Mapping bushfire hazard and impacts

Research advisory forum / 2018

Dr Marta Yebra, Prof Albert van Dijk, A/Prof Geoff Cary and Li Zao Fenner School of Environment & Society, Australian National University

Business Cooperative Research Centres Programme

Australian Flammability Monitoring System

The Australian Flammability Monitoring System (AFMS)

Layer	Method	Resolution		Latency	Reference	
		Spatial	Temporal			
Live FMC (%)	Inversion of physical models using MODIS reflectance data (water inside the fuels absorbs solar energy in the short wavelength water bands)	500 m	4 days	2/4 days	Yebra <i>et al.</i> 2018. RSE	
Uncertainty (%)	Standard deviation of 40 best FMC estimates					
Flammability Index				8 days*		
(0-1, unitless)	Logistic regression models between fire occurrence from the MODIS burned area product (binary dependent variable) and predictor variables derived from FMC estimates (independent variable)			forecast		
Soil moisture at 0-10 and 10-35 cm	BoM's JASMIN modelling system	5km	Daily	7 days	Dharssi <i>et al.</i> 2017	

Coupling Litter and soil moisture dynamics for dead fuel moisture content

Zhao et al. 2018, AFAC

Coupling Litter and soil moisture dynamics for dead fuel moisture content

Sites	Surfac	e litter
	No Coupling	With Coupling
1	0.68	0.74
2	0.73	0.78
3	0.7	0.74
4	0.68	0.75
5	0.7	0.75
6	0.44	0.44

Sites	Bottom litter				
	No Coupling	With Coupling			
1	0.75	0.80			
2	0.69	0.7			
3	0.73	0.77			
4	0.74	0.76			
5	0.67	0.74			
6	-0.16	0.06			

The AFMS: Priorities of future development

THEME	FEEDBACK	SOLUTION	STATUS
Web Service	Pixels are not square	Change in the projection	Done
Enhancement	The system needs to better represent the interaction between vegetation types with vastly different FMC	Map the different fuels (grass, shrub and forest) separately	TBD
	dynamics and the scale of the coloured classification	Display decile maps in addition to absolute values	
	It is confusing to know what the FMC and FI products inform in a multilayer forest in relation to what the satellite senses	Make it easy to identify from what layer the FMC is being calculated by adding additional contextual data layers that are already available online.	TBD
	Data needs to be integrated into the users' GIS systems	Allowing direct data downloads for a region of interest as GeoTIFF	In progress
	More regular updates of data displayed are needed	Automate this process	Done
Understanding and usability	Users want to make more use of the information displayed on the AFMS	Invest more time working with the end users and develop specific, operational applications and integrate the information displayed in the AFMS into current decision processes and tool.	In progress
	Users want to learn more about integrating AFMS products into their current systems	Develop use examples or instruction videos for new website users that explain the strengths and limitations of the data (based on our conversation with end users)	
	Users would like to use FMC in the current grass fire spread model	Relate grass moisture content to curing	TBD
Algorithm development	Explore other satellite data sources to allow finer spatial and temporal resolution.	Suitability study of different satellite data sources	Done

TBD= To be decided

Live Fuel Moisture Content and fire occurrence

Table 1: Approximate LFMC threshold values indicating marked increases in burnt area, and the proportion of each studied niche burnt during the studied time period (2002-2014).

Fire Regime Niche	Threshold LMFC (%)	% Area Burnt
Temperate Eucalypt forest	160, 135	1.6
Tall Temperate Eucalypt Forest	160, 130	6.5
Temperate heath	55, 20	6.4
Tropical and subtropical pasture	20	10.7
Cropland pasture	65, 20	14.49
Temperate Eucalypt woodland	130, 45	2.5
Tropical Eucalypt forest and	45, 15	
woodland		26.9
Tropical Heath	95, 50, 20	158.2
Eucalypt savanna woodland	90, 55, 20	19.7
Temperate mallee	45	3.1
Acacia shrubland (mulga)	45	9.2
Hummock grassland	45, 20	43.5

Gale et al. (2016)

Murphy et al (2013)

Live fuel moisture content (%)

Australian Flammability Monitoring System

bushfire&natural HAZARDSCRC

The AFMS planning for continuity

Satellite Sensor	Spatial	Temporal	Spectral r	esolution	Year	Designed Life
		resolution	Spectral range (µm)	Multi-spectral Bands	Launen	(Years)
MODIS	500	1-2 days	458-2155	7	2000	5
Landsat-8 OLI	30	16 days	433-1390	8	2013	6
VIIRS	750	Daily	4412-2250	10	2011	7
Himawari-8	2000	10 minutes	470-2256	6	2014	15
Sentinel-2A/2B MSI	20	5 day	442-2202	13	2017	12

Sensor	Slope	intercept	R ²	RMSE	RMSEs	RMSEU	n
Landsat-8 OLI	1.2	-21	0.8	24	7	23	6178
Sentinel-2A/2B MSI	1.2	-22	0.8	23	7	21	6178
VIIRS	1.2	-18	0.8	19	6	18	6178
Himawari-8	1.2	-19	0.7	26	6	25	6178
MODIS	1.14	-16	0.7	24	5	24	6178

The AFMS planning for continuity

Quan et al. 2018, IGARSS

Potential uses of the AFMS

Spatially-explicit knowledge of FMC and flammability must be a key aim for fire managers

Planning

Assist with scheduling and plan prescribed burns:

- drier FMC in a forest may indicate more potential to score the canopy
- fuel moisture differential can act as soft control lines
- long term fuel conditions for the PB-DST
- emissions assessment and smoke dispersion

Preparedness

Amend preparedness levels in relation to Fire Danger Rating in response to lower/higher than average landscape dryness conditions or exceed set FMC or FI thresholds

Response

Assist in firefighting and resources allocation

- FMC as an **input in Spinifex** grass fire behaviour
- Highlight potential for anomalies in predicted rate of spread: for lower
 FMC a fire may spread faster than predicted
- soft control lines based on fuel moisture differential

What's next

- Utilization milestones AFMS
 - Writing up use examples or instructions for new website users that explain strengths and limitations of data (base on tour) → February 2019
 - Feedback on trial utilization of the AFMS \rightarrow March 2019
 - AFMS v.1.1. → April 2019
- Comprehensive flammability index \rightarrow June 2019

End user statement

Dr Adam Leavesley

ACT Parks and Conservation Service

Aerial image of fire ground

Elevated fuel derived from LiDAR

Near-surface fuel Derived from LiDAR

Australian Flammability Monitoring System

bushfire&natural HAZARDSCRC Australian Flammability Monitoring System 2018-10-28 ***** < > Grass: 0.2 × Q 148.937. -35.369 Flammability . Fire Weather Areas . Road Map . T Opaque Chart \mathbf{v} Flammability (unitless) at -35.395,148.935 Flammability (unitless) ≥1 0.9-1 0.8-0.9 0.7-0.8 0.6-0.7 0.5 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3 0.1-0.2 0 01/Jan 01/Mar 01/May 01/Jul 01/Sep 01/Nov 01/Jan 0-0.1 🚣 Download data Coucle Map data ©2018 Google ; 1 km L____ . Terms of Use Report a map error straliar ABOUT THIS SITE SEND FEEDBACK SITE TOUR National University

Linescan 2 November 2018, 12:39

dNBR – Sentinel 2

Green = Unburnt Yellow = Low/Moderate Red = High Black = Very high

Vegetation Structure Perpendicular Index (Massetti et al. 2017)

Radiative Transfer Model (Changming Yin)

Thanks

See you at 15:30am-16:15 pm Room Z306

bushfire&natural HAZARDSCRC

Dr Marta Yebra

Centre for Water and Landscape Dynamics Fenner School of Environment & Society, ANU +61-2-612 54107 marta.yebra@anu.edu.au http://wald.anu.edu.au/ twitter: @myebra12 Web developers: Pablo Rozas Larraondo, Joel Rahman (Flow Matters) Research Assistant: Gianluca Scortechini

Pierces Creek Fire at sunset @ Marta Yebra

