Spot-fire Project: research and utilisation

Research Advisory Forum / 2019

Jason J. Sharples a, d, James E. Hilton b, d, Andrew L. Sullivan c, d

a University of New South Wales
b CSIRO Data 61
c CSIRO Land and Water
d Bushfire and Natural Hazards CRC

Photo: Randall Bacon.
Utilisation

Development of tools for identifying regions prone to mass spotting

- Scaled to fit operational practice and embedded in current operational frameworks
- Automatically incorporates relevant spatial information, including forecast updates or scenario inputs
- Training packages including video material.

Project starts 2020…!
Modelling dynamic fire propagation

NEAR FIELD MODELLING OF VORTICITY-DRIVEN LATERAL SPREAD
Modelling dynamic fire propagation

NEAR FIELD MODELLING OF VORTICITY-DRIVEN LATERAL SPREAD

Coupled fire - atmosphere model simulation

Approx. 10 hours to run on NCI supercomputer

Near field model simulation

Approx. 10 seconds to run on a laptop.

Modelling vorticity-driven wildfire behaviour using near-field techniques

Jason J. Sharples and James E. Hilton

School of Science, UNSW Canberra, ACT 2600, Australia.

CSIRO Data61, Clayton South, VIC 3169, Australia

Frontiers in Mechanical Engineering. Special Issue on Wildland Fire
Modelling dynamic fire propagation

V-FIRE PYROTRON EXPERIMENTS

- No increase in vertex speed under no-wind conditions
- Significant increase in the vertex speed in the presence of wind
- Results confirm that fireline interactions can influence the behaviour and spread of coalescing fire fronts
- Further research is required to understand the precise mechanisms driving this behaviour
Modelling the spotting process

WIND-TERRAIN EFFECTS ON SPOTTING DISTRIBUTION

Modelling the spotting process

WIND-TERRAIN EFFECTS ON SPOTTING DISTRIBUTION
Modelling the spotting process

WIND-TERRAIN EFFECTS ON SPOTTING DISTRIBUTION

© BUSHFIRE AND NATURAL HAZARDS CRC 2018
Modelling the spotting process

COMBINING SPOTTING WITH VLS

(a)

(b)
Modelling the spotting process

COMBINING SPOTTING WITH VLS

No firebrands

\[\kappa = 0.0075 \]

\[\kappa = 0.0050 \]

\[\kappa = 0.0025 \]
Things to ponder...

- How do we deal with non-ballisitic embers?
- What sort of approach should we use to model them?
- How do we link with other work; for example, work on downslope winds?