Understanding and Mitigating Hazards

Tulku Plume.JPG

Extreme fire weather
Extreme fire weather

Project Status:

This project is using high-resolution modelling, together with a range of meteorological data, to better understand and predict important meteorological natural hazards, including fire weather, tropical cyclones, severe thunderstorms and heavy rainfall. The outcomes from the project will contribute to reducing the impact and cost of these hazards on people, infrastructure, the economy and the environment.

This project is using high-resolution modelling, together with a range of meteorological data, to better understand and predict important meteorological natural hazards, including fire weather, tropical cyclones, severe thunderstorms and heavy rainfall. The outcomes from the project will contribute to reducing the impact and cost of these hazards on people, infrastructure, the economy and the environment.

Specific case studies undertaken include the New South Wales Blue Mountains bushfires of 2013; ember transport by fire plumes; pyrocumulus cloud simulation and prediction, and the NSW April 2015 East Coast Low.

Ember transport

The study has been developing understanding of how fire embers generated during bushfires can be lifted into the atmosphere and carried by winds ahead of a fire front, potentially starting new fires downwind. The team has undertaken simulations for ember transport for a wide range of wind speeds and ember fall speeds. It is important to consider a range of fall speeds, since different types of embers have different densities and aerodynamic properties which affect how far they are carried.

Pyrocumulonimbus

Plume modelling has also been utilised to study pyrocumulonimbus clouds (PyroCb). Intense fire plumes in suitably moist environments can lead to PyroCb development, with the possibility of strong downbursts which can exacerbate already extreme fire conditions. A survey of current understanding and forecast techniques has been completed, and the team will be working towards developing improved techniques.

Blue Mountains bushfire

A detailed case study of the Blue Mountains fires of October 2013 was undertaken, focusing on 17 October when some 200 houses were destroyed. Analysis uncovered a weather phenomenon known as mountain waves which contributed to the severe fire behaviour. Mountain waves are atmospheric oscillations that occur due to air flowing over hills or mountains. They can arise in several different ways, some more predictable than others. Often they cause strong downslope winds on the lee slope of the hill or mountain.

April 2015 East Coast Low

Collectively, the ensemble weather simulations accurately predicted the position and intensity of the low, the strong winds and the rainfall. The differences between them give insight as to the forecast uncertainty, the overall envelope of areas at some risk, and the areas at highest risk. The ensemble also enables insight into the processes that lead to the rapid intensification of these systems. The team is continuing to learn from ensemble simulations about predictability of East Coast Lows and how to use this information to benefit both forecasters and the emergency services.

Specific outcomes of this project will:

  • Improve the scientific understanding of severe weather phenomena in Australia.
  • Improve the knowledge of how to best predict these phenomena, including model configuration and interpretation.
  • Contribute to the post-event analysis and lessons learned of selected severe events that occur during the course of the project.
  • Inform the development of numerical weather prediction systems specifically for severe weather.
Fire Australia Issue Two 2017
2 June, 2017
There is plenty of CRC science in the latest edition of Fire Australia.
Margaret River Fire
30 May, 2017
One of the most challenging situations in fire management is when relatively non-threatening weather conditions are expected, but a severe fire eventuates.
CRC sign
17 November, 2016
New journal articles and reports on CRC research are available online.
14 September, 2016
New journal articles and reports on CRC research are available online.
Mercury Rising was streamed live online, as well as a studio audience
7 October, 2014
The replay of the live stream of the Mercury Rising: Extreme Bushfires industry and public forum is now available.
Year Type Citation
2016 Conference Paper Rumsewicz, M. Research proceedings from the 2016 Bushfire and Natural Hazards CRC and AFAC conference. Bushfire and Natural Hazards CRC & AFAC annual conference 2016 (Bushfire and Natural Hazards CRC, 2016).
2016 Conference Paper Thurston, W., Tory, K. J., Fawcett, R. J. B. & Kepert, J. D. The effects of turbulent plume dynamics on long-range spotting. AFAC16 (Bushfire and Natural Hazards CRC, 2016).
2016 Report Tory, K. J., Peace, M. & Thurston, W. Pyrocumulonimbus forecasting: needs and issues. (Bushfire and Natural Hazards CRC, 2016).
2016 Report Kepert, J. D. et al. Improved predictions of severe weather to reduce community impact: Annual project report 2015-2016. (Bushfire and Natural Hazards CRC, 2016).
2015 Conference Paper Kepert, J. D., Naughton, M. & Bally, J. Managing Severe Weather - Progress and Opportunities Conference Paper 2014. Bushfire and Natural Hazards CRC and AFAC Wellington Conference 2014 (2015).
2015 Conference Paper Fawcett, R. J. B., Yeo, C., Thurston, W., Kepert, J. D. & Tory, K. J. Modelling the Fire Weather of the Coonabarabran Fire of 13 January 2013. Bushfire and Natural Hazards CRC and AFAC Wellington Conference 2014 (2015).
2015 Conference Paper Rumsewicz, M. Research proceedings from the 2015 Bushfire and Natural Hazards CRC & AFAC conference. Bushfire and Natural Hazards CRC & AFAC annual conference 2015 (Bushfire and Natural Hazards CRC, 2015).
2015 Conference Paper Thurston, W., Tory, K. J., Fawcett, R. J. B. & Kepert, J. D. Large-eddy simulations of pyro-convection and its sensitivity to environmental conditions - peer viewed. Adelaide Conference 2015 (2015).
2015 Journal Article Thurston, W., Fawcett, R. J. B., Tory, K. J. & Kepert, J. D. Simulating boundary-layer rolls with a numerical weather prediction model. Quarterly Journal of the Royal Meteorological Society 1-14 (2015). at <http://www.cawcr.gov.au/staff/jdk/Kepert_papers/Thurston_etal_2015_qjrms_acc.pdf>
2015 Presentation Kepert, J. D., Thurston, W., Ching, S., Tory, K. J. & Fawcett, R. J. B. Improved predictions of severe weather to reduce community risk. (2015).
2015 Report Tory, K. J. & Thurston, W. Pyrocumulonimbus: A Literature Review. (2015).
2015 Report Kerpert, J. D., Tory, K. J., Thurston, W., Ching, S. & Fawcett, R. J. B. Improved predictions of severe weather to reduce community impact: Annual project report 2014-2015. (Bushfire and Natural Hazards CRC, 2015).
Improved predictions of severe weather to help reduce community impact
25 Aug 2014

To improve our understanding of and ability to predict severe weather, including for bush fires, tropical cyclones, severe thunderstorms and heavy rainfall, through the use of high-resolution modelling in conjunction with available observations. 

Key Topics:
Weather Science to Societal Impact: Opportunities for Australia in the World Meteorological Organisation's High Impact Weather Project
18 Aug 2015

The Bureau of Meteorology seeks Australian collaborators to participate in a new 10-year international high impact weather project to develop improved hazard prediction capabilities. Its aims align on an international level with those of the Bushfire and Natural Hazards CRC.

Modelling the Fire Weather of the Blue Mountains Fires of October 2013
18 Aug 2015

High resolution simulations over the Blue Mountains Region on 17 October 2013 show several interesting meteorological features.

Long-Range Spotting by Bushfire Plumes: The Effects of In-Plume Turbulence on Firebrand Trajectory
18 Aug 2015

Large-eddy simulations of bushfire plumes are combined with firebrand trajectory calculations to estimate the effects of in-plume turbulence on firebrand transport.  In-plume turbulence  substantially lengthens the maximum spotting distance AND increases the lateral and longitudinal spread of firebrand landing positions.

Will Thurston Conference Poster 2016
14 Aug 2016

Pyrocumulonimbus clouds have been linked to highly dangerous fire behaviour.

Thermodynamics of pyrocumulus formation
29 Jun 2017

In favourable atmospheric conditions, large hot fires can produce pyrocumulus cloud: deep convective columns resembling conventional thunderstorms. These in turn may generate strong surface winds, dangerous downbursts and lightning strikes that may enhance fire spread rates and fire intensity, cause sudden changes in fire direction, and ignite additional fires.

Download:
Ensemble prediction of the East Coast Low of April 2015
29 Jun 2017

Between 20-23 April 2015 the eastern coast of Australia was affected by a low-pressure system, known as an east coast low, which brought flooding, damaging winds and coastal erosion. This study utilises ensemble simulations to get a better understanding of the dynamics of this event, as well as its predictability. This is important for both forecasters and emergency services.

Research clusters

Explore by keyword