News from the CRC

fireaust1706.jpg

An aerial shot of the damage from the Margaret River fire in 2011
An aerial shot of the damage from the Margaret River fire in 2011
Release date
31 Aug 2017
More information:
Dr Neil Burrows
Researcher

The great escapes

By Dr Neil Burrows. This article first appeared in Issue Three 2017 of Fire Australia.

Preventing burns from escaping and becoming a damaging bushfire is of great concern to  fire managers. Escapes, as with most accidents, are usually the culmination of many factors, but in this article I take a look at two significant burns that escaped and identify three primary causal factors.

Bushfires develop speed, energy and killing power from the amount and structure of live and dead vegetation that burns, which builds up and becomes increasingly hazardous over time. Done at the right spatial and temporal scales, prescribed burning reduces the overall flammability and quantity of fuel across a region, thereby reducing the intensity and speed of bushfires. This makes them easier and  safer to suppress, and less damaging to the built and natural environments. Even under severe fire weather conditions, if fuel load and fuel flammability are low to moderate as a result of prescribed burning at the right scale, there will almost always be somewhere on the perimeter that the fire can be safely and effectively attacked. If fuel loads are low, the portion of attackable perimeter can increase significantly when fire weather conditions abate. 

Rotational prescribed burning has been implemented over much of the 2.5 M ha of the south-west Australian forests since the late 1950s. Over that time, several thousand burns have been carried out, amounting to some 14.4 M ha of prescribed burning. Over the same period, about 1.2 M ha was burnt by bushfire. Even with this extensive burning experience, and even though the program has a firm scientific underpinning, the practice is not without risk. Ensuring a prescribed burn does not escape is paramount to firefighter safety, community safety and community confidence in the fire management agency. In Western Australia, successive agencies responsible for carrying out prescribed burning on public lands have a good track record, with only about 2% of burns escaping. In most cases, the escaped fires have been quickly contained, with little damage done. However, in the 2011–12 fire season, several prescribed burns escaped. One (the Margaret River fire) caused significant property damage (32 homes, nine chalets and four sheds) and another (the Milyeannup fire) was at the time the largest bushfire in the southwest region since 1961. 

Because of the high property losses, the Margaret River fire was the subject of a special inquiry commissioned by the Western Australian Government and led by MJ Keelty AO. In handing down his findings, Mr Keelty identified a range of factors, acting together or alone, that contributed to a) the prescribed burn escaping and b) the consequent damage caused by the escape. Because there was little harm done, the Milyeannup fire was not the subject of a special inquiry, but was the subject of an internal report by the Department of Environment and Conservation, the responsible management agency. 

The Margaret River and Milyeannup fires were quite contrasting—not only in size, but in their location and community impact. The Margaret River fire was relatively small (about 3,400 ha) but resulted in significant property losses, whereas the Milyeannup fire was large (approximately 52,000 ha) but caused no significant losses. Fortunately, there was no loss of human life in either incident. The environmental damage of bushfires is less tangible, but is usually commensurate with the scale and intensity (severity) of the fire. These ecosystems are well adapted to fire, and will recover in time.

Inherent risk

Prescribed burning is inherently risky because of uncertainty surrounding interactions between weather, topography, fuels, fire behaviour and human behaviour. The postincident investigations of these escapes list many strategic, tactical, planning and procedural factors that contributed to burn security being compromised and the fires escaping. The reports and inquiries made sensible recommendations, most of which have or are being adopted by the fire and land management agencies concerned. While there were differences between the two prescribed burns in terms of the vegetation and fuel types involved, the complexity of the burns, the size of the escaped fires, the terrain and the consequent damage done, three primary causal factors interacted to compromise burn security in both cases. These were: 

  • burning long-unburnt vegetation
  • diverse vegetation (hence fuel types) within the burn
  • burning in a warming, drying weather phase (spring).

No prescribed burning is without risk of fire escape, but the risk escalates with increasing vegetation age. This is because fuel load and fuel depth increase, fuel structure becomes more flammable, and in forests, ember sources (such as the amount of loose, flammable bark on trees) increases. Prior to core ignition of aerial burns, the usual practice is to create a surface fuel-free edge of at least 50–100 m deep around the inside perimeter of the burn, effectively increasing the width of the fuel break. This is usually done by ground crews walking the burn perimeter, which is a mineral earth track or road, with drip torches (flamethrowers are used in some cases), lighting up according to a pre-determined ignition pattern (‘edging’). It is important that edging is done under relatively high fuel moisture and mild weather conditions conducive to mild, containable fire behaviour. 

So that fire behaviour does not escalate, old fuels need to be burnt under much milder conditions than young fuels, that is under a lower fire danger index and soil dryness index (higher fuel moisture). By design these conditions reduce the amount of available fuel, thereby reducing the potential fire behaviour and risk of fire escape. However, it results in burn patchiness, or incomplete combustion of the fuel complex in multiple dimensions. 

The residual unburnt fuel can occur both in the horizontal and vertical dimensions of the fuel complex. In  the vertical plane, long-unburnt, deep-surface litter fuels with moist profiles may not burn down to mineral earth under mild prescribed burn conditions, with only the drier top centimetre or so of the fuel bed burning. Edging is designed to extend the width of the fuel break around the burn, so improving burn security. However, if the surface (litter) fuels are not mostly burnt to mineral earth, clearly the edge is not going to function as a fuel break when the residual duff fuel dries later on. In the horizontal plane, low-lying vegetation, such as along creek lines, vegetation on south-facing slopes and areas of dense canopy cover, may not be sufficiently dry to burn at all or will burn patchily. 

In addition to variation in fuel moisture, variation in fuel structure can result in fuel patchiness. Less flammable vegetation types, such as sparse low heaths or open canopy woodlands, may not burn under mild prescribed burning conditions. The extent and nature of the flammability differential across the landscape—due to variability in fuel moisture content and fuel structure—will largely be a function of the burn season and the fire danger index. In a Mediterranean-type climate, stronger differentials exist in spring, so burns are more likely to be patchy. 

The nature of the vegetation mosaic itself will reflect variability in fuel properties, which is more pronounced under mild burning conditions (i.e. low fire danger index) but dissipates with the onset of summer and a rising fire danger index. Patchy or mosaic burning  is often ecologically desirable, because it provides habitat diversity, refugia and soil protection, thereby reducing the acute impacts of fire on wildlife and the environment and enhancing post-fire recovery. 

Patchy burning of old fuels under mild conditions in spring will more often than not result in the later re-ignition of the landscape as residual unburnt fuels dry out with the progression of spring to summer. In a large burn, there is almost always an ignition source, such as a smouldering log, spar, stump, peat or duff (‘sleepers’), which may go undetected for days or weeks but then flare up on a warm windy day, reigniting the unburnt, residual fuels. Fuel that didn’t burn during the initial prescribed burn completed days or weeks earlier is now flammable, because it has dried and the fire danger index has increased. 

The severity of fire behaviour and likelihood of the fire escaping will depend on the size, age and fuel properties of the unburnt patch, its proximity to the burn boundary, the fuel condition of the edge, the weather conditions and the detection and suppression response. In longunburnt vegetation, the fire behaviour on re-ignition, including spotting potential, will be significantly greater for the same weather conditions and patch size than if the unburnt patch was younger fuel. Not only is the burn more likely to escape by spotting over the burn boundary, but because of the residual surface fuel on the edge of the burn—which has now dried—the fire can run across the ‘burnt’ edge and break containment lines. The scenario is made a lot more dangerous and difficult for firefighters if the fire breaks out into adjoining long-unburnt fuels, as was the case for both the Margaret River and Milyeannup fires. 

Reducing the risk

The single greatest strategic measure that can be taken to reduce the risk of well-planned prescribed burns escaping, and reducing damage potential should they escape, is to maintain much of the landscape in a young fuel condition by maintaining an active prescribed burn program. The more prescribed burning that is done, the easier and safer it is to do prescribed burning, and the reverse is true. It is easy to take prescribed fire out of a landscape, but very difficult to put it back. In south-west jarrah forests, for example, this means keeping about 45—50% of the landscape at a fuel age of less than about six years and about 80% less than about eight to ten years. 

Attempting to burn old fuels surrounded by old fuels is costly and high risk, especially in spring. If burning old fuels is unavoidable, and you have to start somewhere, then it may be preferable to burn in autumn after some rain. You should take extra measures to  reduce the size and location of unburnt patches within the burn, and take measures to ensure the edging is of a sufficiently high standard to stop flame spread, such as mechanical treatment of edge fuels or multiple ignitions. On the other hand, young fuels can be burnt in spring with much a lower risk of re-ignition and escape than older fuels.

As mentioned above, burn patchiness can be desirable for ecological reasons. For burn security, bushfire mitigation and ecological benefits, many scattered, small, unburnt patches are preferable to a few large, clumped, unburnt patches, which are likely to be lost following re-ignition and create headaches for fire managers. In south-west Australian forests, achieving and maintaining fine-scale patchiness is more likely when burning younger fuels, and less likely as fuels age. Relatively cheap technology—such as drones mounted with infrared cameras—can be used to locate unburnt patches and hot spots to assist with further risk assessment and burn security measures.

There is no evidence that the managed fire regime outlined above will have deleterious impacts on the forest biota. In fact, by the nature of fire behaviour, it is not only safer to carry out prescribed burning regularly (so burning younger fuels), but it enhances the likelihood of the development of a fine-scale mosaic of vegetation at different
structural stages. On the other hand, infrequent burning (in older fuels) is risky, costly, dangerous and will result in more large summer bushfires—leading to homogenous vegetation structures and less habitat diversity.

More news from the CRC

Unpacking complexity workshop, Wellington 2018
The connections between Australian and New Zealand research in natural hazards were the focus of a workshop in Wellington last month.
Learning from past experiences is integral to emergency management. Photo: South Australia SES (CC BY-NC-SA 2.0)

Two CRC end-users have spoken about their first-hand experiences being involved in a research project that is shaping the way emergency managers think, learn and communicate information to their teams in highly...

Dr Mel Taylor, EMPA research award 2018
CRC research on how to best plan for animals in an emergency has taken out the inaugural Emergency Media and Public Affairs (EMPA) research award, while another project on emergency warnings has been highly commended.
Peter Middleton's research is improving communication in Tasmania's emergency services.
CRC associate student researcher Peter Middleton says his recent experience at the latest Research Advisory Forum in Sydney has enhanced the way he presents his research.
An interviewee shows a researcher the impact the bushfire had on his property. Photo: NSW Rural Fire Service.
In January and February 2017, New South Wales faced some of the worst bushfire conditions ever forecast for the state, including Catastrophic fire danger ratings for many communities. During this time, a number of large...
Coaching and mentoring are relationship-based activities that require cooperation. Photo: Department of Biodiversity, Conversations and Attractions WA.
A vital new resource, backed by research, explores how coaching and mentoring builds incident management team capability for the emergency management sector.
During emergencies, individuals and teams often work under considerable pressure. Photo: New Zealand Fire Service.
There is a lot happening at an incident management centre when a bushfire, flood or cyclone occurs but two checklists are helping emergency management teams carry out effective teamwork.
Science is helping our emergency services keep us safe.
Conducting research is one thing, but applied research that partners scientists and emergency management experts together, resulting in real world outcomes, is another altogether.
Drivers for the coaching and mentoring resource include unique demands on IMT roles. Photo: Victoria State Emergency Service
Issue Two of Fire Australia for 2018 includes stories on two tools that are resolving breakdowns in teamwork, the findings from three catastrophic bushfires in NSW and a showcase of the latest CRC research that is...
Dr Mel Parsons informing stakeholders on her work on the Australian Natural Disaster Resilience Index.
Around 50 people from across the ACT were briefed in May on several key research projects underway at the Bushfire and Natural Hazards CRC.

News archives

AFAC17 logo

AFAC17 logo

All the resources from our 2017 conference

National research priorities for natural hazards

National research priorities for natural hazards

National priorities for research

The Sir Ivan fire. Photo: Nick Moir, Fairfax Media

The Sir Ivan fire. Photo: Nick Moir, Fairfax Media

Research findings from 2017 NSW fires

Four years of highlights

Bushfire planning with kids ebook

Explore by keyword

Index of Editions

Issue Two of Fire Australia for 2018 includes a look at two checklists that are helping emergency management teams when there's a breakdown in communication, the findings on community preparedness after three catastrophic bushfires swept across NSW in early 2017, four utilisation case studies that are helping agencies and incident management tools to enhance communication and capability
Issue One of Fire Australia for 2018 includes a recap of the International Day for Disaster Reduction, investigates what catastrophic flooding could look like in Sydney, asks if your coastal community can cope with rising sea levels, highlights our research in incident management development and looks at predicting blow up bushfires.
Issue Four 2017 of Fire Australia includes research on including animals in emergency planning, details from AFAC17, new priorities in natural hazards research, and a Black Saturday case study to develop guidelines for improved community messaging in bushfires.
Issue Three of Fire Australia for 2017 features new prediction software for predictions of bushfire spread, how NSW's geography curriculum allows students to become agents of change for community resilience, suggestions for reducing the risks involved in prescribed burning, research on the impacts of severe wind during Cyclone Debbie, and new natural hazards science at the Bushfire and Natural Hazards CRC.
Issue Two of Fire Australia for 2017 features information about a weather phenomena called a mountain wave that produces severe fire behaviour, an analysis of flood fatalities in Australia, what we can learn about disaster preparation from Indonesia, and leadership for our emergency service volunteers.
Issue One of Fire Australia for 2017 features firestorms, disaster resilience, fire preparation in Bangladesh and the International Day for Disaster Reduction.
PhD progress, human factors and decision-making capabilities, asbestos risk and the role of pharmacies in disasters are showcased in the Spring 2016 edition of Fire Australia magazine.
The Winter 2016 edition of Fire Australia magazine highlights important research including reducing hazard impacts with smarter spending, fire modelling and wind behaviour as well as the rewarding experience of PhD student placements in the sector.
Mitigating disasters: how damage from floods, fires and storms can be prevented through careful planning and investment; a new approach to flood forecasting using remote sensing data; and case studies from the CRC are highlighting paths to integrate bushfire science into government policy and planning.
Developing a smartphone app to measure fuels for bushfire, 2015's International Day for Disaster Reduction, a case study on the Be Ready Warrandyte initiative and a look at what could happen if Adelaide was hit by a large earthquake.