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Abstract

Soil moisture is found to be a key factor that influences fuel 

moisture content. Consequently, operational forest fire 

prediction systems typically include soil moisture as one of the 

inputs for fire behaviour calculations. The soil moisture input 

to these fire prediction models is usually provided in the form 

of moisture deficit. There is evidence that the current 

operational methods used in Australia for fire prediction 

perform poorly in estimating soil moisture status. A research 

project was initiated in partnership with the Bushfire and 

Natural Hazards Cooperative Research Centre to develop an 

advanced, state-of-the-art soil moisture analysis for Australia. 

Consequently, a prototype, high-resolution, land surface 

modelling-based soil moisture analysis called JULES based Soil 

Moisture Information (JASMIN) has been developed. JASMIN 

can provide hourly moisture estimates for four soil layers, at a 

spatial resolution of 5 km. 

The present paper will discuss the evaluation of JASMIN 

carried out against observations from ground-based networks. 

Among the results, the mean Pearson’s correlation for surface 

soil moisture across three in-situ networks is found to be 

between 0.78 and 0.85. We also focus on the research carried 

out to downscale the JASMIN product from 5 km to 1 km 

spatial resolution. The downscaling research is motivated by 

the desirable impact a higher resolution soil moisture product 

can provide for fire prediction, considering the high spatial 

variability in soil moisture and fuel moisture. We discuss the 

application of three downscaling algorithms: two regression-

based methods and one with a theoretical basis. The three 

methods applied in the present study are based on the 

information derived from characterizing a two-dimensional 

surface temperature/vegetation index scatterplot domain 

obtained from thermal and optical remote sensing 

observations. We present an overview of the application of 

each method, along with an evaluation against ground-based 

soil moisture observations. Evaluation results indicate that the 

regression methods, in general, fail to capture the observed 

temporal variability. The theoretically based method, on the 

other hand, provides a temporal correlation of 0.81 and 

captures the skill of the parent JASMIN product. 

Introduction

In a fire prediction context, soil moisture status, usually 

provided in the form of moisture deficit, is a key parameter to 

assess the fuel availability. In Australia, there is evidence that 

the Keetch Byram Drought Index (KBDI) and Soil Dryness Index 

(SDI) methods used to estimate soil moisture deficit in 

operational fire prediction perform poorly (Vinodkumar and 

Dharssi 2017). A prototype, high resolution, land surface 

modelling system has been developed by the Bureau of 

Meteorology (Dharssi and Vinodkumar 2017) to provide soil 

moisture estimates with high accuracy and precision. This 

prototype system is based on the Joint UK Land Environment 

Simulator (JULES; Best et al. 2011) land surface model and is 

forced mainly by observation based meteorological analyses. 

The new system is called the JULES based Australian Soil 

Moisture Information (JASMIN) and estimates soil moisture at 

a spatial resolution of 5 km.  

For applications like fire prediction, there is a requirement for 

soil moisture information at even higher spatial resolution 

than currently provided by JASMIN. A common practice to 

overcome such a problem is to employ downscaling methods 

to increase the spatial scale of the product. Recent advances in 

optical remote sensing have allowed researchers to use 

different remote sensing products that reflect soil moisture 

variability as ancillary information. A method based on a 

“universal triangle” concept is used in several studies where a 

relationship between soil moisture, vegetation index (VI) and 

surface radiant temperature (Ts) from optical remote sensing 

sensors is established. The universal triangle concept arises 

from the emergence of a triangular or trapezoidal shape when 

VI and Ts measures taken from heterogeneous areas are 
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plotted in two-dimensional feature space – forming a Ts/VI 

scatterplot. Of the different land surface parameters, 

normalized difference vegetation index (NDVI) and land 

surface temperature (LST) are the most widely used. 

Theoretical and experimental studies have demonstrated the 

relationship between surface soil moisture, NDVI and LST for a 

given region under specific climatic conditions and land 

surface types. 

Based on the triangular space paradigm, an empirical, 

polynomial fitting downscaling method was proposed by Piles 

et al. (2011) over south-eastern Australia to retrieve soil 

moisture at 1 km resolution from Soil Moisture and Ocean 

Salinity (SMOS) mission using NDVI and LST data from 

Moderate Resolution Imaging Spectro-radiometer (MODIS). 

Merlin et al. (2008; 2012) had developed a physics based 

method to downscale soil moisture by exploring the direct 

relationship existing between soil moisture and Soil 

Evaporative Efficiency (SEE; the ratio of actual to potential 

evaporation), leading to the emergence of the "Disaggregation 

based on Physical And Theoretical scale Change (DisPATCh)" 

model (Merlin et al. 2012). The DisPATCh method was found 

to yield a temporal correlation of 0.7 when compared to 

ground-based observations over the semi-arid Murrumbidgee 

catchment. 

The present study explores the applicability of the multiple 

linear regression method discussed in Piles et al. (2011) and 

the DisPATCh method to downscale JASMIN soil moisture from 

5 km to 1 km spatial resolution using MODIS LST and NDVI 

data. The main reason for selecting these methods is that they 

have been tested and documented to derive soil moisture 

information at 1 km spatial resolution over Australian regions. 

Further, the input data used in these methods are readily 

available. To investigate whether the skill of the multiple linear 

regression method can be improved further by regularization, 

we implemented the Least Absolute Shrinkage and Selection 

Operator (LASSO; Tibshirani et al. 1996) regression using the 

same feature variables used in the multiple linear regression 

method. The downscaling algorithms are only applied to the 

top JASMIN soil layer (0-10 cm). One of the main factors 

controlling the shape of Ts-VI scatter is the surface soil 

moisture. Studies have shown that the combined use of optical 

and thermal infrared data can be used to derive moisture 

estimates for the top 5 cm soil layer (e.g., Sandholt et al. 

2002). Even though there are mismatches in scales for the soil 

column each method represents, the topmost soil layer in 

JASMIN is a good approximation to that the Ts-VI method 

represents. 

Results and discussions 

Verification of JASMIN against ground 

observations 

The skill of JASMIN is compared against that of KBDI and SDI 

using ground observations from the CosmOz (Hawdon et al. 

2014), OzNet (Smith et al., 2012) and OzFlux (Beringer et al. 

2016) networks. For direct verification, all SM products and 

indices are converted to soil wetness (normalized between [0, 

1]) using their own maximum and minimum values from 

respective long time series. Pearson’s product-moment 

correlation (R), unbiased root mean square difference 

(ubRMSD) and bias metrics are used here to evaluate the skill 

of each product against in situ observations. The scores are 

computed for all stations and for the whole period where 

comparing data overlaps. Only scores for significant 

correlations with p-values < 0.001 are presented. In order to 

calculate correlations with seasonal effects removed, we 

compute the anomalies for each dataset using Θ ̂_an=Θ ̂-

Θ ̂_av, where Θ ̂_av is the mean and is calculated over a 31 day 

sliding window. The results are depicted as scatter plots 

(Figure 1). 

JASMIN generally exhibits a stronger correlation compared to 

the other two models (Figure 1a). This is especially true over 

CosmOz and OzNet networks. The median correlation for 

JASMIN obtained against CosmOz, OzNet and OzFlux is 0.85, 

0.81 and 0.78 respectively. JASMIN consistently display a 

strong positive correlation over CosmOz sites where R > 0.60 

at all sites. Out of the total 45 sites in OzNet network, JASMIN 

display R > 0.60 for all except 4 sites. For OzFlux, JASMIN 

captures the temporal patterns well for 19 sites out of 21, with 

R > 0.60 at all these sites. KBDI exhibits a larger scatter in 

correlations compared to SDI. KBDI shows a relatively better 

performance over OzFlux compared to OzNet and CosmOz. A 

majority of OzFlux sites are situated in high rainfall regions, 

and some among them are in the tropics. KBDI is known to 

perform well in regions with warm climates and higher annual 

rainfall totals. This is typical of the region (south-eastern US) 

for which KBDI was designed and calibrated. 

The lower ubRMSD in JASMIN compared to other two models 

is represented by the general clustering of points below the 

reference line in the respective scatter plot (Figure 1b). This 

indicates that the amplitude of short-term variations in 

observations is well captured by JASMIN compared to the 

other two models. The closer agreement of JASMIN and 

observed amplitudes is reflected by the lowest median scores 

of ubRMSD across all networks. KBDI generally shows large 

deviations from observations (Figure 1b). KBDI in fact has the 

largest median ubRMSD values for all networks and, in 

general, shows a wet bias - a result reported in earlier studies 

as well (e.g. Vinodkumar et al. 2017).  

The ability of each model to capture the short-term 

fluctuations in observations is quantified by the anomaly 

correlation metric (Figure 1d). It is worth noting here that all 

models considered in the present study have the same 

resolution and are driven by the same precipitation analysis. 

Hence differences in fluctuations characterized by each model 

cannot be due to the difference in rainfall amounts for an 

event in the driving data. These differences, however, can be 

due to how each model represents surface energy and water 

balance processes. JASMIN is found to have a relatively higher 

anomaly correlation when compared to KBDI and SDI.  
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Figure 1: Scatter plots depicting a) correlation, b) unbiased RMSD, c) bias and, d) anomaly correlation. The y-axis shows the skill scores of 

JASMIN against in-situ observation. The x-axis corresponds to the skill scores of the other two models (KBDI and SDI) against in-situ 

observations. Each colour represents a model type depicted on x-axis (i.e., KBDI and SDI). Each symbol represents an observation network 

type. The red line indicates equal skill between two products. 

Given the complexity of physical processes that govern surface 

soil moisture dynamics, these results indicate a robust 

modelling approach in JULES Land Surface Model. The 

governing complex physical processes also explain the low skill 

in KBDI and SDI. For example, neither of these models consider 

many physical factors including soil type, vegetation type, or 

terrain aspect which affect soil moisture. Further, no 

information on atmospheric controls of evapotranspiration 

such as net radiation, wind speed, or relative humidity is used. 

Verification of downscaled JASMIN soil moisture 

This section discusses the temporal skill of each downscaling 

product against ground-based observations. The scores are 

computed using the same methodology discussed in the 

previous section. An evaluation of each model's skill over 

different land use / land cover (LULC) is presented in Figure 2. 

The LULC classification is made based on the land cover types 

over which the observation sites are located. We broadly 

classify the land cover types into forests, woodlands, 

grasslands and croplands. Of the 60 sites in total across three 

networks, 12 are classified as croplands, 12 as forests, 9 under 

woodlands, and the remaining 27 under grasslands. 

The temporal skill is reduced when JASMIN is downscaled 

using the two regression-based methods. For example, the 

median values obtained by the LASSO method over woodlands 

for correlation, ubRMSD, bias and anomaly correlation are 

0.41, 0.08, -0.08, and 0.26 respectively. For the multiple linear 

regression method, the above scores are 0.37, 0.11, -0.1 and 

0.32 respectively. The LASSO method produces a higher skill 

than the multiple linear regression, highlighting the fact that 

there was some overfitting in the multiple linear regression 

method which is reduced in the LASSO method. Because of its 

safeguarding against noise, LASSO has a higher correlation and 

lower ubRMSD than the multiple linear regression method. 

This is demonstrated through the timeseries plot over the 
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Weany Creek site in the northern Queensland, which is part of 

the CosmOz network (Figure 3). This site is in a grazed open 

woodland with grassy and shrubby understory. The multiple 

linear regression method is found to have larger temporal 

variability than the LASSO method and the other two products 

(JASMIN and DisPATCh). This is particularly noticeable during 

the dry seasons where the multiple linear regression method 

shows large variability compared to the observations. A 

possible reason for this is the large sensitivity of estimated soil 

moisture in multiple linear regression to noise in the LST data. 

The uncertainties involved in the thermal infrared based LST 

retrievals are found to be about 2 K (Li et al., 2014). By 

applying regularization through LASSO, this sensitivity is 

reduced to some extent, but not to a point where the LASSO 

estimates match the temporal skill of the JASMIN product at 

5km (Figure 2c).  

In the case of DisPATCh, the temporal skill is similar to the 

JASMIN 5 km product and better than the other two 

downscaling methods. The average correlation of DisPATCh 

over the three networks is 0.81, identical to JASMIN. In the 

woodland, cropland and grassland cases, disaggregation either 

marginally improves or retains the mean R, bias and ubRMSD. 

The similar skill of DisPATCh and JASMIN can be appreciated 

from the box and whiskers provided in Figure 2 Specifically, 

DisPATCh shows an increase in R and reduction in bias over the 

woodland sites. The good performance of the DisPATCh over 

woodlands is re-affirmed by the timeseries plot at the Weany 

Creek, which is an open woodland site (Figure 3d). The 

DisPATCh shows similar temporal variability to the 

observations and does not produce the large variability 

observed in the other two downscaling methods. 

However, it is observed that DisPATCh has lower skill than the 

JASMIN product over forested sites, possibly due to the 

increase of random uncertainties attributable to the models 

and data used by DisPATCh. Studies have shown that DisPATCh 

performs better over low-density vegetated areas in semi-arid 

environments (Merlin et al. 2012). A possible reason for this 

behaviour is the weaker coupling between evaporation and 

surface soil-moisture in temperate (where most forested sites 

are located) than in semi-arid climates. Further, the presence 

of dense vegetation poses a challenge in the retrieval of the 

soil temperature from thermal infrared data. The vegetation 

water stress may increase the remotely sensed land surface 

temperature independent of near-surface soil moisture. 

 

 

 

 

Figure 2: Skill of soil wetness products over various land cover types: a) Pearson’s correlation, b) unbiased RMSD, c) bias, and d) anomaly 

correlation. The grouping is done based on the land cover type of the observing site. The outliers are marked as diamonds. The orange 

boxes represent multiple linear regression method, light khaki colour represents LASSO method, the green boxes represent DisPATCh and 

the magenta coloured boxes represent the original JASMIN product at 5 km resolution. 
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Figure 3: Soil wetness time-series at the Weany Creek site in Queensland, part of the CosmOz network. The brown lines show JASMIN 

analyses at 5 km resolution, orange lines represent multiple linear regression method, light khaki depict LASSO method and the green line 

represents DisPATCh. The black dotted lines show the in-situ observations. 

Summary

The present study underlines some of the limitations of 

traditional soil dryness indices in producing accurate soil 

moisture estimates, particularly for a shallow soil layer. One 

limitation of the traditional indices is that they use a single soil 

horizon to represent variations in both surface and root zone 

layers. The new JASMIN system can address gaps in the 

present operational methods by providing accurate soil 

moisture information in different layers. JASMIN has been 

shown to provide good skill in estimating soil moisture at both 

surface and root zone layers. 

Results from the downscaling study indicate that it is feasible 

to improve the spatial resolution of JASMIN using all three 

disaggregating algorithms and preserve the general large-scale 

spatial structure seen in JASMIN soil moisture estimates. 

However, the seasonal means obtained at 1 km shows that 

each product displays characteristic soil moisture spatial 

variability at fine scales. Results from comparison with ground-

based soil moisture measurements indicate that the regression 

methods degrade the temporal correlations and the ubRMSD 

scores. The DisPATCh method produces the best skill among 

the three algorithms tested here, and the skill scores from 

DisPATCh are comparable to those of the original JASMIN 

timeseries. 

The low skill observed in regression methods possibly resulted 

from the large random errors attributable to the methods or 

uncertainties in the feature variables. It is worth noting that 

even the minimum and maximum limits applied to calculate 

the normalized LST and NDVI datasets (feature variables in the 

regression method) can introduce uncertainties in the 

downscaled soil moisture output. Further research is required 

to identify and minimize some of the uncertainties associated 

with both MODIS LST and NDVI datasets and to provide robust 

quality control. 

Uncertainties in the MODIS input datasets have an important 

influence on the DisPATCh results as well, in addition to the 

uncertainties arising from the model assumptions and 

calibrations. It is found that calibration has a significant 

influence on the DisPATCh model behaviour. One aspect of 

DisPATCh that needs to be revisited is the modelling of soil 

moisture sensitivity to the soil evaporative efficiency. It is 

important to note that the DisPATCh algorithm is evolving and 

will continue to do so. Further work is required to test and 
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evaluate the new ideas that will be developed in relation to 

DisPATCh and will be a focus of future research.   
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