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ABSTRACT 
In this report we describe a simple model that can be used to estimate carbon 
(C) stocks in surface fuel layers for C accounting purposes. We used empirical 
data collected from dry sclerophyll forests from a range of sites in Victoria, New 
South Wales and the Australian Capital Territory. This information was used to 
develop an easy‐to‐use tool to improve estimates of C emissions from prescribed 
burning. Models developed using data from each state have been reported 
previously – here we present an evaluation of a universal model developed using 
the complete empirical dataset for all sites in all three states, and two separate 
models (‘universal’ models) developed using data from all the sites burnt by 
prescribed fires and nearby unburnt sites. 

Samples of the near‐surface fuel layer were separated into three fractions: fine 
fuel (<9 mm diameter), intact leaves, and twigs and other material such as fruits, 
flowers and bark. The dry weight and C content of each fraction was 
determined. To model biomass and C content of surface fuels, a mixture design 
was used. For each site, the proportion of the total fuel load of each of the three 
surface litter fractions was used as an independent factor (x1, x2, and x3), and 
the corresponding total fuel load (t ha-1) or C content (t C ha‐1) was used as the 
dependent factor. A response surface was fitted to the mixture design using a 
Generalised Blending Mixture model (GBM) and a polynomial equation for each 
response was generated by running the GBM with varying numbers of terms 
included in the response surface equation. To determine the best fitting 
equation, Akaike information criterion (AICc) was used as a measure of the 
relative quality of the response surface for a given set of data in relation to other 
model iterations. Data were randomly assigned into an 80:20 split for training and 
testing of the response surface of the model. Models were also validated against 
a second set of data collected from high and low productivity forest sites. This 
additional information improved data spread and, thus, model testing. 

The response surfaces fitted to data showed reasonable agreement with the 
data but the universal model (burnt and unburnt data from all sites combined) 
tended to be unreliable with both over- and underpredictions depending upon 
which dataset was being used for testing or validation. Universal models created 
using data from all burnt or unburnt sites were better than other trained models 
for predicting of biomass or C content in relation to fire history. 



4 

 

 

ESTIMATING CARBON STOCKS AND BIOMASS IN SURFACE FUEL LAYERS I REPORT NO. 586.2020 
 

 
 

END-USER STATEMENT 
 

Dr Felipe Aires, New South Wales National Parks and Wildlife Service, NSW 

Universal models for predicting biomass or carbon content of fine fuels in relation 
to fire history presented in this report have been developed over the past 2 years 
and were progressively reported in milestones, conference proceedings and 
newsletters (e.g. Milestones 2.1.3, 2.2.2, 2.3.2, 2.4.3; Possell et al., 2019; February 
2019 project newsletter). This final technical report summarises the information 
about the fine fuel model presented in previous milestones and provides further 
detail describing model refinement and application. 

The ‘How to use’ guide at the conclusion of the report shows how the fine fuel 
models developed in this research can be used to estimate biomass and the 
carbon content of the different components of surface fuel with reasonable 
accuracy. Estimates of biomass can help inform fire planners understand the 
potential fire behaviour and the latter, carbon content, can be used for 
estimating carbon emissions from this fuel layer during prescribed burning. 
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1. INTRODUCTION 
Prescribed burning is widely used in Australia for mitigating the risk of unplanned 
bushfires by reducing fuel loads. This process involves temporarily removing 
accumulated fuels, primarily in surface and near-surface fuel layers (Fernandes 
and Botelho, 2003), but also elevated and bark fuels. As the intent of prescribed 
fire is most often to reduce the risk to life and property, the environmental effects 
are often a secondary consideration (Sohngen and Haynes, 1997; Butry et al., 
2001; Fried et al., 2004). Fire can have a variety of effects in an ecosystem, one 
being a disruption to carbon (C) cycling. In forests, C is stored aboveground in 
live vegetation and dead material and belowground in live roots and dead soil 
organic matter (SOM). As forests collectively represent a large fraction of global 
C pools, and small disturbances could potentially affect global C cycling, it is 
important to understand C partitioning in forest biomass and how it may change 
after fire (Schulze et al., 2000; Lal, 2004). 

Carbon emission factors are used to estimate the quantity of C released per kg 
of biomass burnt. For this, reliable values for carbon dioxide (CO2), carbon 
monoxide (CO), methane (CH4), and a range of trace gases produced by 
combustion of fuel from Australian temperate forests have been published 
(Paton-Walsh et al., 2014). During bushfire, CO2 is emitted in quantities more than 
10-times greater than the next most prevalent gas, CO, the quantity of which is 
10-fold greater than the remaining trace gases ((Sommers et al., 2014). On 
decadal or more time scales, bushfires are thought to be a ‘net zero’ C emission 
event because the C released as CO2 during burning is offset via the net uptake 
of CO2 by regenerating vegetation (Bowman et al., 2009). However, the ways in 
which fire affect forest ecosystems are far more complex, and there may be 
significant consequences to global C cycling caused by large unplanned 
bushfire events and smaller but more frequent planned prescribed fire events. 

Carbon accounting that relies solely on addition of CO2 to the atmospheric C 
pool by vegetation fires and subsequent removal through photosynthesis can 
create misunderstandings regarding the reliability of C balances due to fires 
(Schimel and Baker, 2002; Kashian et al., 2006; van der Werf et al., 2010). A variety 
of approaches to account for C stocks in forest ecosystems have been 
developed and have inevitably led to different estimates of C emission factors 
(Helin et al., 2013). Accurate quantification of C pools in different fuel strata in 
forests using empirical data is critical for increasing accuracy in C modelling 
efforts. Possell et al. (2015) estimated that, for prescribed fire in dry sclerophyll 
eucalypt forests in Australia, up to 86% of C or between 20-139 t C ha-1 as CO2 

(73-509 t eCO2 ha-1) is released to the atmosphere. For Eucalyptus obliqua forests 
in Victoria, CO2 losses from fine fuels due to low intensity prescribed burning was 
estimated to be 90% of that fraction, equivalent to 25 t C ha-1 (Volkova and 
Weston, 2013). 

Estimates of total aboveground C in forests and woodlands generally quantify 
biomass held as live fuel in the overstorey, understorey, ground cover (near 
surface), dead fuel represented by litter (surface fuel), and coarse woody debris 
either as standing remains of trees or connected to the ground. An important 
issue with current predictive modelling of C content in forests is both the paucity 
of good quality data describing near-surface and surface fuels, and when data 
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are available, there is typically a lack of detail on the composition of the surface 
fuel layer. The surface fuel is an important component in determining fire 
behaviour, not only for ascertaining the amount of fuel available to burn, the 
moisture content and the particle arrangement (Ottmar, 2014; Cruz et al., 2018), 
but also ascertaining the composition and different flammability characteristics 
of each fraction (Gormley et al., 2020). After fire, the conversion of fuel to 
charcoal, char and ash can change the overall amount of C affected in the 
natural C cycle and can provide a variety of uncertainties in current emission 
projections (Sommers et al., 2014). 

The surface fuel layer can have several components at different stages of 
decomposition including from almost entirely decomposed plant material to 
newly fallen leaves and twigs, partially decomposed debris through to aged 
humus. As this fuel layer can have the greatest impact on the rate of spread and 
intensity of fire (Prior et al., 2016; Krix and Murray, 2018), surface fuels deserve to 
be thoroughly investigated for accurate reporting of C losses from prescribed fire 
and bushfire. Previous studies have partitioned surface fuels according to 
organic or inorganic density (>1.8 g cm-3) using various methods (Turchenek and 
Oades, 1974; 1979; Paul and Van Veen, 1978). Many more studies refer to 
surfaces fuels as one whole component with no partitioning of the various 
fractions. 

Current C accounting schemes use a range of default values to determine C in 
surface fuels. For example, default values of 37% (Smith and Heath, 2002), 47% 
(IPCC, 2004) and 50% (Gifford, 2000; Keith et al., 2009; 2012) have been used. 
Although derived from comprehensive studies, it is not known how reliable these 
values are as the composition of the surface fuel layer may differ according to a 
variety of factors, including forest type, environmental conditions and how 
prevailing or changing conditions affect litter inputs and rates of decomposition; 
factors which can all vary both spatially and temporally. Seasonal changes in 
weather can create differences in C pools in individual surface fuel fractions 
(leaves, twigs, bark), both in quantity and decay state, and can contribute to 
the overall C pool of surface fuel. Along with temporal variation, biophysical 
factors including soil type, topography and elevation, vary across the landscape 
and contribute to variation in surface fuel from location to location. As such, the 
development of a method which can be used to increase the predictive 
capacity of C stocks in surface fuels is important for determining site- or region- 
specific emissions from fires. 

Current methods of estimating aboveground biomass range from simple 
allometric equations through to highly technical remote sensing technology (e.g. 
LIDAR; Ottmar et al., 2009; Ottmar, 2014; Valbuena et al., 2017). To be of value, 
both simple allometrics and remote sensing methods require thorough 
calibration to ensure accuracy between predicted and observed data 
(Valbuena et al., 2017). Once aboveground biomass has been characterised 
and validated, C content can be calculated according to the type of 
vegetation and its varying components. As presented in Parnell et al., (2018; 
2019), based on a detailed analysis of C content for various fuel fractions, good 
estimates of C in surface fuel fractions can now be made. 

Planning of prescribed burns is becoming necessarily more and more 
sophisticated, and land managers and fire agencies are also expected to be 
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more accountable for their activities. This creates a need for better estimation 
and prediction of C emissions from fire. In this report, we outline the development 
of a model that can estimate C stocks in surface fuel layers for C accounting 
purposes. Empirical data were used to describe C pools in surface fuels from a 
range of dry sclerophyll forests occurring in eastern Australia, and the resultant 
model has been developed into an easy-to-use tool which can assist in 
improving emission estimates of C and predictions of surface fuel biomass, before 
and after fire. 
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2. DATA COLLECTION AND ANALYSIS 
 

2.1 STUDY AREA 

The study area included prescribed burns at four sites in the Australian Capital 
Territory (ACT), nine sites in New South Wales (NSW) and seven sites located in 
Victoria (VIC) (Table 1). For the ACT and NSW, each of the sites were sampled 
within 2-4 weeks of the ignition date of the prescribed fire. Comparable sites were 
selected from unburnt forests nearby. Each site was sampled using three burn 
units – a pair of circular plots located in burnt and unburnt areas (spatial 
separation). Sampling protocols have been described in Gharun et al. (2015; 
2017). Sites in the ACT have been described in detail in Gharun et al. (2015; 2017) 
and sites in NSW have been described in Gharun et al. (2018) and Bell et al. 
(2018). For sites located in VIC, plots were sampled 2-12 weeks prior to prescribed 
burning and resampled within 1 week after prescribed burning (temporal 
separation) as described in Jenkins et al. (2016). 

Validation data were collected from three completely independent sites in NSW 
in the Blue Mountains (Brooker Road and Whitecross Road) and in the greater 
Marulan area (Arthursleigh). For sites in the Blue Mountains, 24 samples were 
collected from three plots located in burnt and unburnt locations in May 2018 
(Table 1). For sites referred to as Arthursleigh, 20 samples were collected each 
from unburnt Stringybark Forest and unburnt Grassy Box Woodland in September 
2018 (Table 1). 

 
2.2 COLLECTION OF SURFACE FUEL 

Near-surface and surface fuel layers were collected using a circular sampling 
ring (0.1 m2 area). Live near-surface material (live and dead) was clipped at 
ground level and separated from surface fuels. Care was taken to avoid 
collecting mineral soil along with the fine organic material, but this was not 
always avoidable, particularly at sites with sandy soils. 

Samples of surface fuels were dried in a fan-forced convection oven (Model TD- 
78T-2-D, Thermoline Scientific, Wetherill Park, NSW Australia) for 48 h at 60°C then 
separated into different fractions using a 9 mm sieve. Larger material (>9 mm) 
was separated into leaf, twig and ‘other’ fractions. The ‘other’ fraction 
comprising small seeds and fruits was typically a small fraction, so it was 
amalgamated with the twig fraction. Fine material (<9 mm) was classified as the 
‘fine fraction’ and included fragments of organic material in various stages of 
decomposition, as well as small seeds, fruits and sometimes sand. Dry weight of 
each surface fuel fraction was recorded and, where necessary, the weight of 
the fine fraction was adjusted to consider the weight of non-organic material 
(e.g. sand). Due to the fragility of samples from burnt plots they may have 
contained large (>9 mm) fragments of charred leaves, twigs and bark and there 
may have been ash and charred organic matter in the fine (<9 mm) fraction. 
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Table 1. Details of prescribed fires in Victoria (VIC; plots 1-27), the Australian Capital Territory (ACT; 
plots 28-39) and New South Wales (NSW; plots 40-66). For sites in Victoria, sampling occurred before 
fire and within 1 week after prescribed burning using the same plot location. Sites in ACT and NSW 
were sampled 2-4 weeks after prescribed burning in burnt and nearby unburnt areas. 

 

Plot 
number 

Site name Latitude Longitude Ignition date Sampling date 
(pre/post) 

VIC 
1-3 Frogs Hollow ‐37.65 148.05 8 Feb 2011 Feb/Feb 2011 
4-6 Upper Tambo ‐37.76 147.88 6 Mar 2011 Feb/Mar 2011 
7-9 Poddy ‐37.68 148.96 8 Apr 2011 Feb/Apr 2011 
10-12 South Boundary ‐37.82 148.02 25 Feb 2011 Feb/Feb 2011 
13-15 Sandy Point ‐37.60 148.31 24 Feb 2011 Feb/Feb 2011 
16-18 Oliver ‐37.70 148.85 2 Apr 2012 Jan/Apr 2012 
19-21 Gravel ‐37.72 148.78 3 Apr 2012 Jan/Apr 2012 
22-24 Patrol ‐37.68 148.90 10 Apr 2013 Feb/Apr 2013 
25-27 Pettmans ‐37.76 148.01 9 Apr 2013 Feb/Apr 2013 
ACT 
28-30 Googong ‐35.51 149.28 11 Mar 2015 Apr 2015 
31-33 Tidbinbilla ‐35.46 148.90 17 Mar 2015 Apr 2015 
34-36 Wrights Hill ‐35.87 148.93 Mar 2015 Apr 2015 
37-39 Cotter ‐35.61 148.82 30 Mar 2015 May 2015 
NSW 
40-42 Haycock Trig ‐33.45 151.09 19 Aug 2015 Sep 2015 
43-45 Helicopter Spur ‐33.80 150.51 17 Aug 2015 Sep 2015 
46-48 Spring Gully ‐34.09 151.15 14 Aug 2015 Sep 2015 
49-51 Paterson ‐33.53 150.58 19 Aug 2015 Oct 2015 
52-54 Lakesland ‐34.16 150.49 13 Sep 2015 Oct 2105 
55-57 Martins Creek ‐34.30 150.44 8 Mar 2016 Apr 2016 
58-60 Joadja ‐34.37 150.21 8 Apr 2016 Apr 2016 
61-63 Kief Trig ‐33.29 150.94 17 Apr 2016 May 2016 
64-66 Left Arm ‐33.36 150.80 3 Apr 2016 May 2016 
Validation sites 
94-96 Blue Mountains; Brooker 

Road 
-33.65 150.64 Unburnt May 2018 

97-99 Blue Mountains; 
Whitecross Road 

-33.66 150.61 Unburnt May 2018 

100-102 Arthursleigh, Stringybark 
Forest 

-34.56 150.00 Unburnt Sep 2018 

103-105 Arthursleigh, Grassy Box 
Woodland 

-34.56 150.00 Unburnt Sep 2018 

 
 
 

2.3 DETERMINATION OF CARBON CONTENT 

Subsamples of surface fuel fractions (leaves, fine fuel and twigs and other) were 
finely ground and C content (% dry weight) was measured by combustion 
analysis (Elementar Vario Max CNS, Analysensysteme GmH, Hanau, Germany). 
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2.4 ESTIMATING TOTAL BIOMASS AND TOTAL CARBON 

The total biomass (t ha-1) was calculated as the sum of the fuel load of each 
fraction, as described in Equation 1: 

 
 

Total biomass fu l load = (α + γ + β) (1) 
 
 

Where α is the leaf litter fraction, γ is the fraction containing twigs and other 
materials and β is the fine fuel fraction. 

The C content of surface fuel (t C ha-1) was calculated as a weighted average 
of the fuel load of each fraction, multiplied by the respective C content as 
described in Equation 2: 

  i t d a a a bo = + + (2) 
100 100 100 

Where α is the leaf litter fraction, γ is the fraction containing twigs and other 
materials and β is the fine fuel fraction. 

 
2.5 ERROR PROPAGATION AND DETECTION OF OUTLIERS 

Propagation of uncertainty is defined as the effect of the uncertainty of 
variables, such as values of experimental measurements that have uncertainties 
due to measurement limitations (i.e. Instrument precision), which disseminate 
due to the combination of variables in the function (Taylor, 1982). Two different 
instruments were used across the study period for weighing material, and as such, 
there is a degree of uncertainty to the potential error across both scales. As there 
are measured values for quantities X, Y and Z, and uncertainties on δX, δY and 
δZ, the result, R, is the sum or difference of the quantities (Taylor, 1982). From this, 
the uncertainty on δR can be calculated as: 

 
R = X + Y - Z 

aR � aX + aY + aZ 
aR =  J(aX)2  + (aY)2  + (aZ)2 (3) 

 
From Equation 3, the calculated error of the scales combined is 0.141421 g 
(0.014142 t ha-1), and values smaller than this were removed from the dataset to 
ensure the removal of any measurement error. Outliers in the datasets were also 
removed, using the absolute deviation around the median as a more robust 
method of dispersion (Leys et al., 2013). 

 
2.6 MODELLING TOTAL BIOMASS AND CARBON CONTENT OF SURFACE 
FUEL 

To model biomass and C content of surface fuels, a mixture design was used, 
where the influence of individual components on a response surface can be 
evaluated (Eide and Johnsen, 1998; Lawson and Wilden, 2015). For each site, the 
proportions of the total fuel load (t ha‐1) for each of the three litter fractions was 
used as an independent factor (x1, x2, and x3; where x represents a litter fraction; 
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Figure 1), and the corresponding total fuel load (t ha-1) or C content for each fuel 
load (t C ha‐1) was used as the dependent factor. The model used was a 
generalised blending mixture (GBM) model and is described by Equation 4 
(Brown et al., 2015): 

 
q 

E[y] = I r x  

 
+Ir     x    

r 1 

  
xj 

 
r    x 

 
+x  

   
 

 
  j 

 j x + xj x + xj 
j 
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r k  

(  k )
rk

 x
 

+ x  + x   
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  j    j          k        k
)        k j 

 
 

Where [y] is the response of interest that is dependent on the proportions of the 
mixture (q) components (x). The components xi, xj, xk are fixed in relative 
proportions to allow the linear blending effect of one or more components on 
the response surface to be described. These components are indicative of 
mixture proportions which, must equal one. 1<i, i<j, i<j<k characterises the 
response surface contrastingly enough to the effect of xi, xj, xk. βij and βijk are 
parameters for values of parameters sij, sijk, ij, ijk, which are the values that 
define the form of the model terms. The joint effect of xi, xj and xk is governed by 
sijk, ijk, jki, kij, and corresponding βijk. sijk controls the blending effects between 
xi, xj and xk and the remaining mixture, analogous to sij. Contrasting effects may 
be seen where xi, xj and xk remain fixed in relative proportions. 

In the second and third sums, there are q2 and q3 terms respectively. Equation 4 
is a complex model that can be used to establish a broad range of joint effects 
with more included terms. As this model is a nonlinear function of parameters, 
when parameters are specified ( ij, ji, sij, ijk, ijk and sijk), the  remaining  
parameters of Equation 4 become trivial and will therefore result in a linear 
response surface (Brown et al., 2015). To determine the best fitting equation, 
Akaike information criterion (AIC) was used as a measure of the relative quality 
of the response surface for a given set of data in relation to other models (Akaike, 
1974; Brown et al., 2015). When the samples size is small, as was the case in this 
study, a correction can be made (AICc) to avoid overfitting. The model fittings 
were done for data collected from burnt and unburnt sites within each of the 
three study locations. 

Data were randomly assigned into an 80%:20% split for training and testing, 
respectively, of the response surface model. A simulated response surface was 
fitted to the training data using a GBM model (Brown et al., 2015) and a 
polynomial equation for that response was generated by running the GBM 
model with varying numbers of terms included in the response surface equation. 
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Figure 1. Example mixture design for modelling the relationship between the percentages of the 
fuel load (t ha-1) for three fuel fractions and their corresponding total fuel load (t ha-1; circles). The 
design allows the relationship between each individual composition and mixes among each other 
to be visualised and allow the fitting of a response surface that can be used to provide an estimate 
of carbon and biomass (t ha-1). This design was generated using ‘Mixexp’ package on R studio (R 
Core Team, 2014). 

 
 

Using the ‘Metrics’ package on R studio, evaluations were made for each of the 
model fits to determine how the 20% test data and mixed forest (MF) data fitted 
to the model generated from the 80% training data model (Hammer et al., 2018). 
Bias is a calculation in this package that computes the average amount by 
which ‘actual’ is greater than the prediction data. Mean absolute error (MAE) is 
the average absolute difference between two numeric vectors, in this instance, 
‘actual’ data and prediction data. 
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3. RESULTS AND DISCUSSION 
 

3.1 MODEL DEVELOPMENT 

Carbon and biomass models were initially developed for each state, presented 
previously (Milestones 2.1.3, 2.2.2, 2.3.2 and 2.4.3, and provided here in Appendix 
7.1), then a single model was developed for dry sclerophyll forests in south 
eastern Australia. Further development of the existing models presented here, 
describe our efforts to refine model resolution. 

In past iterations of our models, the default value for resolution was set to 0.5, 
which was deemed to be adequate for the GBM model method for the case 
study presented by Brown et al. (2015). In our study, the resolution was trialled 
and tested on 0.1, 0.05 and 0.01 refinements to increase the number of iterations 
for model fitting to potentially increase the accuracy of the predictions. As a 
benchmark, the original GBM model method had 648 iterations based on a 
resolution of 0.5. Running the models at 0.1 resolution required approximately 
72,000 iterations and, at a resolution of 0.01, required approximately 72 million 
iterations. Running the model at a resolution of 0.01 was suboptimal, with respect 
to computational time and gains in accuracy, compared with models run at a 
resolution of 0.1. It would also run the risk of overfitting the dataset by increasing 
the number of parameters and increase model complexity but reduce its ability 
to make predictions of other datasets. Consequently, a resolution of 0.1 was 
chosen for developing the models presented. 

 
3.1.1 Model choices 
The data from each of the three locations studied – the ACT, NSW and Victoria – 
were combined to create the ‘All states’ model, developed with the greatest 
number of data points. This was done to investigate whether the combined data 
could provide more accurate estimates of surface fuel biomass and C than 
models derived from data for each state. As all of the sites surveyed were classed 
as dry sclerophyll forests, the amalgamation of the three states into the all states 
models was a rational approach. Comparisons of models developed from data 
from individual states and combined data (for both C and biomass) showed an 
increase in the spread of data points in the GBM modelling space. This in turn 
also increased the estimation capabilities of the prediction models for both C 
and biomass. 

In this report we have presented an ‘All states’ model (ASA) using all of the data 
from all sites sampled. This model combined the data from plots located in both 
burnt and unburnt sites. We have also presented alternative models developed 
using data from plots sampled in burnt (ASB) and unburnt (ASUB) sites. The 
premise of having an ASA model was so that practitioners would only need to 
refer to one model for estimating biomass and a second one for estimating C 
content, and to be able to use the same tool before and after prescribed 
burning. However, the potential to under- or overestimate biomass or C in both 
unburnt and burnt locations does not allow the one model to be used reliably 
across all dry sclerophyll sites occurring in south eastern Australia (Parnell et al., 
2019). 
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3.1.2 Dealing with variability in the data 
Outliers were removed in all datasets to improve the accuracy of the models. No 
data points were removed after accounting for measurement errors as all 
samples were above the threshold (i.e. 0.014 g experimental error). Outliers were 
identified and removed using the median absolute deviation. This resulted in the 
elimination of 24, nine and six datapoints from the biomass datasets for burnt, 
unburnt and all data, respectively. Similarly, 25, 11 and seven samples were 
removed from the C datasets for burnt, unburnt and all data, respectively. These 
values represent a very small proportion of datapoints in the whole dataset (n = 
456). Although the variability in the datasets were reduced by removing outliers, 
data can also be normalised in this way to become useful for modelling 
processes (Grubbs, 2012; Zimek and Filzmoser, 2018). 

The variability in biomass and in C in surface fuels represented in our datasets 
from burnt sites may be related to the nature in which they were burnt. Prescribed 
burns are often patchy due to low intensity fires and the conditions under which 
they are applied, and it is generally expected that between 50-90% of the 
planned area is burnt (Tolhurst, 2007). Sites in NSW had, on average, 6.3 t ha-1 

surface fuel remaining after prescribed burning while sites in Victoria has closer 
to 2.2 t ha-1. On average, 41%, 42% and 15% of surface fuel remained after 
prescribed burns at sites in the ACT, NSW and Victoria, respectively, implying that 
prescribed burns in Victoria were more effective for removal of surface fuel. The 
general variability inherent in forests, including fire history, may also play a role, 
with site conditions (topography, elevation, soil type, climate) influencing forest 
productivity and fire intensity and spread. Timing of sample collection can also 
introduce variability, possibly reducing the accuracy of modelling efforts. As an 
indicator of this, sites in Victoria sampled one week after prescribed burning had 
surface fuels composed of 0.66 t ha-1 leaves, whereas sites in NSW and the ACT 
sampled two to four weeks after prescribed burns had 0.91 t ha-1 leaves. 
Overestimation of the fine fuel fraction in surface fuel (based on dry weight) may 
have been due to the presence of inorganic and organic materials such as sand 
and, although we have not presented adjusted data here (i.e. taking into 
account the inadvertent addition of inorganic components in litter samples) this 
capacity (i.e. developing models based on adjusted values) could be added as 
required. 

 
3.1.3 Biomass 
There were differences in total biomass before and after prescribed burning at 
all sites (Table 2). Fine fuel and the fraction containing other materials (fruit, 
flowers, bark) were the least affected by prescribed burning compared to leaves 
and twigs (Table 2). When data from all sites were pooled, the range in the 
proportions of the different fractions that made up the total fuel load was smaller 
for samples from the unburnt sites compared to those from the burnt sites. 

 
Model development using 80% of the data 

All data from burnt and unburnt sites were randomly split into two groups. These 
groups consisted of 80% of the total dataset used for model development 
(training) and 20% of the total dataset used for testing – a form of cross- 
validation. All of the GBM models that were generated had the lowest AICc 
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value and the best score (best fit) when the models had a minimum of three 
included terms and a maximum of 10 included terms. The general statistics 
associated with these models are presented in Table 3. Of the three models 
produced (‘all data’, ‘burnt’ and ‘unburnt’), the models for unburnt samples had 
the highest R2 values. The optimal statistical output for each of the models 
correlated with the lowest AICc scores (Table 3). Model coefficients estimates 
and 95% confidence intervals are presented in Table 4. 

The models developed using 80% of the data combined from sites in all three 
states are presented in Figure 3. With the removal of 20% of the data, an uneven 
spread of data was still evident in the unburnt model (Figure 3c). When the model 
was constrained to fit the extent of the data, the estimate range for surface fuel 
biomass from unburnt sites was from 10.3-15.5 t ha-1 and 0-15.0 t ha-1 for burnt 
sites. The combined model (all data from burnt and unburnt sites) had an 
estimated biomass range of 1.0-14.5 t ha-1. 

 

Table 1. Biomass (mean ± standard deviation) for each of the surface fuel fractions and total 
biomass from each of the sites in the Australian Capital Territory (ACT), New South Wales (NSW) and 
Victoria (VIC) and test data from Arthursleigh (NSW) and Blue Mountains (NSW). N/A = data not 
available. 

 
Variable Site 

condition 

Leaves Twigs Fine fuel Other Total 

ACT Unburnt 1.98 ± 0.76 2.68 ± 1.78 1.38 ± 1.94 3.09 ± 2.75 9.28 ± 4.65 

Burnt 0.72 ± 0.86 1.25 ± 1.78 0.38 ± 0.69 1.67 ± 2.65 3.80 ± 3.67 

NSW Unburnt 2.89 ± 0.84 2.94 ± 1.24 6.94 ± 4.26 2.40 ± 1.32 15.14 ± 8.15 

Burnt 0.91 ± 0.34 0.75 ± 0.39 4.12 ± 4.12 0.77 ± 0.53 6.31 ± 6.34 

VIC Unburnt 4.03 ± 7.97 6.15 ± 2.82 4.58 ± 2.35 N/A 14.76 ± 9.10 

Burnt 0.66 ± 0.55 1.55 ± 2.04 0.52 ± 1.10 N/A 2.23 ± 3.24 

Blue 
Mountains 

Unburnt 4.13 ± 3.26 4.19 ± 4.38 5.96 ± 4.18 1.57 ± 1.06 15.85 ± 11.84 

Arthursleigh Unburnt 1.19 ± 0.84 3.51 ± 2.87 6.78 ± 4.29 0.70 ± 0.53 12.17 ± 6.31 

 
 
 
 

Table 2. General blending mixing (GBM) model inclusions, Akaike information criterion (AICc) 
scores and statistical information for estimations of biomass of surface fuels from sites in the 
Australian Capital Territory (ACT), New South Wales (NSW) and Victoria (VIC). The values 
represented are indicative of the best model chosen based on the number of inclusions. RSE = 
residual standard error (with degrees of freedom), R2 = R-squared value, Adj R2 = adjusted R- 
squared value, F = F statistic (with degrees of freedom), P = P-value. 

 

Variable GBM AICc RSE R2 Adj R2 F P 

All GBM3,10 2264.71 5.41 (356) 0.80 0.79 197.50 (7, 365) <0.001 

Burnt GBM3,10 704.92 2.05 (157) 0.81 0.80 109.40 (6, 157) <0.001 

Unburnt GBM3,10 1053.27 4.55 (172) 0.91 0.91 290.50 (6, 172) <0.001 
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A useful way of representing the fitted surface besides the contour plots 
generated (see Figure 3) is through using ‘effects plots’. These plots display the 
predicted response along each component axis on the same graph, whereby 
the defined component axis for component xi is a line which passes through the 
design centroid to the vertex where xi = 1.0 (Cox, 1971; Cornell, 2002). Essentially, 
these plots examine the effect of each component on the response, often when 
there are more than three components in the mixture which cannot be displayed 
effectively on a contour plot. 

A Cox direction effects plot was generated for all models, and an example is 
provided in Figure 2 for biomass data from burnt and unburnt sites. The effects 
plots for the model developed for the burnt plots demonstrated that, with a 
decrease in the amount of leaves (a decrease in x1, Figure 2), the relative 
increase in the biomass of twigs and other material (x2) and the fine fuel fraction 
(x3) was relatively the same. However, the effect of fine fuel is slightly greater 
than for twigs and other material when values deviate further from the centre of 
the matrix. In contrast, the model developed for the unburnt sites showed that 
twigs and other material had the greatest effect as the values deviate further 
from the centroid. The predicted response suggests that when there is a 
decrease in leaf biomass, there is little to no change in fine fuel biomass, but a 
distinct response in the biomass of twigs and other materials (x2 in Figure 2b). 

 

Model validation against test data 

The accuracy of the models was tested by examining their performance in 
making prediction against the 20% validation (test) data. The relationship 
between model predictions and actual data from the test dataset are presented 
in Figure 4. There were reasonably strong relationships between the model 
predictions and the test data for the models developed from all data combined 
(All states model) and data from the burnt sites (Burnt model) and an 
underprediction for the model using data from unburnt sites (Unburnt model). The 
statistics for the linear regression models and the model metrics used to further 
evaluate the overall fit of the models to the data are presented in Table 5. 



MILESTONE 3.1.3 | FUEL CONDITION MODEL 
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Figure 2. Examples of a Cox direction effects plot for biomass models for (a) burnt and (b) unburnt 
sites. The black line (x1) is leaves, red dashed line (x2) is twigs and other, and the green line (x3) is 
fine fuel. 
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Figure 3. Biomass response surfaces developed using training data (80% data) from all sites in the Australian Capital Territory (ACT), New South Wales (NSW) and 
Victoria (VIC). (a, d) All data, (b, e) burnt or after prescribed burning, and (c, f) unburnt or before prescribed burning. Contours were modelled using a general 
blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum of 10 terms included for each model. Panels (d), (e) and (f) represent the final 
biomass models generated, constrained to the limits presented in panels (a), (b) and (c). 
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Table 4. Statistical information for each of the 80% biomass models: all data from all sites (ASA), data from all burnt sites (ASB) and data from all unburnt sites (ASUB). 
Model coefficients, model estimates, Std Err = standard error, T = T value, PR(>|T|) = P-value for the T-test as the proportion of T distribution at that degrees of freedom 
which is greater than the absolute value of the T statistic, 95% CI = 95% confidence interval, P = P-value. 

 

Coefficients Estimate Std Err T PR(>|T|) 95% CI P 
All data from all sites (ASA 80%) 
x1 1.10 0.88 1.26 0.21 -0.62 – 2.83 0.21 
x2 -5.30 2.93 -1.81 0.07 -11.06 – 0.46 0.07 
x3 -2.30 3.10 -0.74 0.46 -8.40 – 3.80 0.46 
I(x1^0.5 * x2^2 * x3^1.3) 1824.01 908.86 2.01 0.05 36.60 – 3611.42 0.05 
I(x1^0.5 * x3^1.7/(x1 + x3 + 0.001)^3) 7.89 1.61 4.90 1.46×10-6 4.72 – 11.05 0 
I(x1^0.5 * x2^1.9/(x1 + x2 + 0.001)^2.9) 15.97 4.49 3.56 0 7.14 – 24.793 0 
I(x1^0.6 * x2^2.3 * x3^1.5) -2753.11 1624.02 -1.70 0.09 -5946.99 – 440.78 0.09 
Data from all burnt sites (ASB 80%) 
x1 0.72 0.35 2.02 0.05 0.01 – 1.42 0.05 
x2 0.26 1.00 0.26 0.80 -1.72 – 2.23 0.80 
x3 -10.65 3.65 -2.92 0 -17.86 – -3.44 0 
I(x2^3 * x3^0.5/(x2 + x3 + 0.001)^1.1) 33.34 6.36 5.24 5.04×10-7 20.78 – 45.91 0 
I(x2^0.8 * x3^3/(x2 + x3 + 0.001)^2.3) 125.07 24.52 5.10 9.64×10-7 76.64 – 173.51 0 
I(x1^0.7 * x2^2.5 * x3^0.6) 58.84 28.12 2.09 0.04 3.29 – 114.39 0.04 
Data from all unburnt sites (ASUB 80%) 
x1 52.62 10.59 4.97 1.62×10-6 31.71 – 73.52 0 
x2 22.35 2.45 9.12 <2×10-16 17.52 – 27.19 0 
x3 53.00 12.92 4.10 6.29×10-5 27.50 – 78.51 0 
I(x1^1.9 * x2^0.5/(x1 + x2 + 0.001)^1.9) -57.63 26.88 -2.14 0.03 -110.69 – -4.57 0.03 
I(x1^0.9 * x2^0.6/(x1 + x2 + 0.001)^3) 245.59 69.32 3.54 0 108.77 – 382.42 0.01 
I(x1^0.8 * x2^0.5/(x1 + x2 + 0.001)^2.7) -253.35 72.69 -3.49 0 -396.84 – -109.87 0.01 
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Figure 4. Linear regression plots for biomass of surface fuel showing the correlation between actual data and prediction generated from (a) all sites, (b) burnt sites 
and (c) unburnt sites. Dashed yellow lines represent the prediction intervals, dashed dark blue lines represent the confidence intervals and the solid light blue line 
represents the regression line. 
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Table 5. Statistical information and model metrics generated from the linear regression models. ASA 
= all data from all sites, ASB = data from all burnt sites, ASUB = data from all unburnt sites, RSE = 
residual standard error (with degrees of freedom), Adj R2 = adjusted R2 value, F = F statistic (with 
degrees of freedom), P = P-value, MAE = mean absolute error. Linear R2 and zero R2 (forced zero 
intercept) are taken from linear equations of the same data. 

 

Variable RSE Adj R2 F P MAE Bias Linear R2 Zero R2 

ASA 20% 5.49 (89) 0.45 76.10 (1, 89) <0.001 3.95 0.13 0.46 0.80 

ASB 20% 1.91 (39) 0.69 88.24 (1, 39) <0.001 1.26 0.14 0.69 0.86 

ASUB 20% 5.11 (42) 0.05 3.44 (1, 42) 0.07 4.13 -1.31 0.05 0.85 

 
 
3.1.4 Carbon 
There were some differences in the C content of surface fuel both before and 
after prescribed burning at all sites (Table 6). Carbon was much lower in the leaf 
and twig fractions from sites in the ACT and those that were used to collect the 
test data (Blue Mountains and Arthursleigh) (Table 6). Carbon content of fine fuel 
was similar for all sites, ranging between 32 and 39% C. 

 

Table 6. Carbon content (%; mean ± standard deviation) for each of the surface fuel layers and 
the total biomass from sites in the Australian Capital Territory (ACT), New South Wales (NSW), 
Victoria (VIC) and test data from Arthursleigh (NSW) and Blue Mountains (NSW). N/A = data not 
available. 

 
Variable Site 

condition 

Leaves Twigs Fine Fuel Other Total 

ACT Unburnt 46.5 ± 2.2 44.2 ± 1.0 34.9 ± 8.7 40.4 ± 6.1 41.5 ± 7.0 

Burnt 47.3 ± 1.4 45.5 ± 1.8 32.2 ± 13.5 39.8 ± 11.3 41.1 ± 10.8 

NSW Unburnt 50.0 ± 1.3 47.1 ± 1.3 37.1 ± 5.2 38.0 ± 5.6 43.3 ± 9.9 

Burnt 51.1 ± 1.3 48.6 ± 2.8 36.9 ± 6.3 40.9 ± 8.4 44.1 ± 11.0 

VIC Unburnt 54.3 ± 2.1 49.4 ± 0.7 34.6 ± 8.2 N/A 46.1 ± 9.8 

Burnt 54.3 ± 2.2 49.4 ± 0.7 34.5 ± 8.4 N/A 46.1 ± 9.8 

Blue 
Mountains 

Unburnt 49.9 ± 9.7 41.6 ± 10.8 38.9 ± 14.1 41.5 ± 9.6 43.0 ± 11.9 

Arthursleigh Unburnt 47.5 ± 4.9 43.3 ± 8.9 35.6 ± 9.8 42.9 ± 8.9 42.3 ± 8.7 

 
 
Model development using 80% of the data 

All data relating to C content from burnt and unburnt sites were randomly split 
into two groups and used for testing, as described for the biomass data. The GBM 
models generated had the lowest AICc and the best score when the models 
had a minimum of three included terms and a maximum of 10 included terms 
(Table 7). As for the biomass models, C models derived from data from unburnt 
sites had the highest R2 values (Table 7). The statistical information for all, burnt 
and unburnt GBM models and their coefficients are presented in Table 8. 
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Table 7. General blending mixing (GBM) model inclusions, Akaike information criterion (AICc) 
scores and statistical information for estimations of biomass of surface fuels from sites in the 
Australian Capital Territory (ACT), New South Wales (NSW) and Victoria (VIC). The values 
represented are indicative of the best model chosen based on the number of inclusions. RSE = 
residual standard error (with degrees of freedom), R2 = R-squared value, Adj R2 = adjusted R- 
squared value, F = F statistic (with degrees of freedom), P = P-value. 

 
Variable GBM AICc RSE R2 Adj R2 F P 

All GBM3,10 909.89 2.67 (347) 0.80 0.79 153.1 (9, 347) <0.001 

Burnt GBM3,10 779.29 0.91 (158) 0.81 0.81 115.2 (6, 158) <0.001 

Unburnt GBM3,10 809.69 2.45 (166) 0.89 0.89 174.6 (8, 166) <0.001 

 
 
After constraining the data to their respective limits (Figure 5a, b, c), GBM models 
using 80% of the data were developed for all site data, and data for burnt and 
unburnt sites (Figure 5d, e, f). The C content for surface fuel samples from unburnt 
sites ranged from 5.4-7.8 t C ha-1 and from 0-3.7 t C ha-1 for surface fuel samples 
collected from burnt sites. Predictions from the GBM model developed using all 
of the data combined ranged from 0-8.0 t C ha-1 (Figure 5d). 

 
 
Model validation against test data 

The accuracy of the C models was tested by examining their performance in 
making prediction against the 20% validation (test) data. The relationship 
between model predictions and actual data from the test dataset are depicted 
in Figure 6, and their associated statistical information and model metrics are 
presented in Table 9. Unlike the biomass models, the C predictions were slightly 
better for the model developed using all of the data, with an adjusted R2 value 
of 0.54 (0.45 for biomass). In contrast, the biomass model predictions were better 
for data from burnt sites (R2 values of 0.69 and 0.51 for biomass and C predictions, 
respectively) (Table 9). However, predictions using data from unburnt sites were 
weak for both C and biomass, with R2 values of -0.02 and 0.05, respectively. The 
model developed using data from unburnt sites greatly underpredicted C pools 
in surface fuel with a negative value of -10 t C ha-1, when according to the actual 
dataset, 14 t C ha-1 was expected (Figure 6c). Forcing the intercept of the linear 
regression to zero improved the model (R2 value 0.64, Table 9) and removed the 
nonsensical estimates and error terms produced when including the -10 t C ha-1 

prediction in the regression model. 
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Figure 5. Carbon response surfaces developed using training data (80% data) from all sites in the Australian Capital Territory (ACT), New South Wales (NSW) and 
Victoria (VIC). (a, d) All data, (b, e) burnt or after prescribed burning, and (c, f) unburnt or before prescribed burning. Contours were modelled using a general 
blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum of 10 terms included for each model. Panels (d), (e) and (f) represent the final 
carbon models generated, constrained to the limits presented in panels (a), (b) and (c). 
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Table 8. Statistical Information for each of the 80% biomass models: all data from all sites (ASA), data from all burnt sites (ASB) and data from all unburnt sites (ASUB). 
Model coefficients, model estimates, Std Err = standard error, T = T value, PR(>|T|) = P-value for the T-test as the proportion of T distribution at that degrees of freedom 
which is greater than the absolute value of the T statistic, 95% CI = 95% confidence interval, P = P-value. 

 

Coefficients Estimate Std Err T PR(>|T|) 95% CI P 
All data from all sites (ASA 80%) 
x1 -0.10 0.47 -0.21 0.83 -1.03 – 0.83 0.83 
x2 3.11 1.11 2.81 0.01 0.93 – 5.30 0.01 
x3 1.04 2.76 0.38 0.71 -4.38 – 6.46 0.71 
I(x1^0.8 * x2^2.5 * x3^1.9) 126.01 278.70 0.45 0.65 -422.15 – 674.17 0.65 
I(x1^0.5 * x2^1.7/(x1 + x2 + 0.001)^3) 3.03 1.85 1.64 0.10 -0.60 – 6.66 0.10 
I(x1^1 * x2^3/(x1 + x2 + 0.001)^0) -100.38 29.04 -3.46 0.00 -157.50 – -43.26 0 
I(x1^3 * x3^1.9/(x1 + x3 + 0.001)^0) 150.10 52.07 2.88 0.00 47.68 – 252.51 0 
I(x1^0.8 * x2^2.3/(x1 + x2 + 0.001)^3) 39.47 15.95 2.48 0.01 8.11 – 70.84 0.01 
I(x2^0.8 * x3^2.4/(x2 + x3 + 0.001)^3) 13.88 9.17 -1.51 0.13 -31.92 – 4.16 0.13 
Data from all burnt sites (ASB 80%) 
x1 0.25 0.15 1.66 0.10 -0.05 – 0.55 0.10 
x2 0.27 0.32 0.84 0.41 -0.37 – 0.90 0.41 
x3 -8.26 1.98 -4.16 5.19×10-5 -12.18 – -4.34 0 
I(x2^0.5 * x3^0.8/(x2 + x3 + 0.001)^0) 28.33 4.68 6.05 1.02×10-8 19.08 – 37.58 0 
I(x2^2.5 * x3^1.8/(x2 + x3 + 0.001)^2.9) -84.94 21.24 -4.00 9.74×10-5 -126.89 – -42.99 0 
I(x1^0.7 * x3^3/(x1 + x3 + 0.001)^1.7) 10.05 6.39 1.57 0.12 -2.58 – 22.68 0.12 
Data from all unburnt sites (ASUB 80%) 
x1 -25.87 12.87 -2.01 0.05 -51.28 – -0.46 0.05 
x2 1.08 4.84 0.22 0.82 -8.48 – 10.64 0.82 
x3 -30.23 21.23 -1.42 0.16 -72.13 – 11.68 0.16 
I(x1^0.5 * x2^2.5/(x1 + x2 + 0.001)^2.9) 157.09 64.93 2.42 0.02 28.90 – 285.28 0.02 
I(x2^0.8 * x3^3/(x2 + x3 + 0.001)^2.8) -28.39 31.11 -0.91 0.36 -89.82 – 33.04 0.36 
I(x1^2.5 * x2^0.8 * x3^0.7) 420.62 226.33 1.86 0.06 -26.24 – 867.48 0.07 
I(x1^1.9 * x2^0.5/(x1 + x2 + 0.001)^3) 56.04 24.55 2.28 0.02 7.57 – 104.51 0.02 
I(x1^0.5 * x2^2.1/(x1 + x2 + 0.001)^1.2) -123.92 71.28 -1.74 0.08 -264.65 – 16.82 0.08 
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Figure 6. Linear regression plots for carbon in surface fuel showing the correlation between actual data and prediction generated from (a) all sites, (b) burnt sites 
and (c) unburnt sites. Dashed yellow lines represent the prediction intervals, dashed dark blue lines represent the confidence intervals and the solid light blue line 
represents the regression line. 
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Table 9. Statistical information and model metrics generated from the linear regression models. ASA 
= all data from all sites, ASB = data from all burnt sites, ASUB = data from all unburnt sites, RSE = 
residual standard error (with degrees of freedom), Adj R2 = adjusted R2 value, F = F statistic (with 
degrees of freedom), P = P-value, MAE = mean absolute error. Linear R2 and zero R2 (forced zero 
intercept) are taken from linear equations of the same data. 

 
Variable RSE Adj R2 F P MAE Bias Linear R2 Zero R2 

ASA 20% 2.50 (87) 0.54 106.3 (1, 87) <0.001 1.86 0.19 0.55 0.81 

ASB 20% 1.16 (39) 0.51 43.04 (1, 39) <0.001 0.83 0.22 0.51 0.80 

ASUB 20% 3.36 (41) -0.02 0.15 (1, 41) 0.70 2.77 0.77 -0.02 0.64 

 
 
 
3.2 TOTAL BIOMASS AND TOTAL CARBON FUEL LOADS 

The total biomass fuel load (TBFL) and total carbon fuel load (TCFL) was modelled 
using all data (ASA) and burnt (ASB) and unburnt (ASUB) data sets to better 
understand the relationships for biomass and C for each model developed 
(Figure 7). The average values for %C according to the models derived from ASA 
and ASUB data was 51 ± 1 %C and 47 ± 1 %C for the model developed using ASB 
data. These plots provide an estimate for total surface fuel biomass rather than 
providing an estimate based on the four fuel types incorporated in the GBM 
models (leaves, fine fuel, twigs and other). For example, using the all data model 
(ASA), if the total biomass fuel load was 21 t ha-1, it is expected that there would 
be between 5-14 t C ha-1 (Figure 7a). The large range for this estimate is likely to 
be due to individual site differences, whether the site is burnt or unburnt, or the 
varying proportions of each surface fuel component. Furthermore, this range 
may over- or underpredict estimates according to the prediction interval line 
(Figure 7). For example, according to predictions made using the ASA model, if 
there is 26 t ha-1 of surface fuel, there is a considerably higher prediction for C 
(i.e. 21 t C ha-1) than for 30 t ha-1 (5 t C ha-1) (Figure 7a). 

 
3.3 MODEL VALIDATION USING INDEPENDENT SITES 

Although there was a reasonably strong relationship between the 20% validation 
(testing) and 80% training datasets for biomass and C, validation of the data and 
the models was also compared to data from three independent sites. Validation 
data from the independent sites are referred to as the ‘mixed forest’ (MF) 
dataset. 

 
3.3.1 Biomass 
The models developed using the 80% training data were used to generate 
predictions of biomass against the MF data (Figure 8) and the associated model 
metrics from these predictions are presented in Table 10. Although the all data 
model (ASA) had the lowest mean absolute error (5.1 t ha-1), the best model for 
predicting the MF data was the unburnt data model (ASUB (Table 10). This was 
expected as the MF dataset contained samples only from unburnt sites. The 
model based on samples from burnt sites had the greatest mean absolute error 
(6.17 t ha-1) and, as such, was the least reliable model (Table 10a). 



26 

 

 

ESTIMATING CARBON STOCKS AND BIOMASS IN SURFACE FUEL LAYERS I REPORT NO. 586.2020 

 
 

3.3.2 Carbon 
In contrast to the biomass models, C was best predicted when using the burnt 
model (ASB) compared to models using all data combined (ASA) and data from 
unburnt sites (ASUB) (Figure 9). Models developed using data from burnt sites 
(ASB) had the greatest error values (MAE) in the MF dataset (4.00 t C ha-1; Table 
10b) compared to the combined data from all sites (ASA; 2.89 t C ha-1). Despite 
this, ASB was the better model for predicting C in the MF dataset. 

 

Table 10. Model metrics generated from the mixed forest (MF) data and 80% biomass linear 
regression models of actual and predicted data for (a) biomass and (b) carbon. ASA = all data 
from all sites, ASB = data from all burnt sites, ASUB = data from all unburnt sites, RSE = residual 
standard error (with degrees of freedom), Adj R2 = adjusted R2 value, F = F statistic (with degrees of 
freedom), P = P-value, MAE = mean absolute error. Linear R2 and zero R2 (forced zero intercept) 
are taken from linear equations of the same data. 

 

Variable RSE Adj R2 F P MAE Bias Linear R2 Zero R2 

(a) Biomass         

ASA vs MF 6.09 (55) 0.03 2.67 (1, 55) 0.11 5.09 -0.28 0.03 0.80 

ASB vs MF 6.13 (55) 0.02 1.87 (1, 55) 0.18 7.07 6.51 0.02 0.78 

ASUB vs MF 6.06 (55) 0.04 3.22 (1, 55) 0.08 6.17 -4.01 0.04 0.80 

(b) Carbon         

ASA vs MF 3.39 (54) 0.01 1.54 (1, 54) 0.22 2.89 0.64 0.01 0.77 

ASB vs MF 3.32 (54) 0.05 3.84 (1, 54) 0.06 4.00 3.75 0.05 0.79 

ASUB vs MF 3.42 (54) -0.01 0.33 (1, 54) 0.57 3.07 -0.39 -0.01 0.74 

 
 
 
3.3.3 Model predictions 
The validation data were initially selected to test the extremes of the models 
using two forms of dry sclerophyll forest with low productivity; Stringybark Forest 
and Grassy Box Woodland (Arthursleigh), and dry sclerophyll forest with high 
productivity (Blue Mountains). When these data were used to validate the 
models, it was evident that they under- and overpredicted values for biomass 
and C (Table 10). The ASA data had the best predictive capacity with only small 
underpredictions (average bias, -0.28) and an associated MAE of 5.1 t ha-1. In 
contrast, predictions using the ASB model had an average bias of 6.51 
(overprediction) and a higher MAE (7.1 t ha-1). For C in surface fuels, the ASUB 
model was the only model that underpredicted (average bias -0.39) with a MAE 
of 3.07 t C ha-1. The ASB model overpredicted C values by 4.0 t C ha-1 and had a 
MAE of 3.75 t C ha-1. These results indicate that the models are still somewhat 
unreliable, particularly for predictions related to surface fuels from burnt sites. As 
the samples from burnt sites in the Blue Mountains were collected 10 years post- 
fire they could potentially be classified as unburnt allowing recalibration of the 
ASUB model. 

So, why do the models perform poorly when used against independent 
datasets? Initially, we used a form of cross validation, taking 20% of the original 
data, to test models developed with the remaining 80% of the data. This reduces 
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the risk of overfitting the models and thereby reducing the complexity of the 
models. However, the testing data is assumed to be approximately typical of 
the data that the models will evaluate because it is randomly selected from the 
same pool of data as the training data. In order to examine the broader 
applicability of the models we tested them against the MF dataset, which is not 
necessarily typical of the model training data. The poor performance against 
MF data indicates that the models are not yet universal. Improvements to the 
model-data fits can simply be made by including more training data from non- 
typical sites. Another approach to improve performance and reduce errors is to 
fit models to datasets where large or unequal variances in biomass or carbon 
values are reduced or equalised by statistical means. A common method is to 
use data transformations, such as a log-transform, that can address several issues 
related to regression modelling. However, the choice of transformation depends 
on several data considerations e.g. a log transform cannot be used on zero data, 
and it must be readily invertible i.e. be easily transformed back to normal values, 
so that the results can be interpreted. Further research is required to examine 
whether this approach is feasible and still provide a tool that is straightforward to 
use and understand. 
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Figure 7. The relationship between total biomass fuel load (TBFL) and total carbon fuel load (TCFL) for (a) all data, (b) data from burnt sites and (c) unburnt sites. 
Dashed yellow lines represent the prediction intervals, dashed dark blue lines represent the confidence intervals and the solid light blue line represents the regression 
line. 
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Figure 8. Linear regression plots for biomass of surface fuel showing the correlation between actual data and prediction data generated from mixed forest data 
and 80% models derived from (a) all sites, (b) burnt sites and (c) unburnt sites. Dashed yellow lines represent the prediction intervals, dashed dark blue lines represent 
the confidence intervals and the solid light blue line represents the regression line. 
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Figure 9. Linear regression plots for carbon in surface fuel showing the correlation between actual data and prediction data generated from mixed forest data and 
80% models derived from (a) all sites, (b) burnt sites and (c) unburnt sites. Dashed yellow lines represent the prediction intervals, dashed dark blue lines represent the 
confidence intervals and the solid light blue line represents the regression line. 
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4. CONCLUSION 
The ability to model changes in biomass and the C content of individual fractions 
in surface fuel layers is important for increasing accuracies in estimating C loss 
due to combustion during prescribed burning. Current models for biomass have 
prediction errors of 5.1 (all data from all sites; ASA), 6.2 (data from all unburnt sites; 
ASUB) and 7.1 t ha-1 (data from all burnt sites; ASB). Models for C have prediction 
errors of 2.9 (ASA), 3.1 (ASUB) and 4.0 t C ha-1 (ASB). 

Testing and validating predictive models for biomass and carbon (C) content of 
surface fuel created with independent site data (MF; mixed forest), indicated 
that further testing and modelling with more sites would be beneficial. Including 
the MF data into the ‘all states’ (‘Universal’) models, and further validation of the 
data with new sites, could improve GBM development. Additional data to test 
the models presented in this report further may include recently surveyed plots in 
the Blue Mountains, where data were collected in the same way as for sites in 
Victoria, NSW and the ACT. 
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7. APPENDIX 
 
7.1 MODEL DEVELOPMENT FOR INDIVIDUAL STATES 

 
7.1.1 Biomass 

 
Original models 

 
Table A1. Statistical information for 80% biomass models developed using all data from burnt and 
unburnt sites (A) in New South Wales (NSW), Victoria (VIC) and the Australian Capital Territory (ACT). 
Model coefficients, model estimates, Std Err = standard error, T = T value, PR(>|T|) = P-value for the 
T-test as the proportion of T distribution at that degrees of freedom which is greater than the 
absolute value of the T statistic, 95% CI = 95% confidence interval, P = P-value. 

 

Coefficients Estimate Std Err T PR(>|T|) 95% CI P 
NSWA 
x1 1.83 1.94 0.94 0.35 -2.00 – 5.66 0.35 
x2 -14.63 6.32 -2.32 0.02 -27.11 – 2.15 0.02 
x3 -7.93 6.31 -1.26 0.21 -20.40 – 4.55 0.21 
I(x1^0.7 * x2^2.4 * 
x3^2.5) 

4072.11 1312.97 3.10 0 1477.08 – 6667.14 0 

I(x1^0.5 * x3^1.5/(x1 + 
x3 + 0.001)^2.6) 

100.98 31.83 3.17 0 38.08 – 163.88 0 

I(x1^0.5 * x2^2.2/(x1 + 
x2 + 0.001)^3) 

54.42 16.20 3.36 0 22.40 – 86.43 0 

I(x1^3 * x3^1.6/(x1 + x3 
+ 0.001)^0) 

247.73 98.26 2.52 0.01 53.53 – 441.93 0.01 

I(x1^0.7 * x3^1.7/(x1 + 
x3 + 0.001)^3) 

-116.22 41.83 -2.78 0.01 -198.89 – -33.55 0.01 

I(x2^1.1 * x3^1.5/(x2 + 
x3 + 0.001)^0.6) 

-123.98 57.63 -2.15 0.03 -237.88 – -10.07 0.03 

VICA 
x1 0.24 0.82 0.30 0.77 -1.39 – 1.88 0.77 
x2 46.84 28.67 1.63 0.10 -9.91 – 103.59 0.11 
x3 7.97 6.09 1.31 0.19 -4.08 – 20.02 0.19 
I(x2^1.3 * x3^0.5/(x2 + 
x3 + 0.001)^0.6) 

-35.38 48.89 -0.72 0.47 -132.154 – 61.39 0.47 

I(x1^0.7 * x2^1.2/(x1 + 
x2 + 0.001)^3) 

50.64 13.59 3.73 0 23.73 – 77.55 0 

I(x1^2.5 * x2^2.5 * 
x3^0.9) 

7220.78 2783.74 2.59 0.01 1710.98 – 12730.59 0.01 

I(x1^0.6 * x2^0.9/(x1 + 
x2 + 0.001)^2.3) 

-52.02 18.64 -2.79 0.01 -88.92 – -15.12 0.01 

I(x1^1.9 * x2^2.6/(x1 + 
x2 + 0.001)^0) 

-719.35 456.72 -1.58 0.12 -1623.33 – 184.63 0.12 

ACTA 
x1 -0.67 4.98 -0.14 0.89 -10.61 – 9.26 0.89 
x2 -1.72 4.68 -0.37 0.71 -11.07 – 7.63 0.71 
x3 10.47 3.48 3.01 0 3.53 – 17.41 0 
I(x1^0.5 * x3^1.5/(x1 + 
x3 + 0.001)^3) 

-4.87 16.87 -0.29 0.77 -4.87 – -38.53 0.77 

I(x1^1.7 * x3^1.3/(x1 + 
x3 + 0.001)^3) 

-214.96 84.15 -2.56 0.01 -382.92 – -47.00 0.01 

I(x1^1 * x2^0.5 * x3^0.6) 168.42 81.81 2.06 0.04 5.12 – 331.72 0.04 
I(x1^0.7 * x3^1.3/(x1 + 
x3 + 0.001)^3) 

34.03 22.21 1.53 0.13 -10.31 – 78.37 0.13 
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Table A2. General blending mixing (GBM) inclusions, Akaike information criterion (AICc) scores and 
statistical information for estimations of biomass in surface fuels using all data from burnt and 
unburnt sites (A) in New South Wales (NSW), Victoria (VIC) and the Australian Capital Territory (ACT). 
The values represented are indicative of the best model chosen based on the number of inclusions. 
RSE = residual standard error (with degrees of freedom), R2 = R-squared value, Adj R2 = adjusted R- 
squared value, F = F statistic (with degrees of freedom), P = P-value. 

 

 
Variable GBM AICc RSE R2 Adj R2 F P 

NSWA 
 

GBM3,10 
 

987.05 
 

5.73 (145) 
 

0.79 
 

0.77 
 

58.93 (9, 145) 
 

<0.001 

VICA 
 

GBM3,10 

 
764.06 

 
2.83 (124) 

 
0.93 

 
0.93 

 
204.40 (8, 124) 

 
<0.001 

ACTA 
 

GBM3,10 

 
695.39 

 
5.78 (67) 

 
0.81 

 
0.79 

 
40.65 (7, 67) 

 
<0.001 
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Figure A1. Biomass response surfaces developed using data from News South Wales. (a, d) All data from burnt and unburnt sites, (b, e) data from burnt sites and 
(c, f) data from unburnt sites. Contours were modelled using a general blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum of 10 
terms included for each model. Panels (d), (e) and (f) represent the final biomass models generated, constrained to the limits presented in panels (a), (b) and (c). 
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Figure A2. Biomass response surfaces developed using data from Victoria. (a, d) All data from burnt and unburnt sites, (b, e) data from burnt sites and (c, f) data 
from unburnt sites. Contours were modelled using a general blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum of 10 terms included 
for each model. Panels (d), (e) and (f) represent the final biomass models generated, constrained to the limits presented in panels (a), (b) and (c). 
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Figure A3. Biomass response surfaces developed using data from the Australian Capital Territory. (a, d) All data from burnt and unburnt sites, (b, e) data from burnt 
sites and (c, f) data from unburnt sites. Contours were modelled using a general blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum 
of 10 terms included for each model. Panels (d), (e) and (f) represent the final biomass models generated, constrained to the limits presented in panels (a), (b) and 
(c). 
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Figure A4. Biomass response surfaces developed using 80% data from (a, d) News South Wales, (b, e) Victoria, and (c, f) the Australian Capital Territory. Contours 
were modelled using a general blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum of 10 terms included for each model. Panels 
(d), (e) and (f) represent the final biomass models generated, constrained to the limits presented in panels (a), (b) and (c). 
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80% models versus 20% model validation 

Table A3. Statistical information and model metrics generated from the linear regression models for biomass data from sites in New South Wales (NSW), Victoria 
(VIC) and the Australian Capital Territory (ACT). RSE = residual standard error (with degrees of freedom), Adj R2 = adjusted R2 value, F = F statistic (with degrees of 
freedom), P = P-value, MAE = mean absolute error. Linear R2 and zero R2 (forced zero intercept) are taken from linear equations of the same data. 

 

Variable RSE Adj R2 F P MAE Bias Linear R2 Zero R2 

NSWA 20% 5.24 (36) 0.36 22.16 (1, 36) <0.001 3.73 1.75 0.36 0.81 

VICA 20% 2.57 (31) 0.88 231.30 (1, 31) <0.001 1.99 0.78 0.88 0.95 

ACTA 20% 5.07 (17) 0.18 5.01 (1, 17) 0.04 5.11 0.06 0.18 0.16 

 
 

Figure A5. Linear regression plots for biomass of surface fuel showing the correlation between actual data and prediction generated from all data collected from 
(a) New South Wales (NSWA), (b) Victoria (VICA) and (c) the Australian Capital Territory (ACTA). Dashed yellow lines represent the prediction intervals, dashed dark 
blue lines represent the confidence intervals and the solid light blue line represents the regression line. 
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7.1.2 Carbon 
 
Original models 

 
TABLE A4. Statistical information for 80% carbon models developed using all data from burnt and 
unburnt sites (A) in New South Wales (NSW), Victoria (VIC) and the Australian Capital Territory (ACT). 
Model coefficients, model estimates, Std Err = standard error, T = T value, PR(>|T|) = P-value for the 
T-test as the proportion of T distribution at that degrees of freedom which is greater than the 
absolute value of the T statistic, 95% CI = 95% confidence interval, P = P-value. 

 

Coefficients Estimate Std Err T PR(>|T|) 95% CI P 
NSWA 
x1 0.19 0.85 0.22 0.82 -1.50 – 1.87 0.83 
x2 1.78 0.97 1.84 0.07 -0.13 – 3.69 0.07 

x3 37.07 8.10 4.58 1.01×10-5 21.06 – 53.08 0 

I(x1^0.7 * x2^2.1 * 
x3^2.5) 

7750.49 2231.56 3.47 0 3339.89 – 12161.08 0 

I(x2^1.7 * x3^2.3/(x2 + 
x3 + 0.001)^3) 

-334.77 75.50 -4.43 1.81×10-5 -483.99 – -185.55 0 

I(x1^0.6 * x3^3/(x1 + 
x3 + 0.001)) 

-171.36 42.75 -4.01 9.74×10-5 -255.86 – -86.87 0 

I(x1^0.6 * x2^2.1 * 
x3^2.3) 

-3397.83 1492.06 -2.28 0.02 -448.83 – -2.28 0.02 

VICA 

x1 8.09×10-2 3.72×10-1 0.22 0.83 -0.66 – 0.82 0.83 

x2 -1.86×10-1 7.14 -2.56 0.01 -32.40 – -4.12 0.01 

x3 3.19 7.44×10-1 4.28 3.61×10-5 1.71 – 4.66 0 

I(x1^0.5 * x2^3/(x1 + 
x2 + 0.001)^0) 

-1.15×10-2 1.40×10-1 -8.25 1.76×10-13 -142.77 – -87.55 0 

I(x1^0.5 * x2^1.7/(x1 + 
x2 + 0.001)^1.3) 

1.16×10-2 1.97×10-1 5.91 2.95×10-8 77.44 – 155.34 0 

I(x1^1 * x2^1.9 * 
x3^2.5) 

-1.55×10-3 3.62×10-2 -4.30 3.42×10-5 -2269.93 – -838.58 0 

ACTA 

x1 0.63 2.04 0.31 0.76 -3.44 – 4.71 0.76 

x2 -0.28 3.59 -0.08 0.94 -7.46 – 6.90 0.94 

x3 -11.58 8.30 -1.40 0.18 -28.15 – -4.99 0.17 

I(x1^0.5 * x3^3/(x1 + 
x3 + 0.001)^2.9) 

65.11 18.77 3.47 0 27.64 – 102.59 0 

I(x2^0.8 * x3^3/(x2 + 
x3 + 0.001)^1.3) 

1257.09 642.44 1.96 0.05 -25.58 – 2539.76 0.06 

I(x1^0.5 * x3^0.7/(x1 + 
x3 + 0.001)^1.5) 

4.49 5.18 0.87 0.39 -5.86 – 14.83 0.39 

I(x1^1.3 * x3^3/(x1 + 
x3 + 0.001)^1.0) 

-627.77 277.09 -2.27 0.02 -1181.00 – -74.56 0.03 

I(x2^0.8 * x3^2.9/(x2 + 
x3 + 0.001)^0.5) 

-1158.04 653.69 -1.77 0.08 -2463.17 – 147.093 0.08 
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TABLE A5 General blending mixing (GBM) inclusions, Akaike information criterion (AICc) scores and 
statistical information for estimations of carbon in surface fuels using all data from burnt and 
unburnt sites (A) in New South Wales (NSW), Victoria (VIC) and the Australian Capital Territory (ACT). 
The values represented are indicative of the best model chosen based on the number of inclusions. 
RSE = residual standard error (with degrees of freedom), R2 = R-squared value, Adj R2 = adjusted R- 
squared value, F = F statistic (with degrees of freedom), P = P-value. 

 

Variable GBM AICc RSE R2 Adj R2 F P 

NSWA GBM3,10 783.53 3.08 (145) 0.78 0.77 72.50 (7, 145) <0.001 

VICA GBM3,10 468.14 1.38 (126) 0.92 0.91 235.40 (6, 126) <0.001 

ACTA GBM3,10 368.96 2.69 (66) 0.84 0.82 41.79 (8, 66) <0.001 
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Figure A6. Carbon response surfaces developed using data from News South Wales. (a, d) All data from burnt and unburnt sites, (b, e) data from burnt sites and (c, 
f) data from unburnt sites. Contours were modelled using a general blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum of 10 terms 
included for each model. Panels (d), (e) and (f) represent the final biomass models generated, constrained to the limits presented in panels (a), (b) and (c). 
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Figure A7. Carbon response surfaces developed using data from Victoria. (a, d) All data from burnt and unburnt sites, (b, e) data from burnt sites and (c, f) data 
from unburnt sites. Contours were modelled using a general blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum of 10 terms included 
for each model. Panels (d), (e) and (f) represent the final biomass models generated, constrained to the limits presented in panels (a), (b) and (c). 
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Figure A8. Carbon response surfaces developed using data from the Australian Capital Territory. (a, d) All data from burnt and unburnt sites, (b, e) data from burnt 
sites and (c, f) data from unburnt sites. Contours were modelled using a general blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum 
of 10 terms included for each model. Panels (d), (e) and (f) represent the final biomass models generated, constrained to the limits presented in panels (a), (b) and 
(c). 
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Figure A9. Carbon response surfaces developed using 80% data from (a, d) News South Wales, (b, e) Victoria, and (c, f) the Australian Capital Territory. Contours 
were modelled using a general blending model (GBM; Brown et al., 2015) with a minimum of three and a maximum of 10 terms included for each model. Panels 
(d), (e) and (f) represent the final biomass models generated, constrained to the limits presented in panels (a), (b) and (c). 
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80% models versus 20% model validation 

 
Table A6. Statistical information and model metrics generated from the linear regression models for carbon data from sites in New South Wales (NSW), Victoria (VIC) 
and the Australian Capital Territory (ACT). RSE = residual standard error (with degrees of freedom), Adj R2 = adjusted R2 value, F = F statistic (with degrees of freedom), 
P = P-value, MAE = mean absolute error. Linear R2 and zero R2 (forced zero intercept) are taken from linear equations of the same data. 

 

Variable RSE Adj R2 F P MAE Bias Linear R2 Zero R2 
NSWA 20% 3.15 (36) 0.26 14 (1, 36) 0.001 2.33 0.33 0.26 0.75 
VICA 20% 1.57 (31) 0.80 125.6 (1, 31) 0.001 1.13 0.29 0.80 0.92 
ACTA 20% 3.88 (16) 0.17 4.37 (1, 16) 0.05 2.91 1.35 0.17 0.72 

 
 
 

Figure A10. Linear regression plots for carbon in surface fuel showing the correlation between actual data and prediction generated from all data collected from 
(a) New South Wales (NSWA), (b) Victoria (VICA) and (c) the Australian Capital Territory (ACTA). Dashed yellow lines represent the prediction intervals, dashed dark 
blue lines represent the confidence intervals and the solid light blue line represents the regression line. 
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7.2 MODEL VALIDATION FOR INDIVIDUAL STATES 

 
7.2.1 Biomass 

Table A7. Statistical information and model metrics generated from the mixed forest (MF) data and 80% biomass linear regression models for biomass data from sites 
in New South Wales (NSW), Victoria (VIC) and the Australian Capital Territory (ACT). RSE = residual standard error (with degrees of freedom), Adj R2 = adjusted R2 

value, F = F statistic (with degrees of freedom), P = P-value, MAE = mean absolute error. Linear R2 and zero R2 (forced zero intercept) are taken from linear equations 
of the same data. 

 

Variable RSE Adj R2 F P MAE Bias Linear R2 Zero R2 

NSWA vs MF 6.18 (55) 0 0.98 (1, 55) 0.33 5.50 0.34 0 0.77 

VICA vs MF 6.17 (55) 0 1.10 (1, 55) 0.30 6.22 -3.26 0 0.78 

ACTA vs MF 6.12 (55) 0.02 2.00 (1, 55) 0.16 6.36 2.14 0.02 0.66 

 

Figure A11. Linear regression plots for biomass of surface fuel showing the correlation between actual data and prediction generated from mixed forest data 
collected from (a) all sites, (b) burnt sites and (c) unburnt sites. Dashed yellow lines represent the prediction intervals, dashed dark blue lines represent the confidence 
intervals and the solid light blue line represents the regression line. 



51 

 

 

ESTIMATING CARBON STOCKS AND BIOMASS IN SURFACE FUEL LAYERS I REPORT NO. 586.2020 

 

7.2.2 Carbon 
 

Table A8. Statistical information and model metrics generated from the mixed forest (MF) data and 80% biomass linear regression models for carbon data from 
sites in New South Wales (NSW), Victoria (VIC) and the Australian Capital Territory (ACT). RSE = residual standard error (with degrees of freedom), Adj R2 = adjusted 
R2 value, F = F statistic (with degrees of freedom), P = P-value, MAE = mean absolute error. Linear R2 and zero R2 (forced zero intercept) are taken from linear 
equations of the same data. 

 

Variable RSE Adj R2 F P MAE Bias Linear R2 Zero R2 

NSWA vs MF 3.41 (54) 0 0.92 (1, 54) 0.34 3.20 0.35 0 0.73 

VICA vs MF 3.41 (54) 0 0.93 (1, 54) 0.34 3.93 2.61 0 0.45 

ACTA vs MF 3.34 (54) 0.04 3.24 (1, 54) 0.08 3.07 1.23 0.04 0.73 
 

Figure A12. Linear regression plots for carbon in surface fuel showing the correlation between actual data and prediction generated from mixed forest data 
collected from (a) all sites, (b) burnt sites and (c) unburnt sites. Dashed yellow lines represent the prediction intervals, dashed dark blue lines represent the confidence 
intervals and the solid light blue line represents the regression line. 
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UNDERSTANDING THE MODEL – A USERS GUIDE 
 
When using these models, it is important to notice the direction of the contours 
and their respective values. An example is shown below (left) using the all states, 
all sites (both burnt and unburnt data) biomass model. Contour values in these 
models correspond to a specific colour, a gradient of yellow (high values; e.g. 
blue diamond) through to red (low values; e.g. purple hexagon). When the 
yellow colour gradient has reached white in the middle, the colour scheme starts 
again at red. However, in these models, values less than 0 are removed and will 
show up as white (e.g. black triangle). There can be multiple contours in different 
locations with the same prediction values. In the example model, there are two 
blue squares located in two separate contours which both represent values 
between 1.0 to 1.5 t ha-1. Similarly, there can also be an entire ‘space’ dedicated 
to one prediction value (e.g. a green circle is in one contour that represents the 
values between 2.5 and 3.0 t ha1). 

 

These models use estimates of proportions of the components of surface fuel 
collected within a defined area, such as a litter ring. For example, a sample 
collected in this way may contain 35% leaves, 25% fine fuel fraction (<9 mm) and 
40% twigs and other components, such as bark and fruit. To calculate the 
respective carbon or biomass content of a sample of surface fuel, it is as simple 
as following the proportion percentages of each fraction in the mixture, until a 
middle point is reached. 

In the carbon example model from all states all sites (above right), the proportion 
of leaves is determined first (35% or 0.37), as indicated by arrow 1, drawn parallel 
to % fine fraction (bottom axis). The proportion of twigs and other fraction is found 
next (30% or 0.30), represented by arrow 2, parallel to % leaves axis. The third and 
final component, the fine fuel fraction as indicated by arrow 3, parallel to % twigs 
and other, is found (23% or 0.23), and intersects with arrows 1 and 2. 

Once the intersecting point has been reached, the contour that this point lies in 
represents the estimated amount of carbon or biomass content in tonnes per 
hectare. In this example, 35% leaves, 30% twigs and other and 35% fine fuel 
returns the estimate range of 9 to 10 t ha-1 of carbon in the surface fuel. The same 
method can be made to estimate total biomass of surface fuel and carbon 
loads prior to and after prescribed burns. 
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