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FOREWORD 

This document has been written to provide a review of the plume-rise literature 

that is of relevance to two sub-projects of the "Improved prediction of severe 

weather to reduce community impact" project funded by the Bushfire and 

Natural Hazards Cooperative Research Centre (BNHCRC).  The plume rise 

literature is a vast body of work that has been reviewed several times by leading 

experts (e.g., Scorer 1959, Briggs 1975, Briggs 1984, Weil 1988, Arya 1999 Chapter 

10).  This document borrows from the review papers and targets only background 

information relevant to the above-mentioned sub-projects: an ember transport 

model, and a pyrocumulonimbus (pyroCb) prediction tool. 

The ember transport model is being designed as a parameterization tool that 

represents the distribution of burning embers carried by a wildfire plume.  It is 

computationally very cheap to run and can be used off-line or within existing fire-

spread or coupled fire-atmosphere models.  The model inputs are fire size and 

intensity, and atmospheric variables such as the background wind field and 

static stability profile.  The plume rise equations are used to determine ember 

lofting heights and downwind transport. 

The pyroCb prediction tool is designed to identify the potential for pyroCb 

formation from a single atmospheric sounding.  It can be applied to observed 

soundings to give single value estimates and applied to model data (numerical 

weather prediction models, reanalysis data sets, climate model data) to 

generate maps of pyroCb threat.  A theoretical minimum plume height and 

buoyancy can be determined from an atmospheric sounding (Tory et al. 2018), 

which is input to plume rise equations to determine a theoretical minimum fire 

power required to generate a plume with these minimum qualities. 
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HISTORY 

MOTIVATION 

Plume rise studies were born out of the need to design chimney stacks capable 

of dispersing smoke and other pollutants sufficiently to address local air pollution 

concerns.  It had long been known that under certain atmospheric conditions, 

ground-level concentrations of pollutants downwind of a chimney decrease with 

the square of the chimney or "stack" height (e.g., Bosenquet and Pearson (1936, 

as cited in Briggs 1969).  It was later observed that for buoyant plumes and 

plumes emitted with initial vertical momentum, this inverse square relationship 

should be extended to the plume centre-line height, the "effective stack height" 

(e.g., Briggs 1969, Carson and Moses, 1969).  Thus, the prediction of plume-rise 

height became critical for effective chimney design, and plume-rise models 

began to be developed to optimise chimney height, diameter, effluent ejection 

speed and buoyancy, based on a range of expected environmental conditions 

(e.g., wind speed, stratification and turbulence). 

ISSUES 

Early plume-rise models (dating back to the early 1950's), used empirical 

relationships between chimney and environmental parameters (Holland 1953), 

or dimensional analysis techniques to predict maximum plume height (e.g., 

Scorer 1959).  These equations tend to be limited to the parameter space they 

are tested in and were frequently found to perform poorly.  These failures led to 

an abundance of new and supposedly improved formulae throughout the 1960's 

(Carson and Moses 1969), but there was a worrying lack of agreement between 

all the formulae.  A quote from the introduction of Briggs 1975 sums up his 

frustration with the problem:  

Techniques for doing this [calculating maximum plume rise] have been 

developed by at least 50 different people and organisations, probably 

more than 100 (I gave up counting six years ago).  The problem is, they 

don't all agree.  Hardly any of them agree, either with each other or with 

new observations if they go outside the range of variables of the 

observations the techniques were originally made to fit. 

He goes on to say that much of the confusion is due to inconsistency in 

definitions, and an inability to observe the actual maximum plume rise.  Indeed, 

the maximum plume rise was often declared before the plume had levelled-off. 

While this demonstrates a significant scientific problem, it is nothing compared to 

the confusion faced by engineers faced with the task of designing chimney 

stacks to avoid poor surface air quality.  Briggs and others appear to be berating 

the scientific community on their inability to provide a practical solution for 

engineers to employ.  Briggs (1975) noted that different formulae predicted 

plume rises "ranging over a factor of 10 or more!" and were expressed as 

functions of a variety of different source parameters and complex 

meteorological conditions.  For example, in 15 different plume rise formulas, wind 

speed was raised with exponents ranging from -0.33 to -3, and the plume heat 

term was raised to powers between 0.25 to 1.0 (Carson and Moses 1969).  None 
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of the proposed formulae could be expected to apply in all conditions.  The 

engineers' lot, summarised by Briggs, is "a sad situation indeed'. 

Briggs recognised the need to express the plume-rise height as a function of 

downwind distance, as a way to address the issue of unobservable maximum 

plume-rise.  He also recognised that the empirical approach had failed, and that 

it was past time to return to "the old physics" of "turbulent fluid mechanics".  This 

approach, described below, enabled significant advances in plume-rise 

understanding (plume rise trajectory prior to final rise, and for final rise in stable 

conditions), but unresolved issues remained at least until the mid- to late-'80s, 

when the Briggs (1984) and Weil (1988) review papers were written.  Unresolved 

issues included: partial penetration of stable layers above a buoyant source; the 

problem of final rise when terminated by ambient turbulence (which has many 

theoretical solutions, but insufficient data to test them); and plume rise in 

convective conditions (e.g., generated by surface solar radiative heating, 

typically during the day when winds are less than about 7 m/s).    

Briggs' solutions enabled improved formulae of final-plume-rise heights that are 

still used today in atmospheric dispersion models.  In atmospheric dispersion 

models, the plume geometry is unimportant, especially if it is contained in only 

one grid box.  Instead, it is the height at which the plume disperses that is required 

by the model.  One example is the Hybrid Single Particle Lagrangian Integrated 

Trajectory (HySPLIT, e.g., Stein et al. 2015) model, which uses Briggs solutions with 

modifications suggested by Arya (1999, Eq. 10.15 and the buoyancy dominated 

plume equations in Table 10.1).   Numerous other air quality models that use the 

Briggs final-plume-rise height equations are listed in the introduction of Gordon 

et al. (2017) including, GEM-MACH (Im et al. 2015), CMAQ (Byun and Ching 1999) 

CAMx (Emery et al. 2010) and three models summarised by Holmes (2006): 

AEROPOL, SCREEN3 and CALGRID1.   

The focus on plume rise in the field of downstream pollutant exposure led to a 

split in plume studies, with two distinct goals: understanding plume trajectories, 

and understanding plume material dispersion (e.g., Zhang and Ghoniem 1993).  

The Briggs and Weil review papers (each with plume-rise as the key word in the 

title) concentrate on the former goal.  For the wildfire-plume applications we are 

developing, some representation of the in-plume variability of vertical velocity 

and buoyancy is essential, which requires consideration of the latter goal also. 

 

                                                        
1 While the take-home message of Gordon et al. (2017) is that the Briggs final-plume-rise height 

equations generally under-estimate recent measurements, these equations are not used in our 

projects.  (Our projects use equations that describe the plume geometry.)  Additionally, the 

Gordon et al. paper is currently in the discussion phase (open to public review prior to final 

publication), and criticisms have been raised suggesting the discrepancies are due to the 

complex orography of the observation site, rather than a failure of the Briggs equations (e.g., De 

Visscher 2018). 
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METHOD 

PLUME-RISE EQUATIONS 

The derivation of the integral model begins with equations for the conservation 

of mass, buoyancy and momentum.  Plumes are assumed to have a continuous 

source and to be continuous along their axes.  The physical state of the plume is 

described "in bulk" by integrating the conservation equations over the area of a 

plane intersecting the plume at some point along the axis.  The "bulk" quantities 

represent cross-plume mean values, the so-called top-hat profile.  The resulting 

equations describe the rate of change of fluxes of mass, buoyancy and 

momentum along the plume axis.   

More realistic cross-plume distributions of plume quantities can be incorporated.  

For upright plumes, a Gaussian distribution representing the time-mean flow is 

very accurate (e.g., Hübner, 2004), whereas the counter-rotating gyres that 

develop in a bent-over plume are more elliptical in shape than circular (with 

larger horizontal than vertical extent, e.g., Bennet et al. 1992).  This is discussed 

further below.    

 

Figure 1: Schematic representation of the plume geometry with the plume centre-line marked in 

yellow and the plume edges in dark blue.  In general solutions are sought to the rate of change of 

plume flux quantities with distance along the plume centre-line through a circular plume cross-

section perpendicular to the plume axis (green circle).  The plume is bent-over by the background 

wind 𝑼, which can vary with height.  The Briggs simplified geometry considers fluxes through vertical 

circular plume cross-sections (purple circle), transported by a representative background wind that 

is assumed to be constant with height.  The radius increases linearly with height governed by the 

constant entrainment parameter 𝜷.  The shaded area labelled 𝜶 is used in the pyroCb prediction 

tool.  It represents the fraction of the plume area that must rise above the free convection height, 

𝒛𝒇𝒄, before deep, moist free-convection can develop. 𝒛𝒄 is the plume centre-line height at this 

downstream position.  
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Assuming the cross-sectional plane perpendicular to the plume axis is circular 

(green circle in Fig. 1), and the fluid is Boussinesq (volume is conserved), these 

equations can be expressed (e.g., Weil 1988) as, 
𝑑𝑉

𝑑𝑠
=

𝑑

𝑑𝑠
(𝑈𝑠𝑅2) = 2𝑅𝑈𝑛,     1.  

𝑑𝑚ℎ

𝑑𝑠
=

𝑑

𝑑𝑠
(𝑈𝑠𝑅2𝑢) = −𝑅2𝑤

𝑑𝑈

𝑑𝑧
,     2.  

𝑑𝑚𝑣

𝑑𝑠
=

𝑑

𝑑𝑠
(𝑈𝑠𝑅2𝑤) = 𝑅2𝑏,     3.  

𝑑𝐵

𝑑𝑠
=

𝑑

𝑑𝑠
(𝑈𝑠𝑅2𝑏) = 𝑁2𝑤𝑅2.     4.  

Here, 𝑈𝑠, 𝑅 and 𝑈𝑛 are the mean plume flow speed, the cross-sectional radius, 

and the entrainment velocity respectively.  𝑢 and 𝑤 are the mean horizontal and 

vertical components of the mean plume velocity relative to the background 

wind (𝑈), 𝑁 is the Brunt-Väisälä frequency, 𝑏 is the mean plume buoyancy, and 𝑠 

is the distance along the plume centre-line (e.g., yellow line in Fig. 1).   The volume 

flux (𝑉𝑓𝑙𝑢𝑥) is the product of 𝑈𝑠 and the plume cross-sectional area,  

𝑉𝑓𝑙𝑢𝑥 = 𝑈𝑠𝜋𝑅2 = 𝜋𝑉.     5.  

The buoyancy flux is the product of the volume flux and 𝑏, 
𝐵𝑓𝑙𝑢𝑥 = 𝜋𝑉𝑏 = 𝜋𝐵.     6.  

Similarly, the horizontal and vertical momentum fluxes are, 
𝑚ℎ,𝑓𝑙𝑢𝑥 = 𝜋𝑉𝑢 = 𝜋𝑚ℎ,     7.  

𝑚𝑣,𝑓𝑙𝑢𝑥 = 𝜋𝑉𝑤 = 𝜋𝑚𝑣.    8.  

The mass flux is the product of the density (𝜌) and volume flux, 

𝑀𝑓𝑙𝑢𝑥 = 𝜌𝑈𝑠𝜋𝑅2 = 𝜋𝜌𝑉 = 𝜋𝑀.   9.  

The heat flux can be expressed as, 

𝐻𝑓𝑙𝑢𝑥 = 𝐶𝑝𝑑∆𝜃𝑀𝑓𝑙𝑢𝑥 =
𝜌𝐶𝑝𝑑𝜃𝑎

𝑔
𝐵𝑓𝑙𝑢𝑥,   10.  

using, 

𝑏 = 𝑔
∆𝜃

𝜃𝑎
.     11.  

Here ∆𝜃 = 𝜃𝑝𝑙 − 𝜃𝑎 is the difference between the mean plume potential 

temperature (𝜃𝑝𝑙) and the ambient potential temperature 𝜃𝑎. 

SOLUTIONS 

For some time after this method was first considered (e.g., Morton et al. 1956), 

numerical solutions were not possible due to insufficient computing power.  The 

earliest study we could find that solved for a similar set of equations numerically 

dates to the late 1960's (Hoult et al. 1969), which would have been a very 

computationally expensive endeavour at the time.  Today numerical solutions 

can be found in fractions of a second on modern computers. The use of analytic 

solutions continues to this day and remains very valuable for understanding 

fundamental plume dynamics.   

Additional simplifications and assumptions are required to find useful analytic 

solutions.  We argue below that highly simplified analytic solutions are surprisingly 

good for specific scenarios, and continue to be useful for testing solutions, and 

for understanding basic plume dynamics (e.g., Tory et al. 2018b). 
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Perhaps the most important assumption, necessary for both the numerical and 

analytic solutions, is the closure assumption (i.e., that there is one more 

independent variable than there are equations).  The most common closure 

assumption, applied to the mass flux equation (Eq. 1), was first proposed by G. I. 

Taylor (Taylor 1945).  It governs the entrainment of mass into the plume, expressing 

it as an inward velocity 𝑈𝑛 applied to the outer plume boundary, termed the 

entrainment velocity.  The entrainment velocity was represented as a linear 

function of the mean vertical plume velocity, because it was assumed that 

turbulence in the plume was generated by the shear between the plume and 

ambient fluid,  

𝑈𝑛 = 𝛼𝑤.     12.  

This method has been and still is widely used for plumes in environments with small 

ambient turbulence.  Large ambient turbulence requires additional 

considerations (discussed further below). 

MORTON-TAYLOR-TURNER UPRIGHT PLUME ANALYTIC SOLUTIONS 

The upright plume solutions of Morton et al. (1956, these solutions are often 

labelled the MTT solutions after the three authors: Morton, Taylor and Turner) are 

relatively simple to derive and won’t be discussed in any detail here, due to their 

limited real-world applicability for wildfire applications.  Of importance is the 

difference in entrainment parameter between the MTT upright plume, 𝛼, and the 

bent-over plume entrainment parameter, 𝛽.  𝛽 is much larger than 𝛼 (𝛽~5𝛼) 

because the axis of a bent-over plume is perpendicular to, rather than parallel 

to, its rise, resulting in more efficient mixing with the ambient fluid (Briggs 1984). 

It’s worth noting that the Briggs solutions (introduced next) have remarkable 

similarities to the MTT solutions.  (See page 76 of Briggs (1975) for a parallel 

derivation of the two sets of equations.) 

BRIGGS BENT-OVER PLUME ANALYTIC SOLUTIONS 

Briggs found analytic solutions to Eqs 1—4 after introducing several simplifications 

and assumptions.  In addition to the simplifications described above (solving for 

a single mean value per position along the plume axis; the so-called top-hat 

profile, Boussinesq fluid, and linear relationship between the entrainment velocity 

and plume vertical velocity), the main assumptions are that the plume cross-

sectional geometry is a vertical circle (purple circle in Fig. 1), the background 

cross-flow wind is constant (𝑈), the background static stability is neutral (𝑁2 = 0) 

and that the plume horizontal velocity (𝑢, i.e., the velocity in excess of the 

background wind) is much less than 𝑈 and can be ignored.  This last assumption 

eliminates the horizontal momentum equation (Eq. 2). 

The vertical cross-section geometry allows the remaining differential equations to 

be expressed with respect to the rate of change of fluxes with downstream 

distance, 𝑥,  

𝑑𝑉

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑈𝑅2) = 2𝑅𝛽𝑤,    13.  

𝑑𝑚𝑣

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑈𝑅2𝑤) = 𝑅2𝑏 = 𝐵 𝑈⁄ ,   14.  
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𝑑𝐵

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑈𝑅2𝑏) = 0.     15.  

From Eq. 15, we can see that 𝑈𝑅2𝑏 is constant, which is set to 𝐵, and thus the RHS 

of Eq. 14 reduces to 𝐵 𝑈⁄ .  On the RHS of Eq. 13 we have included Briggs’ 

entrainment parameter 𝛽.  Briggs expressed Eqs 13 and 14 as vertical derivatives, 

by multiplying both sides of the equations by 𝑈 𝑤⁄ , using the relationships 𝑈 =

𝑑𝑥 𝑑𝑡⁄  and 𝑤 = 𝑑𝑧 𝑑𝑡⁄ , 

𝑑𝑉

𝑑𝑧
=

𝑑

𝑑𝑧
(𝑈𝑅2) = 2𝑅𝛽𝑈,    16.  

𝑑𝑚𝑣

𝑑𝑧
=

𝑑

𝑑𝑧
(𝑈𝑅2𝑤) = 𝐵 𝑤⁄ .    17.  

The solution to Eq. 16 is trivial yielding 𝑑𝑅 𝑑𝑧⁄ = 𝛽, and 𝑅 = 𝛽𝑧, since the integration 

constant is zero for a point source plume.    

Briggs’ (1984) derivation of the vertical momentum flux equation (Eq. 17), shows 

that the buoyancy forcing term on the RHS, acts not only on the fluid inside the 

plume (the internal plume) but also the mass of ambient air displaced by the 

plume.  This internal plume plus displaced ambient air is termed the dynamic 

plume.  Both the internal and dynamic plumes are considered to be circular in 

vertical cross section, with radii 𝑅′ and 𝑅, and entrainment parameters 𝛽′ = 0.4 

and 𝛽 = 0.6 respectively (Briggs 1984, terminology).  These entrainment 

parameters have been extensively tested against a substantial number of 

observational data sets and are almost universally accepted.   Thus, we 

essentially have two volume flux equations, with two solutions that apply to 

different aspects of the plume. 

Not surprisingly, the distribution of buoyancy flux (and any smoke particles or 

chemicals emitted by the fire) is contained within the internal plume, and thus 

Eq. 15 yields, 

𝐵 = 𝑈(𝛽′𝑧)2𝑏.      18.  

Solutions to the vertical momentum flux equation (Eq. 17) give the famous Briggs 

plume-rise equation that describes the plume centre-line height 𝑧 with distance 

𝑥 downstream, 

𝑧 = [(
3

2𝛽2)
𝐵𝑓𝑙𝑢𝑥

𝜋𝑈3 ]

1

3
𝑥

2

3.     19.  

Here 𝐵𝑓𝑙𝑢𝑥 (Eq. 6) is proportional to the total heat flux 𝐻𝑓𝑙𝑢𝑥 (Eq. 10), which is often 

termed the “power of the fire” or “fire-power”. Plume centre-line examples are 

illustrated in Fig. 2.  The magnitude of the square bracketed term in Eq. 19 

determines the relative slope of the curve.  The equation shows that for a 

particular fire-power and entrainment rate the plume becomes increasingly 

bent-over for increasing wind speeds (e.g., red to blue curves in Fig. 3).  Similarly, 

for a specific wind speed and entrainment rate, the plume becomes increasingly 

bent-over for decreasing fire-power.   
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Figure 2: Hypothetical Briggs plume centre-line profiles for different values of the square-bracketed 

term in Eq. 19.  Large-eddy model simulations (Fig. 4) show a general tendency for the plume 

centre-line to dip below the Briggs centre-line far down-stream of the source. A minimum plume 

centre-line gradient (𝜀) can be introduced beyond which the plume is considered to have stopped 

rising. 

 

NUMERICAL SOLUTIONS 

Solving the set of differential equations (Eqs. 1—4) numerically requires fewer 

approximations and assumptions.  Background wind speed that varies with 

height, and variable static stability can be incorporated.  Additionally, the plume 

can possess horizontal velocity in excess of the background wind, although for 

highly buoyant plume sources, 𝑢 is often assumed to be small and can be 

neglected. 

The equations can no longer be solved independently, which means a 

relationship between the dynamic and internal plumes needs to be established.  

Weil (1988) suggested the LHS of the vertical momentum flux equation be 

multiplied by the parameter (1 + 𝑘𝜈) where 𝑘𝜈 is typically set to a value of 1 for a 

circular cross-section.  Here 𝑘𝜈 is an "added" or "virtual" mass coefficient that 

represents the mass of the ambient air displaced by the plume. 

The parameter is necessary because the forcing term on the RHS of Eq. 3 is the 

area-integrated buoyancy of the internal plume, which acts on the larger 

dynamic plume (LHS of Eq. 3).  Thus, 1 + 𝑘𝜈 represents the ratio of the dynamic to 

internal plume cross-sectional areas.  Using Briggs' entrainment parameters, the 

ratio reduces to (𝛽 𝛽′⁄ )2 = 2.25, which is a little larger than Weil's suggested value 

of 2. 

In the earliest documented numerical solution to the plume flux equations we 

could find, Hoult et al. (1969) divided the entrainment velocity, 𝑈𝑛 (Eq. 12) into 

two components to address the significant difference in entrainment rates 

between vertical and horizontal plumes.   They used 𝛼 for the component of 

plume flow parallel to the plume axis, and 𝛽 for the perpendicular component, 

and assumed the two were additive.  In a slightly different approach to the Weil 

equations, outlined above, they posed the two momentum flux equations (Eqs 2 

and 3) with respect to momentum parallel and perpendicular to the plume axis 

(instead of horizontal and vertical). 

Observations of elliptical rather than circular plume cross-sections prompted a 

reposing of the equations to represent the elliptical structure (e.g., Zhang and 

Ghoniem 1993, Tohidi and Kaye 2016).  Tohidi and Kaye (2016) rederived the 

Hoult et al. (1969) equations for an elliptical plume cross-section.  While the main 

purpose of that study was to test alternative entrainment closure relationships, 
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they provided useful comparisons with Briggs solutions (see below), although they 

did not provide comparisons with solutions assuming circular plume cross-section 

geometry. 

TOHIDI AND KAYE PLUME EQUATIONS 

The Tohidi and Kaye equations differ not only in the plume cross-sectional 

geometry, but also in the coordinates used.  Weil and Briggs used a fixed 𝑥 − 𝑧 

Cartesian coordinate, whereas Tohidi and Kaye follow Hoult et al. (1969) and use 

natural coordinates aligned with 𝑠, the plume axis direction. 

𝑑𝑄

𝑑𝑠
= 𝑄√

2(1+𝜆2)

𝑀𝜆
(𝛼 |

𝑀

𝑄
− 𝑈 cos 𝜃| + 𝛽|𝑈 sin 𝜃|),  20.  

𝑑𝑀

𝑑𝑠
− 𝑈 cos 𝜃

𝑑𝑄

𝑑𝑠
=

𝐹𝑄

𝑀
sin 𝜃,    21.  

𝑈 sin 𝜃
𝑑𝑄

𝑑𝑠
+ 𝑀

𝑑𝜃

𝑑𝑠
=

𝐹𝑄

𝑀
cos 𝜃,    22.  

𝑑𝐹

𝑑𝑠
= −𝑄𝑁2 sin 𝜃.     23.  

The plume's specific volume, momentum and buoyancy fluxes are respectively, 

𝑄 = 𝜆𝑅2𝑈𝑠,      24.  

𝑀 = 𝜆𝑅2𝑈𝑠
2

= 𝑄𝑈𝑠,     25.  

𝐹 = 𝜆𝑅2𝑈𝑠𝑏 = 𝑄𝑏.     26.  

The plume cross-sectional area is 𝜋𝑅2𝜆, where 𝜆 is the ratio of the major to 

conjugate radii of the non-circular plume cross-section.  (Tohidi and Kaye do not 

appear to provide the value of 𝜆 used.)   𝜃 is the centre-line trajectory angle from 

horizontal.  𝑈𝑠 is the plume speed parallel to the plume axis, 𝑈 is the constant 

ambient horizontal wind speed, and 𝑁2 is the Brunt-Väisälä frequency. 

The downstream distance 𝑥 and height 𝑧 are given by, 

𝑥 = ∫ cos 𝜃 𝑑𝑠
𝑠

0
,     27.  

𝑧 = ∫ sin 𝜃 𝑑𝑠
𝑠

0
.      28.  

While no vertical gradient in the ambient wind term appears on the RHS of the 

momentum flux equation (as in the Weil formulation), an ambient wind that 

varies with height can be incorporated.  Section 2 of Tohidi and Kaye describes 

the method used to solve the set of equations, Eqs 20—23.     

IN-PLUME TIME AND SPACE VARYING DISTRIBUTIONS 

Fig. 3 illustrates the spatial and time-variability of plume flow.  The single 

realization images (left side) give an indication of the instantaneous structure and 

how it varies from the mean flow represented by the ensemble-average (right 

side).  The bulges on the upper plume edge are caused by buoyancy generated 

eddies inside the plume.  They scale with the plume radius and arise from the 
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shear between the rising plume and background wind.  Weil notes that the 

instantaneous concentration of plume quantities is relatively constant across the 

plume with sharp gradients at the instantaneous plume edge.  Whereas the time-

mean plume quantities have an approximately Gaussian concentration 

distribution.  This implies that, to a rough estimate, the Gaussian variability relates 

to the relative frequency of plume element presence in the ensemble plume 

envelope, rather than higher concentrations in the plume centre (or gyre 

centres).  This distinction may be important for our pyroCb tool and ember 

transport projects.  

 

 

Figure 3: Illustration of instantaneous (left) and time-averaged (right) plume structures, side-on to 

the background wind (top) and a cross-section perpendicular to the background wind (bottom), 

reproduced from Fig. 3.1 of Weil (1988). 

 

For the pyroCb tool, a parameter has been included to specify a proportion of 

the plume cross-sectional area that must exceed a critical height, 𝑧𝑓𝑐 (see the 

shaded area in Fig. 1).  Choosing a relatively small area would be equivalent to 

only the turrets on the upper-edge of the plume reaching 𝑧𝑓𝑐 , whereas choosing 

half the plume area, or greater, should represent a steady stream of plume 

elements exceeding 𝑧𝑓𝑐. 

With respect to the ember transport problem, the top-hat vertical velocity is likely 

to represent well the instantaneous lofting potential as a function of height, and 

the Gaussian profile represents the spatial distribution of the frequency of 

occurrence of this lofting potential. 
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We have found very few references to studies that have investigated plume 

quantity distributions.  Hübner (2004) showed that the Gaussian distribution 

represented very well mean plume concentrations for an upright plume (in zero 

cross-flow) in an environment with ambient turbulence (discussed further below).  

An elliptical mean plume profile is now widely accepted for plumes in a cross-

flow, representing the pair of counter-rotating gyres.  If the gyres remain 

connected a single elliptical Gaussian profile should represent the mean plume 

concentrations well, but if they separate (see Fig. 3 of Scorer 1959, right panel) a 

double circular Gaussian might be more appropriate.   

The assumed plume profile becomes increasingly important in environments 

background winds and stability that vary with height, as the vertical scale of the 

plume grows.  In these conditions the top-hat assumption (constant plume 

quantities across the plume cross-section) becomes questionable as various 

parts of the cross-section are exposed to different environment conditions.  To 

deal with this problem the plume cross-section may be split into various 

proportions with different environment interactions.  There is a large body of work 

dedicated to plume penetration into stable environments (e.g., Weil 1988), 

including improvements to assumed plume geometry. 

Double circular connected Gaussian's were also considered for plumes that 

penetrate a thin inversion (e.g., Weil 1988, Section 3.3.1).  The behaviour of the 

plume is quite sensitive to the proportion of the plume impacted by the inversion.  

Thus, the double Gaussian geometry was employed to better represent the 

counter-rotating gyre structure of the bent-over plume, with the expectation that 

the more realistic plume shape will produce more accurate results.   

An additional important consideration of the counter-rotating gyres in the bent-

over plume phase is the vertical velocity maximum location in the centre of the 

plume, which further biases this plume quantity to have larger values at the 

plume centre.   
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WILDFIRE APPLICATIONS 

HISTORY 

Buoyant plume-rise models have only recently been considered for wildfire 

applications.  While we couldn't find any arguments to dismiss such models 

published in the fire literature, informal discussions with colleagues quoted a few 

general concerns. 

Mature wildfires tend to burn with very large fire fronts, with long near-linear 

plume sources rather than the much smaller circular chimney sources. 

Uncertainty regarding whether solutions valid for elevated chimney stacks should 

apply to ground-based heat sources. 

Uncertainty regarding whether chimney plume results should scale-up to wildfire 

scales (e.g., wildfire heat sources are orders of magnitude larger, and have 

orders of magnitude greater buoyancy fluxes). 

These concerns are discussed later in this section. 

RECENT INTEREST 

A few recent studies have identified Briggs-like plume geometry in buoyant 

plumes generated in laboratory studies (water tanks, wind tunnels, Tohidi and 

Kaye, 2016) and wildfires (Lareau and Clements 2017).   

The wildfire study of Lareau and Clements (2017) fitted the Briggs model to lidar 

observations to estimate the fire intensity of the El Portal fire in Yosemite National 

Park, USA, in July 2014. The radius of the observed plume increased linearly with 

height, and the cross-section of the smoke concentration was found to be 

Gaussian, both of which agree with plume-rise theory. The intensity was deduced 

by first estimating the slope of the plume and measuring the background wind 

speed, from which they were able to determine the net buoyancy flux, and thus 

fire power. This case study benefitted from conditions on the day of analysis, in 

which the fire evolved slowly with plume development from "an isolated 

expanding flank of the fire", as well as a neutrally stratified boundary layer 

(Lareau and Clements, 2017), whereas in more complex conditions, applicability 

of the Briggs equations is likely to be relatively constrained. 

Our own large-eddy model (LEM) simulations of plumes in a neutral environment 

with constant background wind, also show Briggs-like plume geometry. Time-

mean vertical velocity profiles of LEM plumes are plotted in Fig. 4, for a range of 

background wind speeds and surface heat fluxes.  In each simulation the 

boundary layer is given time to "spin-up" before the heat flux is applied.  This 

allows a realistic logarithmic wind speed profile to develop (weak winds near the 

surface increasing to the constant background wind value some distance 

above).  The neutral layer is present only in the lowest 3 km, with a stable layer 

above.  (See Thurston et al. 2017 for more detail.)  The Briggs-like plume centre-

line geometry is demonstrated in each panel with the addition of a 𝑧 ∝ 𝑥
2

3 line.  In 

each panel the line follows the maximum vertical velocity reasonably closely, 

although further from the source the plume tends to dip below the line.  This is 



MODELS OF BUOYANT PLUME RISE| REPORT NO. 451.2018 

 17 

likely due in part to the plume interacting with the stable layer above, and/or 

greater down-wind entrainment than the Briggs model assumes.  (As the plume 

reaches the stable layer it loses buoyancy in that warmer environment, which 

reduces the ascent rate and, in a typical stable layer, rapidly halts the buoyant 

plume rise.) 

An option is being considered for the pyroCb prediction tool to set a minimum 

plume centre-line gradient (𝜀) beyond which the plume is considered to have 

stopped rising.  This is depicted in Fig. 2.  Scenario 2 shows a plume that has just 

reached this limit at a height 𝑧𝑐, while Scenario 1 will never reach 𝑧𝑐. 

 

 

   

Figure 4: Large-eddy model simulations of the time-mean vertical velocity for a range of buoyancy 

length scales in a neutral environment below 3 km, and a stable layer above.  In each plot a 𝒛 ∝ 𝒙
𝟐

𝟑 

line is overlaid to demonstrate the approximate Briggs-like plume centre-line relationship. 

 

As noted above, Tohidi and Kaye (2016) used an advanced integral model that 

assumes an elliptical plume cross-section geometry, and a double plume 

entrainment mechanism (i.e., a function of both the along plume velocity 

difference, and cross-plume velocity difference), with separate entrainment 

parameters for each component.  One of the purposes of that paper is to test 

various entrainment parameters and two entrainment formulations.  A 

comparison with the Briggs plume-rise model is included as a reference.  Each 

experiment was performed in a neutral atmosphere. 

In all cases in which the background flow speed was constant or nearly constant 

with height, the Briggs model performed very well, often better than the best 

performing version of the integral model (e.g., Fig. 5).  The final set of experiments 

used data with significant variation in background wind speed near the surface.  

In these experiments one version of the integral model performed very well, and 

the Briggs model (which takes a single wind-speed value) over-predicted the 

plume rise (Fig. 6).  Tohidi and Kaye used the surface wind speed rather than a 

representative wind speed of the overall plume environment, so it is not surprising 

that this Briggs case performed poorly.   
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Figure 5: Plots of experimental trajectories (squares) from water tank experiments in neutral 

stratification (Contini and Robins 2001), compared to two forms of entrainment equations and two 

entrainment constants (black and red solid and dashed lines) and the Briggs solution (blue dashed 

line).  Cases 5—8 (see last line of the legend) represent essentially an increasing crossflow speed. 

The figure is reproduced from Fig. 3 of Tohidi and Kaye (2016). 

 

 

Figure 6: As in Fig. 5 but for atmospheric plume rise observations from elevated sources in an 

environment with a boundary-layer wind profile (weaker crossflow near the surface).  The data is 

from Marro et al. (2014) and the figure is reproduced from Tohidi and Kaye (2016).  Cases 13—16 

occur in similar crossflow velocities but decreasing plume buoyancy. 
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In short, the Briggs plume model performs very well in a neutral atmosphere in 

which the background wind speed does not vary greatly with height.  We expect 

that if Tohidi and Kaye had chosen a better representative wind speed of the 

entire mixed layer, the Briggs model would have produced good results.  This 

expectation is based on our experience with the LEM simulations (Fig. 4), with 

realistic boundary layer wind profiles, that approximate Briggs profiles quite well. 

ADRESSING THE THREE GENERAL CONCERNS 

Mature wildfires tend to burn with very large fire fronts, with long near-linear 

smoke sources rather than circular sources. 

Wide-spread fires with multiple flaming zones do tend to produce single broad 

plumes.  Baum and McCaffrey (1989) calculated low-level wind trajectories 

induced by multiple fires dispersed over many km using a potential flow model 

and found a central convergence zone developed in all simulations.   Even at 

relatively large heat-source separation distances buoyant plumes can merge 

and behave like a single larger buoyant plume.  This behaviour can be implied 

from the idealised study of Trelles et al. (1999), although their heat sources were 

applied to a stable (rather than neutral) environment.  Consequently, their 

plumes rapidly levelled out and began dispersing with minimal buoyancy.   They 

found greater plume rise for sources located parallel to the wind direction, rather 

than sources located perpendicular to the wind direction.  This difference in 

plume rise is likely due to the relative buoyancy of the plumes at the time of 

merger, with the former having less combined buoyancy than the latter.  We 

expect plume merger in a neutral atmosphere will also be favoured for 

downwind heat source separations. 

Uncertainty regarding whether solutions valid for elevated chimney stacks should 

apply to ground-based heat sources. 

While the burn-area of most fires is unlikely to be circular, the rising buoyant gases 

do tend to become organised into an approximately circular cross-sectional 

area at some elevated level.  At this level, there is much in common with buoyant 

gases emitted from an elevated chimney stack.  Kaye and Hunt (2009) showed 

in a laboratory experiment that plumes developing from a large-area turbulent 

buoyancy source, contract to approximately half the source diameter to form a 

circular neck after which the plume expands in a manner similar to a point-

source plume.  While this study was for a plume in zero background wind, it is 

likely that the insights gained will also be valid for plumes in a cross-flow, since the 

neck occurs relatively close to the surface, before any appreciable bend to the 

plume occurs. 

Kaye and Hunt mentioned three papers (Colomer et al. 1999, Friedl et al. 1999, 

Burelbach 2001) that present experimental results from large-area buoyant 

sources in which the consensus was that the neck height is approximately equal 

to one source radius, and the neck is approximately half the source radius.  Fig. 

7, reproduced from Kaye and Hunt (2009, Fig. 4) illustrates this approximate 

relationship.   The result is very useful for both the pyroCb and ember transport 

projects, because it provides a good estimate of the height of the fictitious point 

source of both the Briggs and integral model plumes.   
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Figure 7: An inverted, unscaled contour plot of a plume with mean buoyancy shaded and contours 

of constant mean buoyancy.  The shading shows 𝑹𝒏𝒆𝒄𝒌~ 𝑹𝑺 𝟐⁄ . 

 

If 𝑅𝑆 represents the heat source radius (or perhaps the radius of a non-circular 

heat source expressed as a circle), then the plume radius at the neck 𝑅𝑛𝑒𝑐𝑘 =

𝑅𝑆 2⁄   and the neck height, 𝑧𝑛𝑒𝑐𝑘 = 𝑅𝑆.  For the upright plume the fictitious virtual 

source can be determined from the relationship 𝑧 =
5

6𝛼
𝑅 where 𝛼 = 0.08 is the 

upright plume entrainment rate.  The virtual source height (𝑧𝑣𝑠) below the neck is 

thus, 

𝑧𝑛𝑒𝑐𝑘 + 𝑧𝑣𝑠 =
5

6𝛼
𝑅𝑛𝑒𝑐𝑘.     29.  

Then, 

𝑧𝑣𝑠 =
5

12𝛼
𝑅𝑠 − 𝑅𝑠 = 𝑅𝑠 (

5

12𝛼
− 1) = 4.2𝑅𝑠.  30.  

However, making the approximation that the bent-over plume has the same 

geometry from the surface to the neck as the upright plume above, we can 

apply the same argument to find 𝑧𝑣𝑠 for a bent-over plume, 

 𝑧𝑛𝑒𝑐𝑘 + 𝑧𝑣𝑠 =
1

𝛽
𝑅𝑛𝑒𝑐𝑘.     31.  

Then, 

𝑧𝑣𝑠 =
1

2𝛽
𝑅𝑠 − 𝑅𝑠 = 𝑅𝑠 (

1

2𝛽
− 1) = −0.17𝑅𝑠.  32.  

This corresponds to a virtual source height only a relatively small distance above 

the surface, which is a fortunate result for the pyroCb and ember transport 

projects, in which the source radius will be unknown for most applications.  For 

convenience we will assume 𝑧𝑣𝑠 = 0, which means the Briggs solutions can be 

used without any adjustment for the heat source surface geometry.  The 

schematic presented in Fig. 2 of Scorer (1959), reproduced here in Fig. 8, supports 

the above conclusion. 
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Figure 8: Schematic showing the different heights of various plume-type virtual sources 

(reproduced from Fig. 2 of Scorer 1959).  Note, the virtual source of the bent-over plume is depicted 

very close to the chimney stack height. 

 

These experiments, like wildfires, meet the "lazy plume" definition: "the near-

source flow is dominated by buoyancy-driven acceleration" (Tohidi and Kaye 

2016), i.e., the surface buoyancy flux is large compared to the surface 

momentum flux. 

Uncertainty regarding whether chimney plume results should scale-up to wildfire 

scales (e.g., wildfire heat sources are orders of magnitude larger, and have 

orders of magnitude greater buoyancy fluxes). 

There is no inherent scaling in the plume-rise equations that should exclude 

larger, more buoyant heat sources (e.g., neglecting viscous effects and Coriolis 

is valid for wildfires).  The vast majority of experiments were performed either in 

laboratory tanks or the atmosphere above chimney stacks, which already spans 

scales of several orders of magnitude, with no evidence of scaling limits.  Lazy 

plume conditions were included in some of the experiments documented by 

Tohidi and Kaye (2016), in which the Briggs model performed well.   

Tohidi and Kaye (2016) also suggest that the main distinction between wildfire 

plumes and industrial waste plumes (from which the Briggs equations were tested 

and tuned) is orders of magnitude greater buoyancy flux.  They propose that as 

a result, wildfire plumes will have steeper and deeper trajectories near the source 

and argue that it is important to have a model that can incorporate low-level 

wind variability, in order to accurately model these plumes (frictional reduction 

of wind speed is large near the surface).  A counter-argument is that the far-field 

plume shape is dominated by the net buoyancy flux, i.e., it is not greatly 

influenced by the near-source plume structure, and it is the more remote effects 

that are more important for our applications.  Furthermore, Briggs solutions 

presented by the Tohidi and Kaye performed well for most cases.  The only poor 

Briggs performance (relative to the integral model) occurred when an 

inappropriate background wind speed was used (Fig. 6). 

One scenario for which the integral model and Briggs equations are likely to be 

in error is during conditions of high ambient turbulence.  Numerous methods to 
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correct plume centre-line calculations to account for turbulence have been 

proposed (e.g., Briggs 1975, 1984, Weil 1988).  Small-scale turbulence can 

increase the plume entrainment rate and thus broaden the plume and reduce 

the plume buoyancy more rapidly.  Larger-scale turbulence can carry sections 

of the plume up and down, producing plume meandering or looping.  

Turbulence on a sufficiently large scale can break apart a plume exposing it to 

even greater entrainment.  Hübner (2004, PhD thesis, Chapter 6, 7) investigated 

the response of a laboratory plume with zero background cross-flow to ambient 

turbulence and found the plume centre-line meandered with the turbulence, 

while the plume spread was maintained relative to the centre-line, resulting in a 

much broader time-averaged plume.   

For both the pyroCb and ember transport applications, ambient turbulence will 

act to reduce the potential for sustained pyroCb or ember transport activity but 

could perhaps increase the potential for short-period bursts when the plumes are 

embedded in ascending branches of large-scale turbulent flow.  Experiments in 

which surface heat sources were added to our LEM simulations containing 

boundary-layer rolls revealed significant changes in plume height and vertical 

velocities depending on whether the heat source was located in an ascending 

or descending branch of the rolls (see Fig. 9). 

 

 

Figure 9: Vertical cross-sections through the plume centres for (upper panel) the plume in the 

ascending branch of the boundary-layer roll, (middle panel) no boundary-layer rolls, and (lower 

panel) the plume in the descending branch of the boundary-layer roll.  A strong crossflow wind of 

15 𝒎 𝒔−𝟏 was applied in each case with a circular 100 𝒌𝑾 𝒎−𝟐,  250 𝒎 radius heat source.  A surface 

heat flux of 50 𝑾 𝒎−𝟐 was used to initiate convective instability in the boundary layer roll cases.  
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SUMMARY AND DISCUSSION 

The study of plume dispersion emerged from the need to design chimney stacks 

that dispersed pollutants sufficiently to avoid poor air quality for downstream 

populations.  An understanding that the pollutant concentrations generally 

reduce with the square of the effective stack height, which is a function of the 

plume centre-line height, led to considerable interest in the prediction of plume-

rise trajectories, independent of plume material dispersion.  The pyroCb 

prediction tool and ember transport model projects need to consider both 

plume rise trajectories and material dispersion. 

Solutions to the integral equations assuming top-hat plume quantity distributions 

have been shown to reproduce plume rise trajectories vey well.   There are a 

number of assumptions required to find solutions with associated limitations, but 

fortunately it would appear the limitations are small for typical wildfire conditions 

in which pyroCb and ember transport pose a particular threat. 

Broad or disparate heat sources tend to produce plumes that initially contract to 

a circular neck, above which they behave like the classic circular heat source 

plumes.  For bent-over plumes extrapolating the classic Briggs solution below the 

neck to the surface, produces a virtual source relatively close to the surface.  This 

implies that the Briggs solutions can likely be used without any knowledge of the 

heat source geometry.  The close similarity between the Briggs solutions and the 

numerical solutions to the full integral equations near the heat source, suggest 

these solutions can also be applied with no knowledge of the heat source 

geometry. 

The top-hat distribution assumption may become problematic as the plume 

cross-sectional area becomes large, when different parts of the plume cross-

section are exposed to a variable atmospheric environment (e.g., when winds 

or static stability vary with height).  For typical PyroCb conditions a deep well-

mixed layer exists with neutral static stability and a near-constant with height 

background time-mean wind speed, which may or may not be overlaid by a 

capping inversion.  Under the capping inversion the Briggs and numerical 

solutions should perform very well.  A simple approximation suggested by Briggs 

can be incorporated to ascertain whether or not the plume can penetrate 

sufficiently to reach the level at which deep buoyant moist convection occurs 

(and pyroCb can develop).  This suggests that the simple analytic Briggs solutions 

are likely to be sufficient for the pyroCb tool (i.e., there will be no need to find 

numerical solutions). 

We anticipate that the ember transport problem might be more sensitive to 

background wind speed variability than the pyroCb tool.  In the former a good 

representation of the wind profile will be important for predicting where burning 

embers will be transported, whereas in the latter we only need to consider plume 

height and buoyancy.  For a more accurate calculation, numerical solutions to 

the integral model can be used. 

This report demonstrates that the Briggs solutions and numerical solutions to the 

integral equations, should perform very well for the pyroCb and ember transport 

projects respectively. 
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