplets laterally in such simulations led to greatly underestimated lateral spread 

compared to the real spray, in which droplets were dispersed laterally by the primary and 

secondary breakup processes.  A different approach would be required to simulate water 

dispersion from an undisrupted liquid jet, perhaps including a model for the breakup of the jet 
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into droplets.  It is not clear how measured spray properties could be translated into such an 

approach, so they may be more useful for validation purposes than as an input for simulations of 

such sprays.  Further challenges would be encountered in CFD simulations of impact sprinklers 

in full operation, since the periodic disruption of the jet by the paddle arm, and the rotation of the 

sprinkler head, would need to be taken into account.  The computational expense of a transient 

CFD simulation encompassing the full rotation of an impact sprinkler—a time period of 27.7 s in 

the present case—could be several orders of magnitude larger than that of the steady simulations 

reported in this chapter. 

The sensitivity of results to various aspects of the CFD method was also investigated, which led 

to several interesting findings: 

 One and two-way coupled simulations produced very similar results in Cases A–D, 

despite the fact that liquid volume fractions close to the sprinklers were on the order of 

10-4—far in excess of the ‘rule of thumb’ threshold above which two-way coupling should 

be used, 10-6.  One-way coupled simulations would be much more appropriate for 

application to wildfire sprinkler system design or performance assessment tasks, due to 

their significantly reduced computational cost, provided that the influence of the spray on 

its surroundings (e.g. the cooling of gases) is not of interest. 

 The implementation of droplet source points closer to the sprinkler than the distance at 

which the spray characteristics had been determined caused simulations to deviate 

significantly more from the experiments, in some cases.  However, when the droplet 

initial velocities were augmented, to correct for such a change in initial position, the 

agreement with experimental results was improved.  A slight net improvement was 

observed in the Cases A–D when they were all simulated with droplet source points much 

closer to the sprinkler and with augmented initial velocities.   These observations have 

implications to CFD simulations in which droplet sources are not implemented exactly 

‘as measured’. 
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 The combination of results from several steady simulations, with various mean wind 

speeds and directions, into one weighted average produced results that were very similar 

to those obtained with a single steady simulation.  This indicated that ‘inactive’ 

turbulence had a relatively small influence on the dispersion of water in the cases 

considered here.  Thus, the simulation of wildfire sprinkler systems in pseudo-steady 

states can be warranted. 

 Turbulent dispersion was found to improve the agreement between CFD and 

experimental results significantly. 

 The RNG k-ε and realisable k-ε turbulence models produced similar results in simulations 

of Cases A–D, although the RNG model did predict deposition fluxes on the cube top 

surface that were slightly closer to the experimental results. 

 Reasonably consistent results were obtained when 1000 or more spatially unique droplet 

source points and 10 or more distinct initial droplet diameters were used to represent each 

spray, and when 20 or more stochastic iterations were conducted in the turbulent 

dispersion model. 

The present investigation was limited in scope.  It is possible that better agreement with 

experimental results could be obtained using turbulence-resolving CFD methods (e.g. LES or 

DES), an Eulerian-Eulerian multiphase method, more sophisticated turbulent dispersion models, 

or by allowing droplet collisions or breakup.  However, such changes would increase the 

computation expense of simulations, except perhaps for the adoption of an Eulerian-Eulerian 

multiphase method.  Comparison of results presented here with such simulations would be 

worthwhile. 

The method developed here could justifiably be applied to wildfire sprinkler systems, with care.  

In addition to the uncertainty in simulation accuracy, discussed above, the present work did not 

consider the influence of wildfire on the continuous phase (e.g. buoyant plumes), or on the 

discrete phase (e.g. radiant heat transfer to droplets).  The post-impact transport of water, by 

processes such as splashing, runoff, absorption and evaporation, was also not considered.  Results 
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from this chapter could be used as a ‘first step’, from which to develop validation studies 

involving strong localised heat sources, flying embers and/or post-impact water transport.  

Alternatively, the method presented here can be applied directly to estimate the dispersion of 

water around buildings prior-to and after the passage of a wildfire. 
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Chapter 6 Wildfire Sprinkler System Performance Comparison 

Wildfire Sprinkler System 
Performance Comparison 

This chapter outlines the investigation into the performance of nine wildfire sprinkler 

configurations, typical of those reported in the literature.  The CFD methods developed in Chapter 

5 were applied to estimate the effects of wind drift and evaporation on droplet dispersion from 

each system, and bespoke post-processing techniques were used to estimate the system capacity 

to cool building surfaces and attenuate radiant heat.  Thus, this chapter provides both a 

demonstration of how CFD methods, developed in previous chapters, can be applied to practical 

problems, and a quantitative comparison of typical wildfire sprinkler systems. 

6.1 Introduction 

A review of scientific publications and technical guidance related to wildfire sprinkler systems 

revealed that very few scientific investigations had focused on such systems, and as a result, much 

of the advice available to system designers was inconsistent and lacked detail (see Chapter 2).  

Various configurations of sprinklers had been recommended, however, at the time of writing no 

previous analyses appeared to have been undertaken that quantified the performance of wildfire 

sprinklers protecting buildings.  Without quantitative data on the effects of different sprinkler 

configurations regarding the mitigation of radiant heat, ember attack or flame contact, taking into 

account the strong, hot, dry winds that typically occur during wildfires, it would not be possible 
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to design sprinkler systems that make the best use of a given water resource, or to understand the 

protection that could be provided by such sprinkler systems. 

The CFD method developed in Chapter 5 provided a means by which to quantify the dispersion 

of sprays in wind with a reasonably high degree of accuracy (see evaluations of simulation 

accuracy in that chapter).  Its application in this chapter demonstrates how specific wildfire 

sprinkler arrangements can be simulated in realistic wind conditions.  However, as identified in 

Chapter 2, other fundamental aspects of wildfire sprinkler performance are still not well 

understood.  For example, the various mechanisms by which wildfire sprinklers could mitigate 

the effects of wildfire on buildings have not been quantified (see Section 2.4).  Thus, the 

accurately simulated water deposition fluxes presented here represent only one ‘piece of the 

puzzle’; further investigation into other aspects of wildfire sprinklers is needed before their full 

value can be realised.  Furthermore, several important simplifications were necessary in the 

simulations presented here, which should be noted: 

1. The influence of a wildfire on the air velocity, temperature and humidity fields within the 

computational domain was neglected, i.e. the simulations represent sprinkler operation 

prior-to or after, but not during, the passage of a fire; and 

2. A neutral ABL was simulated, i.e. the inlet flow and ground surface were isothermal, 

neglecting the influence of heat from the sun. 

Therefore, the work presented in this chapter should be viewed as a demonstration of how CFD 

can be applied to investigate droplet dispersion from specific wildfire sprinkler systems, and as a 

useful ‘first step’ towards the accurate quantification of wildfire sprinkler effectiveness. 

6.2 Method 

6.2.1 Computational Domain and Mesh 

A fundamental residential building geometry was modelled (see Figure 6.1) such that the building 

footprint was 15 m × 8 m, and the building walls were 2.4 m high.  A ‘double-hip’ roof with four 
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pitches of 22.5° extended beyond the four building walls, creating 0.5 m-wide eaves around the 

building perimeter.  The total building height, 𝐻, was 4.264 m. 

 

FIGURE 6.1: Building geometry, around which the sprinkler configurations were simulated.  

The building was modelled in a rectangular computational domain that extended 5𝐻 from the 

building walls in the two upwind directions, and 15𝐻 from the building walls in the two 

downwind directions (see Figure 6.2).  The total computational domain height was 6𝐻.  A 

computational mesh was formed within the domain, with a total of 1,282,297 hexahedral, 

tetrahedral and triangular-prism elements.  The wall-normal spacing of elements was designed 

for use with wall functions.  Coarse, medium and fine versions of the mesh were generated, for 

use in a mesh sensitivity analysis, using a grid-refinement ratio of approximately 1.5. 
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FIGURE 6.2: Computational domain used in simulations of the different sprinkler configurations, 
with the computational mesh shown on the ground surface.  Dimensions are expressed in terms 

of the building height, 𝐻 ൌ 4.264 m. 

6.2.2 Sprinkler Configurations 

Nine different sprinkler configurations were simulated (see Figure 6.3, Figure 6.4, Figure 6.5 and 

Table 6.1), each based on wildfire sprinkler systems reported in the literature.  Configurations 

with sprinklers installed around building perimeter (i.e. not above the roof ridge) were simulated 

with sprinklers on only one side of the building, to reduce the computational cost of simulations.  

The side of the building on which they were implemented was varied between simulations, so 

both windward and leeward sprinklers in such configurations were investigated, but in separate 

simulations.  The configurations have been identified by the letters A–I: 

A. Five of the ½-inch ‘butterfly’ sprinklers characterised in Chapter 3, installed on 2 m risers, 

4.5 m from the building wall. This configuration was documented in the survey conducted 

by FPAA (2000).  The stated intent of the system was to produce a ‘curtain’ of droplets 

between the wildfire and the building. 

B. Three of the ½-inch ‘butterfly’ sprinklers characterised in Chapter 3, installed above the 

roof ridge.  This configuration matched several wildfire sprinkler systems that were 

commercially available at the time of writing. 
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C. Three of the ‘deflector plate’ sprinklers characterised in Chapter 3, installed on the roof 

ridge.  This configuration was similar to B, except that sprinklers with no moving parts 

were used, in compliance with the Australian standard for wildfire sprinkler systems 

(Standards Australia 2012).  This configuration was also similar to one recommended by 

the South Australian Country Fire Service (CFS 2011). 

D. Ten of the ‘flat fan’ sprinklers characterised in Chapter 3, installed above the perimeter 

of the roof, spraying inwards.  This configuration represented part of one of the systems 

documented and recommended by FPAA (2000), and also matched several commercially 

available wildfire sprinkler systems at the time of writing. 

E. Five of the ½-inch ‘butterfly’ sprinklers characterised in Chapter 3, installed above the 

perimeter of the roof.  This configuration was documented by FPAA (2000), and was 

recommended by the South Australian Country Fire Service (CFS 2011). 

F. Five of the ‘deflector plate’ sprinklers characterised in Chapter 3, installed above the 

perimeter of the roof.  This configuration corresponds to one recommended in the 

Australian standard for wildfire sprinkler systems (Standards Australia 2012), although 

the exact type of sprinkler was not specified in the standard. 

G. Ten of the ‘flat-fan’ sprinklers characterised in Chapter 3, installed upside-down under 

the eaves of the building, spraying towards the wall.  This configuration was similar to 

one documented and recommended by FPAA (2000), and the Australian standard for 

wildfire sprinkler systems (Standards Australia 2012), although the flat-fan sprinklers 

may produce a finer spray than the ‘large droplet nozzles’ specified in the standard. 

H. Seven of the ‘hollow-cone’ sprinklers characterised in Chapter 3, installed under the 

perimeter of the roof, pointing outwards.  This configuration closely replicated the ‘wind-

enabled ember dousing system’ (WEEDS) proposed by Mitchell (2006). 

I. Five of the ‘deflector plate’ sprinklers characterised in Chapter 3, installed upside-down 

(as pendent sprinklers), under the eaves of the building.  This configuration corresponds 

to one recommended in the Australian standard for wildfire sprinkler systems (Standards 

Australia 2012). 
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TABLE 6.1: Details of each sprinkler configuration investigated. 
 

Sprinkler configuration Sprinkler type 
Nozzle 

Pressure 
[kPa] 

Number of 
sprinklers 
simulated 

Total flow rate 
[L min-1] 

A 
Butterfly sprinklers on risers 

around building 
Holman ½-inch brass 

butterfly sprinkler 
200 5 169.5 

B 
Butterfly sprinklers above 

roof ridge 
Holman ½-inch brass 

butterfly sprinkler 
200 3 101.7 

C 
Deflector-plate sprinklers 

above roof ridge 
Lechler 525.049 

sprinkler 
245 3 125.4 

D 
Flat-fan sprinklers above 
gutters, spraying inwards 

Tecpro KHW-1390 
180° flat-fan nozzle 

400 10 41 

E 
Butterfly sprinklers above 

gutters 
Holman ½-inch brass 

butterfly sprinkler 
200 5 169.5 

F 
Deflector-plate sprinklers 

above gutters 
Lechler 525.049 

sprinkler 
245 5 209 

G 
Flat-fan sprinklers under 
eaves, spraying inwards 

Tecpro KHW-1390 
180° flat-fan nozzle 

400 10 41 

H 
Hollow-cone sprinklers in 

WEEDS arrangement 
½-inch Champion S9F 

hollow-cone nozzle 
345 7 87.5 

I 
Deflector-plate sprinklers 

under eaves 
Lechler 525.049 

sprinkler 
245 5 209 

 



 

144 

 

FIGURE 6.3: Sprinkler configurations A–C. 
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FIGURE 6.4: Sprinkler configurations D–F. 
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FIGURE 6.5: Sprinkler configurations G–I. 

6.2.3 Weather Conditions 

Three sets of weather conditions, referred to hereafter as ‘moderate’, ‘severe’ and ‘extreme’ (see 

Table 6.2), were defined using the data on building destruction by wildfire in Australia reported 

by Blanchi et al. (2010).  Each wildfire that was reported was weighted by the number of buildings 

that had been destroyed.  The ‘building-weighted’ mean temperature, humidity and reference 

wind speed (measured at a height of 10 m) from the data were defined as the ‘severe’ set of 

conditions.  The ‘moderate’ and ‘extreme’ conditions were defined in a similar manner, using, 
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respectively, the building-weighted 5th and 95th percentile temperature, humidity and reference 

wind speed values. 

TABLE 6.2: Weather conditions applied in CFD simulations.  The forest fire danger index 
(FFDI) has also been presented, given a drought factor (DF) of 5 and 10.  

Description 
Temperature 

[°C] 
Relative 

humidity [%] 
Reference wind speed 
(at 10 m height) [m s-1] 

FFDI (DF=5) FFDI (DF=10) 

Moderate 35 19 7.7 20 40 

Severe 42 12 14.1 56 111 

Extreme 47 7 18.5 114 226 

 

The McArthur forest fire danger index (FFDI) is a metric used to indicate the influence of weather 

on wildfire behaviour (Dowdy et al. 2009; Luke & McArthur 1978), given by: 

 𝐹𝐹𝐷𝐼 ൌ 2exp ሺെ0.45 ൅ 0.987 lnሺ𝐷𝐹ሻ െ 0.0645𝑅𝐻 ൅ 0.0338𝑇 ൅ 0.0234𝑢തሻ (6.1) 

where 𝑅𝐻 is the ambient relative humidity (expressed as a percentage), 𝑇 is the ambient air 

temperature (°C), 𝑢ഥ is the mean wind speed (km h-1), and 𝐷𝐹 is the drought factor (a measure of 

fuel moisture content that ranges from 0 to 10, with 10 representing the driest conditions).  In the 

1960’s, an FFDI of 100 was considered to represent the worst possible conditions likely to occur 

in Australia (Luke & McArthur 1978).  However, this value has been exceeded during several of 

the most destructive Australian wildfires, to which can be attributed approximately 64% of the 

houses lost during wildfires in Australia between 1959 and 2009 (Blanchi et al. 2010).  The 

weather conditions simulated in the present study could not be represented by single FFDI values, 

since drought factors were not defined by simulation variables.  Given a drought factor of 5 , the 

‘moderate’, ‘severe’ and ‘extreme’ conditions would represent FFDI values ranging from 20 to 

114, while a drought factor of 10 would produce FFDI values ranging from 40 to 226. 

6.2.4 Simulation methodology 

The computational strategy in the present chapter was developed using methods that were tested 

in Chapter 5.  Steady RANS CFD simulations were conducted with the realisable 𝑘-ε turbulence 

model, using ANSYS Fluent 14.5.  The coupled pressure-based solver was used, with least-

squares cell-based spatial discretisation of gradients and second order discretisation of advection 

terms in all governing equations. 
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Droplet trajectories were tracked in a Lagrangian framework, and were two-way coupled with the 

continuous-phase flow field.  Drag coefficients for spherical particles were employed, and heat 

and mass transfer were allowed between the phases.  The discrete random walk (DRW) turbulent 

dispersion model available in ANSYS Fluent 14.5 was employed, with 30 stochastic iterations 

performed for each droplet during each computational iteration.  Thus, after a preliminary steady-

state solution had been reached for the continuous phase flow field, 30 sets of lagrangian droplets 

were tracked; the continuous-phase flow was then resolved to convergence, and this process was 

repeated until the simulated droplet dispersion reached a converged state.  Droplets were removed 

from the simulations when they collided with the domain boundaries (i.e. splashing, runoff, post-

impact evaporation, etc. were not simulated). 

6.2.5 Boundary Conditions 

Each spray was represented by 3,160 droplet source points, spaced in a lattice pattern on a virtual 

spherical surface surrounding the sprinkler location.  Fifteen droplet size classes were simulated, 

and one droplet of each size was released from each source point.  The distance between the 

source points and sprinkler location was 0.2 times that at which the sprinklers had been measured 

in Chapter 3 (i.e. 106.6 mm for butterfly sprinklers, 44.1 mm for deflector-plate sprinklers, 20 

mm for flat-fan sprinklers, and 65.2 mm for hollow-cone sprinklers).  The droplet initial 

velocities, taken from Chapter 3, were augmented to correct for this change in initial location, 

following the procedure outlined in Chapter 5.  Thus, spatial variations in droplet diameter 

distributions, velocities and diameter-velocity correlations were represented in the CFD 

simulations. 

Simulations were run with four different mean wind directions: 𝜃 ൌ ሼ0°, 30°, 60°, 90°ሽ, where 𝜃 

is the azimuthal angle from a line normal to the 15-m-long walls of the building (see Figure 6.1).  

The upstream boundaries were assigned fixed velocity, temperature, humidity, and turbulence 

quantities, as detailed in Section 6.2.3, and the top boundary was assigned the same fixed values 

as the top of the inlet.  Boundaries parallel to the mean flow direction (in simulations with 𝜃 ൌ

ሼ0°, 90°ሽ) were assigned ‘symmetry’ boundary conditions (i.e. zero flux of all quantities), and 
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downstream boundaries in all simulations were assigned a fixed static pressure.  Solid boundaries 

were adiabatic and were assigned representative roughness values, for use with standard wall 

functions. 

Vertical profiles of wind speed, turbulence kinetic energy and turbulence dissipation rate were 

assigned at the domain inlets (see Figure 6.6).  Canopy-flow profiles were adopted, rather than 

standard boundary-layer profiles, to mimic scenarios in which the region surrounding the 

computational domain was forest and the region of the domain was a clearing.  Such scenarios 

are more relevant to wildfire sprinkler systems, since wildfire-prone buildings are typically in 

relatively close proximity to highly vegetated areas.  The inlet flow was isothermal and uniform 

in humidity. 

 

FIGURE 6.6: Canopy flow vertical profiles of: a) mean streamwise velocity (𝑢ത), b) turbulence 
kinetic energy (𝑘), and c) turbulence dissipation rate (ε), non-dimensionalised by the reference 
height (𝑧௥௘௙) and reference wind speed (𝑢௥௘௙).  The standard power-law atmospheric boundary 
layer profiles (Tominaga et al. 2008) and experimental data reported by Shaw, Den Hartog and 
Neumann (1988) have been included for comparison.  The canopy height was set equal to 𝑧௥௘௙ 

in the present study. 

The canopy-flow velocity and turbulence kinetic energy profiles were defined using different 

functions below and above the canopy height, 𝑧௖ (10 m in the present study).  Below 𝑧௖ the profiles 

proposed by Cowan (1968) were adopted, and above 𝑧௖ the standard ‘power-law’ atmospheric 

boundary layer profiles were used, which have been presented in detail by Tominaga et al. (2008).  

a) b) c) 
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The exponent, 𝛼, and boundary layer depth, 𝑧௚, were set to 0.28 and 400 m, respectively, which 

were the values proposed for forests and suburbs by Davenport (1960).  A blending function was 

employed to form a smooth transition between the two regions, as follows: 
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where 𝑢ത is the mean wind speed, 𝑧 is the height above ground-level, 𝑢௥௘௙ is the reference wind 

speed (see Table 6.2), 𝑧௥௘௙ is the reference height (10m in the present study), 𝛽 is a parameter 

tuned to represent the influence of a forest canopy (assigned a value of 6 in the present study), 

and 𝛿௨ and 𝛾௨ are parameters used to blend the two profiles (assigned values of 0.56 and 15, 

respectively, in the present study).  In a similar fashion, the turbulence kinetic energy profile was 

defined as follows:  

 
𝑘

𝑘௥௘௙
ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧

𝛿௞
ඩ

sinh ቀ𝛽
𝑧
𝑧௖

ቁ

sinhሺ𝛽ሻ
                                                       𝑧 ൑ 𝑧௖

𝛿௞ ൅ ൭ቆ
𝑧

𝑧௥௘௙
ቇ

ି଴.ଵ

െ 𝛿௞൱ ൭1 െ 𝑒
ఊೖቆ

௭೎ି௭
௭ೝ೐೑

ቇ
൱        𝑧 ൐ 𝑧௖

 (6.3) 

where 𝛿௞ and 𝛾௞ are parameters used to blend the two profiles (assigned values of 0.71 and 7, 

respectively, in the present study), and 𝑘௥௘௙ is the turbulence kinetic energy of the standard power-

law profile, at 𝑧௥௘௙, given by (Tominaga et al. 2008): 

 𝑘௥௘௙ ൌ ൭0.1 ቆ
𝑧௥௘௙

𝑧௚
ቇ

ିఈି଴.଴ହ
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ଶ

 (6.4) 

The turbulence dissipation rate was calculated from the velocity and turbulence dissipation rate 

profiles, following the procedure outlined for the power-law profiles by Tominaga et al. (2008). 

6.2.6 Film Runoff and Cooling Potential 

Results from the CFD simulations were post-processed, to provide an estimate of the quantity of 

heat that each sprinkler configuration could remove from the building walls, by evaporation and 
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convection within the liquid runoff.  It was assumed that all droplets impinging on the building 

windward wall formed a statistically steady liquid film flow, down the surface.  The film 

properties (e.g. impinging droplet flux, film flow rate and film temperature) were averaged over 

the wall width, and the film was assumed to be isothermal across its thickness.  Thus, a one-

dimensional finite difference problem could be formulated which gave a simplified representation 

of water flow down the wall, and heat removal therefrom (see Figure 6.7). 

   

FIGURE 6.7: Simple finite difference formulation used to represent the water film on the 
building wall, exposed to a uniform heat flux (𝑞"). 

Various scenarios were considered in which a uniform heat flux of magnitude 𝑞" was incident on 

the wall.  The vertical film mass flow rate (per unit width) as a function of height, 𝑚ሶ ௝ at height 

𝑧𝑗, was assumed to be governed by the conservation of mass on a control volume (see Figure 6.7), 

and could be calculated from: the film mass flow entering from above, 𝑚ሶ ௜; the mass flow rate of 

droplets impinging on the free surface of the control volume, 𝑚ሶ 𝑠; and the mass of water vapour 

released from the film free surface per unit time, 𝑚ሶ 𝑒:  

 𝑚ሶ ௝ ൌ 𝑚ሶ ௜ ൅ 𝑚ሶ ௦ െ 𝑚ሶ ௘ (6.5) 

Convective heat transfer from the film free surface, conduction into the wall, and vertical 

conduction within the film were neglected, since they were several orders of magnitude smaller 

than energy fluxes caused by the water mass flux (during impingement, film flow and 
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evaporation). Thus, the control volume energy balance could be expressed in terms of the incident 

heat flux, convection of heat by the liquid film flow, and latent heat removal, as follows: 

 𝑞"൫𝑧௜ െ 𝑧௝൯ ൌ ൫𝑚ሶ ௝𝑇௝ െ 𝑚ሶ ௦𝑇௦ െ 𝑚ሶ ௜𝑇௜൯𝐶௣ ൅ 𝑚ሶ ௘ℎ௘ (6.6) 

where 𝑇௜ and 𝑇௝ are the film temperatures at heights 𝑧௜ and 𝑧௝, respectively, 𝑇௦ is the mass-

weighted mean temperature of droplets impinging on the wall between heights 𝑧௜ and 𝑧௝, 𝐶௣ ൌ 

4.195 kJ kg-1 K-1 is the specific heat capacity of water and ℎ௘ ൌ 2257 kJ kg-1 is the latent heat of 

vaporisation of water. 

Details of the impinging droplets, 𝑚ሶ ௦ and 𝑇௦, were obtained at each height from CFD simulations 

conducted with zero mean wind angle and the ‘severe’ set of weather conditions (i.e. 𝜃 ൌ 0°, 𝑇 ൌ 

42°C, 𝑅𝐻 ൌ 12%, and 𝑢௥௘௙ ൌ 14.1 m s-1).  A set of four different heat fluxes (𝑞" ൌ ሼ0, 10, 30,50ሽ 

kW m-2) were investigated for each spray configuration.  Evaporation of the film was ignored 

when the film temperature was below 100°C, which allowed Equations (6.5) and (6.6) to be 

solved over the discretised height of the wall, starting at the top.  In areas where the film flow rate 

became zero, the fraction of the incident heat flux not removed by the water (and therefore 

absorbed by the wall surface) was recorded. 

Several significant simplifications were made in the procedure outlined above. 

 Processes such as splashing and bouncing were ignored. 

 Flow of water from the film away from the wall, e.g. at door frames, window sills or other 

horizontal edges, was not considered. 

 Only uniform heat fluxes were considered, which may represent the radiant heat emitted 

by nearby flames reasonably well, but do not include the localised areas of strong heating 

that are likely to arise near accumulated embers and from direct flame contact. 

 Convective heat transfer from the free surface of the falling water film was neglected. 

 Vertical conduction was ignored within the film. 

 Conduction of heat into the building wall was ignored. 
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 The film runoff flow was decoupled from the CFD simulations and droplet trajectory 

calculations. 

Although the approach outlined here was relatively simple to implement, it served two important 

purposes: 1) it put the water deposition fluxes predicted by CFD simulations into context, giving 

an indication of the maximum cooling potential of each sprinkler configuration; and 2) it provided 

some insight into the performance of different water application methods (e.g. the ‘run-down’ 

method, as compared to a more even application of droplets to a surface). 

6.2.7 Radiation Attenuation 

The magnitude of radiant heat that could be attenuated by airborne droplets was also estimated 

by post-processing the CFD results.  A simple model, similar to that proposed by Dombrovsky, 

Dembele and Wen (2016), was adopted to approximate the interaction between a diffuse radiant 

heat flux and a uniform ‘curtain’ of airborne droplets.  This approach was computationally 

inexpensive and took into account the important spectral behaviour of water droplets in the 

infrared band.  However, the sprays were represented in a highly simplified manner, so the 

analysis produced results that were more of an ‘order-of-magnitude estimate’ than an exact 

solution.  The value of this procedure was that it put the CFD results in context, by quantifying 

the effect that each sprinkler configuration could have in a wildfire situation, taking into account 

the effects of wind drift and evaporation, and it facilitated a comparison of the effectiveness of 

the different sprinkler configurations. 

Scenarios were considered in which a uniform, diffuse heat flux of magnitude 𝑞", was incident 

on the sprays.  The power spectrum of incident radiation was based on the spectral radiance of a 

hot body, which was determined throughout the band of wavelengths 1 μm ൏ 𝜆 ൏ 14 μm using 

the Planck radiation law: 

 𝐵 ൌ
2ℎ𝑐ଶ

𝜆ହ ൬
ℎ𝑐

𝑒ఒ௞ಳ்೑
െ 1൰

 (6.7) 
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where 𝑇௙ is the radiation source temperature, ℎ ൎ 6.626×10−34 J s is the Planck constant, 𝑘஻ ൎ 

1.381×10−23 J K-1 is the Boltzmann constant, and 𝑐 ൎ 2.998×108 m s-1 is the speed of light.  In the 

present study, the flame temperature was assumed to be 1200 K, which is commensurate with 

measured values from full-scale experiments (Butler et al. 2004; Sullivan, Ellis & Knight 2003).  

Equation (6.7) produced the spectral radiance of the flame, in units of W sr-1 m-3.  A conversion 

factor, 𝑓௤, was defined, to convert 𝐵 into the power spectrum of radiation that was incident on the 

spray (units W m-2), such that: 

 𝑞" ൌ 𝑓௤ න 𝐵 𝑑𝜆
ஶ

଴
 (6.8) 

Thus, 𝑓௤ had units sr, and could be tuned to produce incident radiant spectra with a desired total 

intensity, and with a spectral profile matching that produced by a 1200 K flame.  Total incident 

radiant heat fluxes of up to 55 kW m-2 were investigated, which represents an approximate upper-

limit of radiant heat that could be expected incident on a building surrounded by a small fuel 

break (Cohen 2004; Maughan et al. 1999; Standards Australia 2009). 

Airborne droplets were assumed to be falling in between the source of radiant heat and the 

building windward wall, forming a statistically steady ‘curtain’ of droplets.  Properties of the 

spray curtain were averaged over the width of the wall and assumed to be constant through the 

thickness of the curtain, which allowed the curtain to be formulated as a one-dimensional finite 

difference problem (see Figure 6.8).  The important parameters which described the spray curtain 

at a given height, denoted here by the subscript 𝑖, were the vertical liquid mass flow rate, 𝑚పሶ , the 

liquid mass per unit curtain frontal area, 𝜉௜, the droplet temperature, 𝑇௜, and the droplet diameter, 

𝑑௜.  Thus, the field of droplets was assumed to be horizontally isothermal and monodisperse, 

which is clearly a significant simplification.  However, this simplification has been made in 

several similar investigations (Dombrovsky, Dembele & Wen 2016; Godoy & DesJardin 2007). 
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FIGURE 6.8: Attenuation of uniform heat flux, of magnitude 𝑞", by a ‘curtain’ of airborne 
droplets.  Variables describing the spray curtain at two heights are shown, illustrating the finite 

difference formulation used in the analysis.  𝑞"௧௥ is the (non-uniform) transmitted heat flux. 

At each height, the heat flux transmitted through the spray, 𝑞"௧௥, and the absorbed heat flux, 𝑞"௔௕௦,  

were calculated using the following expressions: 

 𝑞"௧௥ ൌ 2𝑓௤ න 𝑞∗𝐵 𝑑𝜆
ஶ

଴
 (6.9) 

 𝑞"௔௕௦ ൌ 2𝑓௤ න 𝑤∗𝐵 𝑑𝜆
ஶ

଴
 (6.10) 

where 𝑞∗ and 𝑤∗ are the dimensionless spectral radiative flux transmitted through the spray, and 

spectral profile of absorbed radiation power, respectively.  Both of these variables were functions 

of 𝜆, and were calculated from 𝜉௜, 𝑑௜, and the absorption and scattering characteristics of spherical 

water droplets, using the methods outlined by Dombrovsky, Dembele and Wen (2016). 

The boundary conditions at the top of the spray curtain were obtained from the results of CFD 

simulations conducted with zero mean wind angle (i.e. 𝜃 ൌ 0°).  All droplets that had landed on 

the ground upwind of the building, or on the lowest 1m of the building windward wall, were 

considered to have contributed to the attenuation of radiant heat, and were included in the analysis.  

The total mass flux, mass-weighted mean temperature and Sauter mean diameter of the set of 

droplets were applied as boundary conditions at the top of the spray curtain.  The mean liquid 

volume per unit spray frontal area was calculated from the mass flow rates and residence times 
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of the set of droplets, and was also imposed as a boundary condition at the top of the spray curtain.  

The spray curtain was discretised with respect to height, and Equations (6.9) and (6.10) were 

solved, together with mass and energy conservation equations, to determine the fluxes of 

transmitted and absorbed radiant heat, and changes in the mean droplet diameter, mass flux and 

liquid volume per unit spray frontal area.  Thus, the vertical profile of transmitted heat was 

calculated, taking into account the effects of droplet heating and evaporation. 

6.3 Results and Discussion 

6.3.1 Wind Drift and Evaporation 

The simulated distributions of water deposition on the various building surfaces, and the ground, 

are presented in Figure 6.10, Figure 6.11 and Figure 6.12.  To quantify rates of water deposition 

on the ground surface close to the building (where it could extinguish accumulated embers and 

spot-fires threatening the building), a ‘near building’ region was defined, which included parts of 

the ground surface that were within 2 m of the building walls.  The remainder of the ground 

surface was divided into ‘upwind’ and ‘downwind’ regions, which were separated by a line, 

normal to the wind direction and passing through the centre of the building footprint (see Figure 

6.9). 

 

FIGURE 6.9: Definition of the ‘upwind’, ‘downwind’ and ‘near building’ regions of ground 
surface, surrounding the building.  ‘Near building’ included the ground surface within 2m of the 
building walls.  The line separating ‘upwind’ and ‘downwind’ regions was normal to the mean 

wind direction and passed through the centre of the building footprint. 
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The majority of water sprayed by the butterfly sprinklers on risers (in configuration A) landed on 

the ground, away from the building; a maximum of 15% landed on the building (when the 

sprinklers were upwind of the building), and a maximum of 23% landed on the ground surface 

within 2 m of the building.  Such performance would not diminish the effectiveness of the 

sprinklers in attenuating radiant heat or extinguishing airborne embers, but it would limit the 

system capacity to cool or extinguish the building directly. 

Sprinklers mounted on the ridge of the building roof (in configurations B and C) delivered 

between 42% and 76% of water to the roof surface; the remainder was deposited on the ground 

or evaporated.  The deflector-plate sprinklers emitted smaller droplets, at a lower angle above 

horizontal, than the butterfly sprinklers did, and on-average they deposited 8% more water on the 

roof.  Flat-fan sprinklers, installed near the perimeter of the roof and directed towards the roof 

surface (in configuration D) delivered a larger fraction (55–83%) of water to the roof surface, and 

also deposited a small fraction (~2%) on the building walls in some simulations.  Thus, the flat-

fan and deflector-plate sprinklers were able to deliver a significant fraction of water to building 

surfaces during wildfires, despite the relatively high susceptibility to wind drift and evaporation 

of the small droplets that they emitted.  In systems designed to wet the roofs of buildings during 

wildfires, it appears to be more important that droplets are projected at a low angle above 

horizontal, towards the roof surface where possible.  Even when this is achieved (e.g. in 

configuration D), approximately 20% of water that is sprayed can be blown away from the 

building, and a further 20% can evaporate. 
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FIGURE 6.10: Distributions of water deposited by sprinkler configurations A–C.  Water 
categorised as ‘evaporated’ includes the mass of water evaporated from droplets before they 

collided with solid boundaries, droplets that evaporated completely while airborne, and droplets 
that were blown beyond the computational domain. 
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FIGURE 6.11: Distributions of water deposited by sprinkler configurations D–F.  Water 
categorised as ‘evaporated’ includes the mass of water evaporated from droplets before they 

collided with solid boundaries, droplets that evaporated completely while airborne, and droplets 
that were blown beyond the computational domain. 

Butterfly and deflector-plate sprinklers mounted above the perimeter of the roof (in configurations 

E and F, respectively) deposited 23–54% of water on the building roof, and 13 – 24% of water on 

the ground within 2 m of the building.  Even in simulations with a strong wind directing droplets 

back towards the building (i.e. ‘extreme’ conditions with 𝜃 ൌ 0), a maximum of 4% of water was 

deposited on the building walls by such sprinklers.  The fraction of water deposited on the roof 

by sprinkler configurations E and F was affected most strongly by the wind direction; sprinklers 

on the leeward side of the building deposited approximately half the amount that sprinklers on 

the windward side did.  The mass flux of water to the ground within 2 m of the building was 

affected more by the wind speed, temperature and humidity.  Thus, the results presented here 
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indicate that gutter-mounted sprinklers, such as those in configurations E and F, 1) do not deposit 

a significant quantity of water on the building walls; and 2) can be affected significantly by wind 

drift and evaporation, especially when implemented on the leeward side of a building, where as 

much as 55% of the water that is sprayed can be blown away from the building or evaporated in 

some cases.  

 

FIGURE 6.12: Distributions of water deposited by sprinkler configurations G–I.  Water 
categorised as ‘evaporated’ includes the mass of water evaporated from droplets before they 

collided with solid boundaries, droplets that evaporated completely while airborne, and droplets 
that were blown beyond the computational domain. 

Flat-fan sprinklers mounted under the building eaves (in configuration G) were affected relatively 

little by changes in wind direction, or in the weather conditions (i.e. wind speed, temperature and 

humidity).  Between 76% and 84% of water was deposited on the building walls in simulations 

of such sprinklers.   Deflector-plate sprinklers installed in a similar location (in configuration I), 
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deposited 43–49% of water on the building walls and 18–32% of water on the ground within 2 m 

of the building.  Both configurations (G and I) sprayed water directly towards the top of the 

building walls from a relatively short range, in what is sometimes referred to as a ‘run-down’ 

method.  The result appears to have been a relatively consistent water deposition flux on the walls, 

despite changes in weather conditions.  The fraction of water projected away from the building 

by the deflector-plate sprinklers (due to the 360° spray pattern formed by those sprinklers) was 

affected more by evaporation and wind drift. 

Hollow-cone sprinklers, installed under the perimeter of the roof and directed outwards in 

configuration H, corresponding to the WEEDS proposed by Mitchell (2006), were affected much 

more strongly by the wind speed and direction.  When the wind was forcing droplets back, 

towards the building (i.e. when 𝜃 ൌ 0), 12–20% of water was deposited on the building walls and 

roof, and 43–63% of water was deposited on the ground within 2 m of the building.  The relatively 

low wind speed simulated as part of the ‘moderate’ conditions caused a higher deposition flux on 

the ground, while the high wind speeds involved in the ‘extreme’ case caused a higher deposition 

flux on the building surfaces.  Thus, the CFD simulations indicated that the WEEDS design was 

relatively ineffective at depositing water on the building surfaces, compared to other sprinkler 

configurations that employ a ‘run-down’ approach.  This was true for all wind directions and 

speeds that were tested, but was especially true of sprinklers implemented on the leeward side of 

the building.  While these findings indicate that WEEDS are relatively ineffective at wetting 

building surfaces, such systems could still be effective at extinguishing airborne embers or 

attenuating radiant heat. 

6.3.2 Cooling Potential 

Estimates of the liquid film flow rate on the building windward wall, and the fraction of incident 

heat that the film flow would remove via convection and as latent heat, demonstrated some 

implications of the water deposition fluxes that were predicted using CFD.  Figure 6.13 contains 

an example of such estimated film flow, obtained for sprinkler configuration A operating in the 
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‘severe’ set of weather conditions and with a mean wind incidence angle of 𝜃 ൌ 0.  From the plots 

it is evident that: 

i) When no heat flux is incident on the wall, impinging droplets would form a liquid 

film with a flow-rate that increases as it approaches the ground.  

ii) The film flow would be greatly diminished by incident radiant heat fluxes as low as 

10 kW m-2, due to evaporation. 

iii) In the scenario involving an incident heat flux of 10 kW m-2, 100% of the incident 

heat would be removed by the water film, except in narrow regions at the top and 

bottom of the wall; at these locations, impinging droplets from the sprinklers would 

not remove all incident heat, so the wall would increase in temperature. 

iv) In scenarios involving incident heat fluxes of 30 kW m-2 and 50 kW m-2, the rate of 

droplet evaporation would match the rate of deposition over the entire wall height 

and the heat removal rate would be significantly less than the incident heat flux, but 

the sprinklers would reduce the heat flux absorbed by the wall by approximately 15–

35%. 

 

FIGURE 6.13: Example of the vertical profiles of liquid film flow rate on the building windward 
wall (left) and fraction of heat incident on the wall that would be removed by the film (right), 

which were estimated based on CFD results, given four different incident heat fluxes (𝑞").  The 
annotations i–iv correspond to observations outlined in the text, above. 

Modelling of liquid films produced by all nine sprinkler configurations revealed that they could 

be grouped into three distinct categories, based on the ability of each system to cool the windward 
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wall of a building.  The first category contained sprinkler configurations G and I (i.e. flat-fan or 

deflector-plate sprinklers installed under the building eaves), which both employed a ‘run-down’ 

method.  The majority of water deposited on the windward wall by these sprinkler systems landed 

near the top of the wall, producing liquid films with relatively high flow-rates over most of the 

wall height (see Figure 6.14).  Such liquid films were very effective at cooling the windward wall; 

configuration I was estimated to remove 100% of all incident heat fluxes that were modelled (up 

to 50 kW m-2), and configuration G was predicted to remove 100% of incident heat fluxes from a 

large fraction of the wall height, excluding a ~85 mm band at the top of the wall, where 

insufficient water was deposited, and the lower 25% of the wall when a 50 kW m-2 heat flux was 

applied. 

 

FIGURE 6.14: Vertical profiles of liquid film flow rate on the building windward wall (left) and 
fraction of heat incident on the wall that would be removed by the film (right), calculated for 

sprinkler configurations G (top) and I (bottom). 

The second category contained sprinkler configurations A, E, F and H, i.e. configurations in which 

butterfly sprinklers were implemented on risers 4.5 m from the building, butterfly or deflector-

plate sprinklers were implemented above the edges of the roof, or hollow-cone sprinklers were 
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implemented near the edges of the roof pointing outwards (in a ‘WEEDS’ arrangement).  These 

configurations deposited less water on the windward wall than those in the previous category, and 

the water was deposited more evenly over the wall height (i.e. a ‘run-down’ method was not 

employed).  Consequently, the liquid films modelled for these sprinkler configurations were not 

able to remove 30 kW m-2 or 50 kW m-2 heat fluxes from any portion of the wall, and left 

significant portions of the wall (or the entire wall, in the case of configuration E) without complete 

protection in scenarios with an incident heat flux of 10 kW m-2 (see Figure 6.15). 

Sprinkler configurations B, C and D comprised the third category.  These configurations involved 

sprinklers above the roof ridge, or above the edges of the roof directed inwards, and so deposited 

very little water on the building walls.  Modelling of the water films produced by these 

configurations revealed that they would not cool building walls significantly in a wildfire; less 

than 5% of the incident heat flux was removed from the entire wall height in all cases investigated. 

Despite the highly simplified method used to model the water films in the present work, the 

analysis did provide an ‘order-of-magnitude’ estimate of the quantity of cooling that could be 

provided by each sprinkler configuration, taking into account the effects of wind drift and the 

evaporation of airborne droplets (which were included in the preceding CFD analysis).  Sprinklers 

aimed directly at the top of the building walls, in configurations G and I, appear to provide 

sufficient cooling to address radiant heat loads typical of those incident on buildings during 

wildfires, which are on the order of 10–50 kW m-2 (Cohen 2004; Maughan et al. 1999; Standards 

Australia 2009), while sprinklers implemented on the roofs of buildings did not cool the building 

walls significantly.  The remaining configurations (i.e. A, E, F and H) deposited water on the 

windward wall primarily due to the effects of wind drift.  The quantity of cooling affected by 

these systems would be significant, but would not be sufficient to completely address all radiant 

heat loads that can be expected during wildfires. 
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FIGURE 6.15: Vertical profiles of liquid film flow rate on the building windward wall (left) and 
fraction of heat incident on the wall that would be removed by the film (right), calculated for 

sprinkler configurations A (top), E (centre-top), F (centre-bottom) and H (bottom). 

6.3.3 Radiation Attenuation 

The quantity of radiant heat that could be attenuated by airborne droplets varied significantly 

between the nine sprinkler configurations (see Figure 6.16).  Butterfly sprinklers installed on 

risers (in configuration A) were most effective, attenuating 15–25% of the incident heat flux, 

depending on the weather conditions.  Configurations involving the deflector-plate sprinklers near 
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the roof perimeter (i.e. configurations I and F) attenuated 10–22% of the incident heat flux, and 

configurations H and E attenuated 6–13% of the incident heat flux.  The remaining sprinkler 

configurations, which projected water primarily onto the roof or walls of the building, attenuated 

very little (< 3.5%) of the incident heat flux. 

 

FIGURE 6.16: Radiant heat attenuated by airborne droplets, in sprinkler configurations A–I, 
given three sets of weather conditions. 

Wind drift and evaporation significantly reduced the quantity of radiant heat attenuated by each 

sprinkler configuration.  The five configurations that attenuated more than 5% of the incident heat 

flux (i.e. configurations A, E, F, H and I) attenuated 39–47% less radiant heat in ‘extreme’ 

conditions than they did in ‘moderate’ conditions.  However, within the range of incident heat 

fluxes investigated (0–55 kW m-2), the evaporation of droplets due to absorbed radiant heat had a 

relatively small effect on the sprinkler performance. 

The sprinklers investigated here produced droplets with diameters predominantly in the range 

150–2000 μm.  However, as has been established in previous studies (Coppalle, Nedelka & Bauer 
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1993; Dembele, Wen & Sacadura 2001; Murrell, Crowhurst & Rock 1995), droplets closer to the 

size of the radiant heat wavelength (~1–10 μm) attenuate radiant heat much more effectively.  

Figure 6.17 presents the spectra of radiant heat predicted to be transmitted through monodisperse 

‘curtains’ of droplets with the same liquid volume per unit spray frontal area, but with various 

droplet diameters.  It is clear that, if ‘curtains’ of 10 μm droplets could be established between a 

building and wildfire, water resources could be used much more effectively than was predicted in 

the current investigation.  However, such a spray would be highly susceptible to the effects of 

wind drift and evaporation.  The trade-off between radiation attenuation capacity and resilience 

to the effects of wind, with respect to droplet size, would be a worthy subject for further 

investigation.  The methods adopted in the present study would be suitable for such an 

investigation. 

 

FIGURE 6.17: Radiant heat power spectra, including: an incident spectrum with total intensity of 
40 kW m-2, generated by a 1200 K flame; and the fractions of such a heat flux that would 

transmit through monodisperse ‘curtains’ of water droplets with various diameters (𝑑), but all 
with the same liquid volume per unit curtain frontal area (0.1 L m-2). 

6.4 Conclusion 

The dispersion of water by nine different wildfire sprinkler configurations has been simulated 

using two-way coupled RANS CFD modelling and Lagrangian particle tracking.  Each sprinkler 

configuration was based on those reported in the literature, or commercially available at the time 

of writing.  Three sets of weather conditions were simulated, representing the range of conditions 
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that have been recorded during destructive wildfires in Australia.  The deposition of water on and 

around a generic residential building was calculated in each simulation, and the results were post-

processed, to estimate the potential for each sprinkler configuration to cool the building walls and 

attenuate radiant heat.  Table 6.3 summarises the performance of each sprinkler configuration. 

TABLE 6.3: Comparison of the performance of different wildfire sprinkler configurations.  
Water consumption values represent the total consumption of a system designed to protect the 

building from all directions. 
 

Sprinkler configuration Cooling of walls Radiation attenuation 
Water consumption 

[L s-1] 

A 
Butterfly sprinklers on risers 

around building 
Moderately effective Effective 13.6 

B 
Butterfly sprinklers above 

roof ridge 
Not effective Not effective 1.7 

C 
Deflector-plate sprinklers 

above roof ridge 
Not effective Not effective 2.1 

D 
Flat-fan sprinklers above 
gutters, spraying inwards 

Not effective Not effective 2.1 

E 
Butterfly sprinklers above 

gutters 
Moderately effective Moderately effective 9.0 

F 
Deflector-plate sprinklers 

above gutters 
Moderately effective Effective 11.1 

G 
Flat-fan sprinklers under 
eaves, spraying inwards 

Effective Not effective 2.1 

H 
Hollow-cone sprinklers in 

WEEDS arrangement 
Moderately effective Moderately effective 4.6 

I 
Deflector-plate sprinklers 

under eaves 
Effective Effective 11.1 

 

Wind drift and evaporation affected the performance of the sprinklers significantly.  In some cases 

20% of the water evaporated while airborne, and in other cases more than 35% of water was 

blown downwind, away from the building.  Within the set of sprinkler configurations investigated, 

the system susceptibility to wind drift and evaporation was influenced more by the location and 

orientation of the sprinklers than it was by the spray characteristics (i.e. droplet initial sizes and 

velocities).  Sprinkler configurations that sprayed water towards the target surfaces, over a 

relatively short range, were much less susceptible to the effects of wind and evaporation.  When 

installed in such a configuration, even sprinklers that produced relatively small droplets (e.g. flat-

fan or deflector-plate sprinklers, which produced sprays with Sauter mean diameters of 240 μm 

and 419 μm, respectively) were able to deposit a large fraction of water on building surfaces in 

high winds. 
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Cooling of the building windward wall by deposited droplets, via convection within a liquid film 

flow and as latent heat during evaporation, was found to vary widely between the different 

sprinkler configurations.  Three distinct categories were identified in this regard: 1) systems that 

sprayed water directly onto the top of the wall from a short range, which could effectively mitigate 

incident heat fluxes of up to 50 kW m-2 over all or most of the wall height; 2) systems that sprayed 

water outwards from near the building gutters, or from risers located 4.5m from the building 

perimeter, which deposited sufficient water on the windward wall to remove 5–45% of incident 

heat fluxes of 30–50 kW m-2; and 3) systems that sprayed water from the roof ridge, or from 

inward-facing sprinklers at the roof perimeter, which did not deposit sufficient water on the 

building walls to cool it significantly.  The scenarios investigated here involved uniform heat 

fluxes applied to the entire windward wall; it would be worthwhile to extend this work to include 

localised high-intensity heat sources, like those generated by burning items or accumulated 

embers near the building.  The extinguishment of accumulated embers on windowsills, etc., and 

at the base of walls, would also be worth investigating in future work.  Combined with simulated 

droplet flux distributions like those presented here, such knowledge would allow different 

sprinkler systems to be evaluated in terms of how effectively they extinguish accumulated embers. 

The quantity of radiant heat that could be attenuated by airborne droplets varied significantly 

between the sprinkler configurations, depending on the sizes of droplets that were sprayed, the 

sprinkler locations, and the weather conditions (e.g. wind speed).  Five of the nine configurations 

attenuated between 6% and 26% of the radiant heat flux incident on the building, but the other 

four configurations did not have a significant effect.  Wind-drift and evaporation had a large effect 

on properties of the ‘curtain’ of droplets that each sprinkler system could establish in front of the 

building; the quantity of heat attenuated was typically 39–47% less in ‘extreme’ weather 

conditions (𝑢௥௘௙ ൌ 18.5 m s-1, 𝑇 ൌ 47°C, 𝑅𝐻 ൌ 7%) than it was in ‘moderate’ conditions (𝑢௥௘௙ ൌ 

7.7 m s-1, 𝑇 ൌ 35°C, 𝑅𝐻 ൌ 19%).  The absorption of radiant heat by the droplets, and subsequent 

evaporation, did not significantly diminish the amount of radiant heat that could be attenuated, 

within the range of incident heat fluxes investigated (0–55 kW m-2).  It is possible that wildfire 
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sprinkler systems can be designed to attenuate much more radiant heat than the configurations 

investigated here, since droplets of a similar size to the radiant heat wavelength (~1–10 μm) are 

much more effective at doing so than the larger droplets in the present study (~150–2000 μm).  

However, further investigation would be required to quantify the effects of wind drift and 

evaporation on such fine sprays in a wildfire context. 

To the best of the present author’s knowledge, the effects of wind and evaporation on the 

performance of wildfire sprinkler systems had not previously been quantified, nor had the ability 

of such systems to cool building surfaces or attenuate radiant heat.  The analysis of nine typical 

systems presented here has demonstrated that the impacts of wildfires can be mitigated 

significantly by external water sprays, but that the location, orientation and type of sprinklers need 

to be selected appropriately.  Furthermore, the present study demonstrated how relatively simple 

methods, as developed in this project, can be used to simulate wind-spray interaction and to 

quantify the performance of different sprinkler configurations.  With an improved understanding 

of the mechanisms by which water sprays can mitigate the effects of wildfire on a building (e.g. 

where and how much water needs to be applied to protect certain building features, or whether 

droplets can effectively intercept airborne embers), the simulation methods demonstrated here 

would provide the necessary means to design sprinkler systems to meet specific performance 

requirements. 
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Chapter 7 Conclusion 

Conclusion 

The primary aim of the present work was to develop a much more complete and rigorous 

understanding of wildfire sprinkler system operation, particularly in windy conditions.  Although 

such sprinkler systems have been recommended in sources of technical guidance for owners of 

wildfire-prone buildings, the published design guidelines available at the time of writing were 

inconsistent in terms of the recommended sprinkler types and configurations.  These 

inconsistencies appear to have resulted from a lack of rigorous scientific investigation; no 

previous studies appear to have evaluated and compared the various mechanisms by which water 

sprays could mitigate the effects wildfires on buildings, or the performance of different sprinkler 

configurations in the hot, windy conditions of a wildfire. 

In the present work, experiments and simulations were conducted to quantify the performance of 

wildfire sprinklers.  Due to the lack of previous research on the topic, the present investigation 

necessarily involved the development of several new research tools and techniques, and the 

validation of existing techniques for application to wildfire sprinkler systems.  The investigation 

was comprised of five primary activities: 

1. A comprehensive literature review; 

2. Sprays generated by six typical sprinklers in quiescent conditions were experimentally 

characterised using a custom-built video-analysis program; 

3. Outdoor experiments in windy conditions to validate CFD simulation methods;    



 

172 

4. CFD simulations of the test cases to determine whether computationally inexpensive 

methods could accurately model the dispersion of water from wildfire sprinkler systems; and 

5. The CFD method developed was applied to nine typical wildfire sprinkler configurations, to 

quantify the effects of wind-drift and evaporation on the sprays, and to estimate the 

effectiveness of each system at cooling the building walls and attenuating an incident radiant 

heat flux. 

The first experimental campaign was conducted indoors to fully characterise the droplet fields 

generated by the six sprinklers in quiescent air.  A back-lit high-speed videography technique and 

a custom-built suite of image analysis software were used to form spatiotemporal maps of the co-

distribution of droplet diameters and velocities within six sprays.  High-speed video footage was 

generated of several hundred regions within the sprays, with a narrow depth-of-field.  A computer 

script was developed to automatically identify droplet silhouettes in the videos, and eliminate 

droplets that had been outside a distinct control volume, based on the degree of image focus.  A 

new automated method to detect and separate overlapping images of non-spherical droplets was 

developed that was more reliable than previously established methods.  The resulting set of 

droplet diameter and velocity data will be of significant value for definition of spray source 

conditions in future CFD simulations, or other similar work 

The second set of experiments investigated sprinkler operation in windy conditions, close to an 

isolated 2.4 m cube.  The deposition of water was measured at several locations on the cube 

surfaces and ground, and high-frequency air velocity measurements were taken at three heights 

to characterise the atmospheric boundary layer flow.  Four test cases were established; each 

involved either a hollow-cone or ‘butterfly’ sprinkler, implemented on either the windward or 

leeward side of the cube.  Data from the experiments have been reported in-detail, including water 

deposition fluxes, and vertical profiles of mean wind velocity and turbulence characteristics. 

An extensive investigation was conducted into the suitability of different CFD techniques for 

simulations of wildfire sprinkler systems.   Simulated water deposition fluxes were compared to 

measurements from the outdoor experiments.  Steady RANS-based simulations with Lagrangian 
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particle tracking and a discrete-random-walk turbulent dispersion model were able to replicate 

measured deposition fluxes on the vertical cube surfaces and ground reasonably well; 17 out of 

20 of such results were within ±15% of the experimental results, and the remaining three results 

disagreed by less than 50%.  However, simulated deposition fluxes on the cube top surface 

deviated from the experimental results by a greater margin.  Comparison of results obtained using 

different simulation settings revealed the following. 

 Differences between CFD and experimental results were much larger when a turbulent 

dispersion model was not used. 

 One-way and two-way coupled simulations produced results that were very similar, despite 

the relatively high liquid volume fractions observed close to the sprays. 

 Results obtained using the RNG k-ε and realisable k-ε turbulence models were very similar, 

although the RNG k-ε model did produce deposition fluxes on the top surface of the cube 

that were slightly closer to the experimental results.   

 Deviations between CFD and experimental results did not appear to be caused by large-

scale ‘inactive’ turbulence. 

 The radius of the virtual spherical surface, from which droplets were introduced into the 

computational domain, had a large effect on CFD results.  However, augmentation of 

droplet velocities in this ‘droplet source’ boundary condition could negate such effects. 

The CFD methodology that was developed throughout this process provides a means to model 

droplet trajectories in hot windy conditions, such as those that occur during wildfires, with 

reasonably high accuracy and low computational expense.  However, turbulence-resolving 

methods such as LES may be able to predict water deposition fluxes more accurately in the region 

of separated flow above the cube, so may be worth investigating further. 

The performance of nine typical wildfire sprinkler configurations was then quantitatively 

evaluated using the CFD methodology that had been developed.  The dispersion of water around 

a generic residential building was modelled in three hot, windy weather condition scenarios, 
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corresponding to conditions recorded during actual destructive wildfires in Australia.  In many 

cases less than half of the water being sprayed impacted on or near the building, due to wind drift 

and the evaporation of airborne droplets.  The primary factor that influenced the efficiency of the 

system in wetting building surfaces appeared to be the location and orientation of the sprinklers.  

Even sprinklers that emitted relatively small droplets (𝑑ଷଶ ൌ 240 μm) were able to deposit more 

than 75% of water on the target surfaces in high winds, when they were positioned to spray 

directly onto the surfaces over a short range.  Sprinkler configurations that have often been 

recommended in sources of technical guidance, such as rotating ‘butterfly’ sprinklers above the 

roof ridge or gutters, deposited as little as 45% of water on the building in some cases, despite the 

relatively large droplets that they emit (which should be relatively insusceptible to wind drift and 

evaporation). 

In order to understand the implications of the water deposition fluxes predicted using CFD for the 

effectiveness of each sprinkler configuration, the results were post-processed to estimate: i) the 

quantity of heat that could be removed from the building windward wall by water runoff film 

flow, and ii) the quantity of radiant heat that could be attenuated by airborne droplets upwind of 

the building.  One-dimensional finite difference models were formulated for this analysis, which 

provided a relatively simple method to obtain ‘order-of-magnitude’ estimates of system 

performance, taking into account important phenomena such as the optical scattering 

characteristics of water droplets. 

Two sprinkler configurations, which sprayed water towards the top of the wall surface from under 

the building eaves, were able to remove a uniform 30 kW m-2 heat flux from almost the entire 

wall surface, and could remove a 50 kW m-2 heat flux from 75–100% of the wall area.  Water 

blown back onto the windward wall from sprinklers mounted above the roof perimeter, or pointing 

outwards from below the gutters (in a ‘WEEDS’ arrangement), was only able to remove 5–45% 

of incident heat fluxes of 30–50 kW m-2, and sprinklers mounted to predominantly spray water 

on the roof surface did not cool the windward wall significantly. 



175 
 

Five of the nine sprinkler configurations established a ‘curtain’ of airborne droplets upwind of the 

building that could attenuate a significant fraction (6–26%) of incident radiant heat fluxes.  The 

fraction of incident radiant heat that could be attenuated was strongly influenced by the weather 

conditions, due to wind drift and evaporation, but was affected much less by the intensity of the 

incident radiant heat flux (within the range 0–55 kW m-2).  It is possible that water resources could 

be used much more effectively by wildfire sprinklers designed to emit smaller (~10–100 μm) 

droplets, due to their optical scattering characteristics.  However, further research would be 

required to determine whether ‘curtains’ of such small droplets can be established around 

buildings in the hot, windy conditions of a wildfire.  The methods that were developed in the 

present work would be well-suited for such an investigation. 

Considering the significant benefits that indoor sprinkler systems have been shown to provide in 

extinguishing structural fires, wildfire sprinkler systems have received surprisingly little attention 

from the scientific community.  It is true that the complex thermo-physical phenomena that occur 

in the outdoor environment during wildfires render such systems difficult to investigate, and could 

diminish their effectiveness compared to indoor sprinklers, but these barriers are not 

insurmountable.  Methods have been developed in the present work which allow wildfire sprinkler 

performance to be quantified with a reasonable degree of accuracy.  Furthermore, the results 

obtained using these methods indicate that external sprinklers could be very effective at mitigating 

the impacts of wildfire on buildings, if implemented correctly.  Continued development of a 

robust and comprehensive understanding of wildfire sprinkler performance would enable the 

owners of wildfire-prone buildings to make informed risk-management decisions, ultimately 

saving lives and property.  It is the author’s hope that the work presented here can serve as the 

basis for further investigations in this area.  
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