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Abstract 

The quantification of Above Ground Biomass (AGB) plays a major role in issues 

related to greenhouse gas emissions and carbon sequestration, pertaining to global 

warming and the effects of climate change. In Eucalyptus miniata/tetrodonta 

dominated open-forest in Australia’s northern tropical savanna, AGB mapping is 

challenging, due to the complex structure of the canopy stand, highly dynamic woody 

cover, vast spatial extent, vulnerability to climatic effects and the impacts of extensive 

fire.  

Remotely sensed data allow for the mapping, quantification and monitoring of AGB 

at various scales. Quantification of AGB in tropical savanna by common medium and 

coarse spatial resolution optical sensor data is inappropriate to monitor finer-grained 

ecological processes responsible for measuring carbon stocks at an individual tree 

level and are limited in detecting vertical vegetation structure. There is limited research 

on the utility of airborne LiDAR (Light Detection and Ranging) and alternative high 

resolution (< 0.5 m) remote sensing tools for Australian savanna structural assessment. 

The main goal of this research is to evaluate the efficiency of small footprint airborne 

LiDAR and determine whether Unmanned Aerial Systems (UAS) and Very High 

Resolution (VHR) satellite stereo remote sensing data can be used to extract tree 

biophysical and vertical structural parameters for the purposes of accurately estimating 

biomass stocks in Australian mesic savannas.  

This study utilized a two-phase LiDAR analysis procedure integrating both Individual 

Tree Detection (ITC) and Area-Based Approaches (ABA) to better understand how 

the uncertainty of biomass estimation varies with scale. Regression analysis was 

applied on remote sensing data to develop biomass estimation models based on tree 

height allometry. This study demonstrated that where field-plot data are spatially 

limited, it is possible to use a hierarchical integration approach based on AGB 

uncertainty calculation and calibration to upscale AGB estimates from individual trees 

to broader landscapes. 

Although airborne LiDAR provided higher tree detection rates and accurate estimates 

of tree aboveground biomass, this research found that a 3D point cloud obtained from 

light-weight optical UAS imagery by an image dense matching technique is an 
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adequate low-cost alternative for the detection of dominant and co-dominant tree 

stands, at least at a local scale in Australian tropical savanna.  

This study offers some insight into factors causing the poor dense image matching by 

high-resolution stereo satellites. The structural complexity of Eucalypt crowns, 

represented by clumped-leaf-grain structure and erectophile foliage, are the main 

factors determining the efficiency of tree/canopy detection using stereo satellite 

imagery.  
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1.1 Introduction 

1.1.1 The ecological and land management requirements for spatially explicit 

forest information 

The spatial-temporal mapping of forests to assess their status and productivity 

is of increasing importance given their role in the global carbon cycle and the wide 

range of ecosystem services they can provide locally  (Franklin 2001; Rogers et al. 

2012). Sustainable management, monitoring and use of forest resources, be it for 

wood-based bioenergy, climate change mitigation, conservation, or maintenance of 

water quality, and biodiversity, will become increasingly important given climate 

change, population pressure and associated land use change (Becker et al. 2006; 

Newton 2007). Management of production forests is largely related to wood 

production, soil management, and water use (Gaston and Spicer 2013). However, 

natural forest/woodland ecosystems have a far broader range of required management 

outcomes. Over the last two decades, the magnitude and dynamics of forest carbon 

sequestration has become a key topic within the global change community. Forests 

cover 30% of the planet’s land area, and a critical component of tracking sequestration 

is the reliable mapping of tree biomass and the monitoring of cover and structural 

change over time (Koch 2010).  Biomass is a key component of global biochemical 

cycles, especially in the carbon cycle. Since about 50% of the forest biomass is carbon, 

forest biomass provides a good estimate of the carbon pools in forests (Köhl et al. 

2006). 
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Based on Australia’s international climate change agreement commitments, 

including the United Nations Framework Convention on Climate Change (Australia is 

a party to the UNFCCC which came into force from 21 March 1994) and the Montreal 

Process (Working Group on Criteria and Indicators for the Conservation and 

Sustainable Management of Temperate and Boreal Forests), Australia is required to 

provide progressively reliable, precise and quantitative data on vegetation structure, 

dynamics and condition over the entire continent (Richards and Brack 2004). This 

presents many research challenges given the breadth of information required, and 

especially with regard the current huge array of information sources. To manage 

forests sustainably, meet national and global reporting commitments, and provide 

input to climate change research, it is critical to develop efficient and cost-effective 

methodologies that will allow for precise quantification of vegetation biomass and 

dynamics (Bradshaw et al. 2013; Wood et al. 2006). In this matter, tools for mapping 

the extent of vegetation cover and structure are of central importance.  

Traditional practices for collecting vegetation biomass information are costly 

and time-consuming providing low spatial coverage, and, in most cases, require 

destructive fieldwork, which is impractical for large and remote areas. Remote sensing 

complements traditional field methods through data analysis which enables precise 

estimation of vegetation biomass and dynamics across high spatial coverage and 

different scales by avoiding destructive sampling and reducing time and cost from data 

acquisition to final output. The application of Remote Sensing (RS) and Geographic 

Information Systems (GIS) technologies to forest assessment is the focus of ongoing 

research, and the techniques continue to develop rapidly (Newton 2007).  
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1.1.2 Performance and challenge of remote sensing-based biomass estimation 

When remote sensing data are used to quantify vegetation biomass, the level 

of detail obtained depends mostly upon the spatial resolution of the used sensor, the 

electromagnetic spectrum within observations are recorded (spectral resolution), the 

sensitivity of the sensor’s detector to detected Electromagnetic Radiation (EMR) 

(radiometric resolution) and whether the sensor is active (emit their own energy) or 

passive (detect external EMR, e.g. optical sensors) (Newton 2007).  

Satellite-based earth observations offer methods for estimating biomass and 

carbon stocks, but at relatively coarse spatial scales only. Satellite sensors that produce 

two-dimensional images are insufficient to monitor finer-grained ecological processes 

responsible for the carbon stocks on an individual tree level and are limited in detecting 

three-dimensional spatial patterns of vegetation (Lu 2006). Consequently, the sensor 

scales of the most widely available optical satellite imagery, Landsat (Ground Sample 

Distance (GSD) 30 m) and MODIS (GSD 250 m), are not appropriate for direct 

measurements of carbon stocks (Asner et al. 2012a). Despite the fact that new Sentinel 

multispectral satellite sensors (GSD 10m) have great potential for long-term high-

frequency vegetation monitoring applications (Malenovský et al. 2012), this thesis 

aims at pointing out the use of the modern high-resolution (1 m resolution and better) 

remote sensing tools which allow the retrieval of the vertical structural characteristics 

of vegetation.  

In recent years, there has been increasing use of active sensors like Synthetic-

Aperture Radar (SAR) and airborne Laser scanning Light Detection and Ranging 

(LiDAR) systems to estimate various 3D characteristics of canopy and crown structure 

such as crown base height, Crown Fuel Weight (CFW), and Canopy Bulk Density 
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(CBD), based on height metrics and regression models (Popescu and Zhao 2008; 

Skowronski et al. 2011). Laser scanning, combined with up-to-date advanced data 

processing methods, has the potential to deliver very precise and reliable full 3D 

biomass structure information to estimate carbon storage. 

However, LiDAR data acquisition is still expensive, and not often readily 

available. As an alternative, stereo airborne and satellite imagery may also offer the 

ability to rapidly assess canopy height, in an accurate and repeatable manner  (Aguilar 

et al. 2014a). The development of high-performance Structure from Motion (SfM) 

(Ullman 1979) and image-matching techniques, e.g. Semi-Global Matching (SGM) 

(Hirschmuller 2008), allows for the generation of high-quality Digital Surface Models 

(DSM). By using high-performance image-matching and photogrammetry techniques, 

3D tree canopy information may be easily and automatically extracted from satellite 

and aerial images in stereo and multi-image mode depending upon complexity and 

density of vegetation (Baltsavias et al. 2008). Accuracy depends primarily on the 

image scale, image texture, imaging geometry, and compactness of the tree canopy. 

Nowadays, the adaptable stereo imaging capability of the newest civilian Very High 

Resolution (VHR) satellites (e.g. WorldView-2 or Pléiades) and their improved 

geometric resolution generate accurate CHMs by means of standard photogrammetric 

procedures (Aguilar et al. 2014a).  

Remote sensing tools and statistical algorithms, used for regional and global 

biomass estimates, are eventually depend on measurements of individual trees (Asner 

et al. 2012b; Saatchi et al. 2011). To develop robust biomass estimates, one key 

parameter for estimating tree biomass is tree height (due to allometric relationships 

developed between tree height, tree diameter and wood density), which can be 
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obtained from the CHM, derived from LiDAR and VHR optical imagery by means of 

photogrammetric processing of stereo-pairs or triplets. In this research, a methodology 

using these RS tools was modified from previous studies and applied to Australian 

tropical savanna, one the world’s most extensive and intact woodland ecosystems 

(Woinarski et al. 2007).  

Chave et al. (2005) reported that standard deviation of all divergences between 

observed and predicted stand biomass, across 27 tropic study sites included Australian 

tropical savanna, was within 11.8–15.6%. Thus, the major objective of this research is 

to investigate efficiency of RS tools for estimating biomass within threshold 15 % of 

plot mean AGB. In given thesis, the word “efficiency” means the evaluation of 

accuracy, reliability and effectiveness of RS tools and corresponding data. 

1.1.3 Description of Australian tropical savannas 

North Australian tropical savannas cover ~2,000,000 km2, occupying nearly 

one third of the Australian continent, accounting for approximately 12% of the world’s 

tropical savannas and 33% of terrestrial carbon (Williams et al. 2004). Australian 

tropical savannas are restricted to the tropical and subtropical zones of the Australian 

continent, from north-eastern Queensland across the Gulf of Carpentaria, the Top End 

of the Northern Territory (NT), and west to the Kimberley in Western Australia 

(Figure 1.1) (O'Donnell 2005). Australia’s tropical savanna habitats are relatively 

pristine, partly due to low population density (0.25 people km-2; Australian Bureau of 

Statistics (2017)) and lower levels of exploitation of natural resources (Williams et al. 

2005a). NT savannas are often remote; support unique flora and fauna, and vast areas 

are inaccessible.  



 

 
Figure 1.1: The extent of the tropical savannas in northern Australia illustrating the main vegetation groups (Fox et al. 2001). 
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The composition and structure of these savannas is largely determined by soil 

water availability, plant available nutrients and fire frequency (Williams et al. 1997). 

Above the 1000-mm rainfall isohyet, tropical ‘mesic’ savannas are dominated by 

Eucalyptus miniata and Eucalyptus tetrodonta open forests (Figure 1.2). These two 

species provide more than 70% of overstorey leaf area index and standing biomass 

(O'Grady et al. 2000), less than 30% canopy cover, and a stem height range from 10 

to 25m depending on soil type and depth. Eucalypts have extensive root systems, 

enabling them to use water from deep soil layers and maintain relatively high 

transpiration and photosynthetic rates during the dry season (O'Grady et al. 1999). The 

dry season, lasting from May to October, is a period of little or no rainfall. 

Temperatures and solar radiation remain high throughout the year and mean monthly 

temperatures throughout the year vary only slightly from annual means. 

 

Figure 1.2: Photograph of the tropical ‘mesic’ savanna, dominated by Eucalyptus spp. 
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Recent remote sensing and inverse model studies of carbon sources and sinks 

(Beringer et al. 2011; Collins et al. 2009; Cooke et al. 2009; Kanniah et al. 2011) have 

identified these heterogenous Australian tropical savannas as being highly dynamic in 

space and time in terms of woody cover change and carbon sequestration due to their 

vast spatial extent, high productivity, vulnerability to climatic effects (cyclones etc.), 

fires and insufficient fire management (Moore et al. 2015). This presents many 

research challenges given the breadth of information required, and especially with 

regard the quantification of vegetation above-ground biomass. Thus, to manage 

Australian savannas sustainably, meet national and global reporting commitments, and 

provide input to climate change research, it is critical to develop methodologies which 

will allow for precise quantification of savanna stocks and dynamics. 

There is limited data describing carbon stocks and their aboveground dynamics 

across northern tropical savannas in Australia. However, such information is crucial 

for developing comprehensive carbon sequestration and accounting strategies and for 

conserving tropical savannas (Kanniah et al. 2010). Despite these importances, tropical 

savannas are under studied compared to the other major biomes and there have been 

relatively few studies focusing on the savanna vegetation structural parameters and 

biomass estimation by using high-resolution remote sensing techniques.  

1.1.4 Fires in Australian savannas 

Fire is a key driver of savanna structure and dynamics in savanna across the 

globe, and an it particularly important in north Australia. In Australia, between 

300,000 km2 and 700,000 km2 are affected by fire annually (Maier and Russell-Smith 

2012a). Fire is frequent, particularly in the mesic savannas, where fire regimes are 
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dominated by grass fires rather than crown fires, and where fire seasons are determined 

by monsoonal weather patterns. Peak fire activity generally occurs during the mid to 

late dry and early wet season (August to December) (Meyer et al. 2012). Current fire 

regimes cause severe damage to the environment, have serious effects on biodiversity, 

ecology, and, at the same time, are substantial sources of greenhouse gas emissions 

(Russell-Smith et al. 2009). It is widely recognised that biomass burning is a globally 

significant driver of carbon CO2 cycling and an important source of greenhouse gases 

(van der Werf et al. 2010). As above ground biomass (AGB) is approximately 48% 

carbon, there is a clear need for techniques to efficiently and reliably quantify three-

dimensional (3D) AGB structure and biomass change related to changes in the 

frequency, timing and intensity of fires. As well, savanna fire management requires 

accurate, spatially precise and up-to date information on vegetation fuel distribution 

and vertical structure. 

Due to low population densities in significant parts of the Australian mainland, 

fire-affected areas typically occur in remote and inaccessible situations. In such cases, 

remote sensing has become an essential tool for fire management and applied research, 

especially in central Australian rangelands and the fire-prone tropical savannas of 

northern Australia. The availability of a robust approach for measuring carbon stocks 

in savanna vegetation could provide an opportunity to enhance landscape-scale fire 

management through carbon sequestration in living vegetation / biomass, in ‘savanna 

burning’ projects (Australia. 2018). This could greatly assist indigenous community 

groups, and other land managers (e.g. conservation and pastoral) in remote northern 

Australia to develop viable environmental service initiatives and support enhanced 

community resilience (Greiner R et al. 2012). 
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1.2 Thesis aims, objectives and research questions  

Section 1.1 identified the need for precise biomass quantification and dynamics by 

using high resolution remotely sensed data in Australian savannas. Airborne small 

footprint LiDAR has shown promise to date in being able to meet many of the 

requirements for accurate tree biophysical and vertical structural parameters 

extraction. However, there is limited research on the utility of LiDAR and alternative 

high resolution remote sensing tools for Australian savanna structural assessment. 

Therefore, the main goal of this research is to evaluate the efficiency of small footprint 

LiDAR and determine whether VHR optical remote sensing data (airborne and VHR 

stereo satellite imagery) can be used to extract tree biophysical and vertical structural 

parameters for the purposes of accurately estimating biomass (RMSE <15 % of plot 

mean AGB), and hence carbon stocks, in Australian mesic (>1,000 mm mean seasonal 

rainfall) savannas.  

To achieve this goal, the following research aims have been identified, each with 

a series of objectives. 

Aim 1: To evaluate how the uncertainty of Above-Ground Biomass (AGB) estimation 

varies at plot-level spatial scales by integrating both individual tree and area-based 

LiDAR methods. 

Objectives: 

I. To establish allometric relationships between field-derived individual tree 

AGB and LiDAR-derived crown area and tree height. 
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II. To test the individual tree delineation canopy maxima and watershed 

segmentation algorithms efficiency and quantify commission/omission errors. 

III. To integrate individual tree and area-based methods for savanna biomass and 

biomass uncertainty estimation. 

Aim 2: To assess the extent to which SfM three-dimensional (3D) point clouds—

obtained from consumer-grade light-weight and low-cost (< $2000) unmanned aerial 

systems (UAS) - can efficiently estimate tree structural parameters in order to quantify 

biomass in Australian tropical savannas, and be a feasible low-cost alternative to 

airborne LiDAR scanning for canopy parameter retrieval. 

Objectives: 

I. To analyse the influence of the spatial resolution of canopy height models on 

tree detection accuracy, by using the structure from motion (SfM) and image matching 

techniques for generating 3D point clouds from stereo imagery.  

II. To assess the applicability and accuracy of canopy maxima and watershed 

segmentation tree detection algorithms applied to SfM-based CHMs. 

Aim 3: To assess the accuracy of extrapolation, from local to broader scales, the 

canopy structural parameters information obtained from SfM three-dimensional (3D) 

point clouds by using stereo imagery from commercially available VHR satellites. 

Objectives: 

I. To evaluate and compare the completeness and vertical accuracy of extracted 

digital surface models (DSM) from pure along-track GeoEye1 (GE1) and WorldView2 

(WV2) VHR satellite stereo pairs. 
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II. To examine the influence of eucalypt canopy structure, imagery acquisition 

geometry and other related factors on SfM performance and canopy detection 

accuracy. 

Aim 4: To provide recommendations and a conceptual framework for estimating 

canopy structural parameters in open canopy Australian tropical savannas based on 

analysis and comparison of high resolution remote sensing data (LiDAR, airborne and 

VHR satellite imagery). 

Objective: 

I. To analyse the influence of image spatial resolution for individual tree crown 

and canopy identification in Australian savannas, by using image matching techniques 

applied on stereo imagery.  

1.3 The Study area 

This study will be undertaken in Litchfield National Park, 100 km south-west 

of Darwin, Northern Territory, between latitudes 130 08’ S and 130 14’ S and 

longitudes 1300 44’ E and 1300 51’ E,. Covering approximately 25 km2, the Litchfield 

Savanna Supersite (LSS) represents high rainfall tropical savanna, the dominant 

ecosystem type across northern Australia (TERN 2012). The rainfall is highly seasonal 

with most rain falling from October to April. During the fire season (May to 

September), the understorey progressively cures with increasing biomass 

flammability. The landscape is predominantly composed of savanna woodlands 

dominated by Eucalyptus and mixed perennial/annual grasses (Landsberg J et al. 2011) 

(Figure 1.2). 
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1.4 Outline of the thesis 

There are seven chapters in this thesis, composed of three peer-reviewed 

manuscripts, a general introduction (Chapters 1 and 2), a discussion of the findings of 

the research with recommendations and conclusions (Chapter 6). The three 

manuscripts have been published in international peer-reviewed journals. The 

manuscripts are organized into three separate chapters (3 to 5), each of which stands 

alone and addresses one or more research objectives. 

The current chapter, Chapter 1, presents a brief introduction to the central research 

questions of this thesis, provides descriptions of Australia’s savanna and their 

definition at the national level, and outlines the requirements for precise biomass 

quantification by using high resolution remotely sensed data in Australian savanna. 

Chapter 2 provides a review of high resolution remotely sensed tools and methods 

for precise biomass quantification and dynamics, vegetation structure, and the 

importance of scale and resolution.  

Chapter 3 is a peer reviewed publication entitled: Hierarchical integration of 

individual tree and area-based approaches for savanna biomass uncertainty 

estimation from airborne LiDAR published in Remote Sensing of Environment 

(Goldbergs et al. 2018a). The paper describes, in detail, the two-phase LiDAR 

procedure to integrate both individual tree detection (ITC) and area-based approaches 

(ABA), designed for above ground biomass and its uncertainty estimation in tropical 

savannas, facilitating regional savanna inventories, monitoring and mapping. 
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Chapter 4 is a peer reviewed publication entitled: Efficiency of Individual Tree 

Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in 

Australian Savannas published in Remote Sensing (Goldbergs et al. 2018b). The 

paper assesses the extent to which SfM three-dimensional (3D) point clouds obtained 

from consumer-grade light-weight and low-cost (< $2000) unmanned aerial systems 

(UAS) can efficiently and effectively detect individual trees, measure tree heights, and 

provide AGB estimates in Australian tropical savannas. 

Chapter 5 is a peer reviewed publication entitled: Limitations of high resolution 

satellite stereo imagery for estimating canopy height in Australian tropical savannas 

published in International Journal of Applied Earth Observations and 

Geoinformation (Goldbergs et al. 2019). The paper focuses on estimating canopy 

height by means of photogrammetric processing of stereo-pairs from commercially 

available VHR satellites, and analyses the factors influencing image-based CHM 

quality and completeness.  

Chapter 6 summarises the findings of this thesis and discusses the theoretical and 

practical implications of the research, limitations, and the future directions for savanna 

biomass estimation and vegetation vertical structure assessment by utilising high 

resolution remotely sensed data.  
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2.1 Methods for vegetation above-ground biomass estimation  

Total biomass includes both the above and below ground biomass. Living trees 

embody the major portion of the carbon pool represented by the aboveground biomass 

(AGB; i.e. stems, branches, twigs and foliage). Due to the difficulty of collecting field 

survey data of below ground biomass, most biomass studies have focused on AGB. In 

this thesis, if no additional information is provided, ‘biomass’ represents only AGB. 

A variety of methods are used to perform the estimation of biomass, from field-based 

measurements to remote sensing methods (Table 2.1). 

The most common technique for deriving woody biomass is through field-based 

destructive sampling and the calculation of allometric relationships among tree 

component volumes or weights. This tree-based allometry is a principal tool in carbon 

accounting and indirectly estimates the above- and/or below-ground biomass 

(Williams et al. 2005b). The conversion of stem Diameter of Breast Height (DBH) (1.3 

m above mean tree base) to tree biomass using allometric equations is a well- 

established practice (Chave et al. 2005; Montagu et al. 2005) and is the standard 

approach for studying woody biomass dynamics (Lasky et al. 2014; Paul et al. 2013; 

Preece et al. 2015). Destructive harvesting is time consuming and expensive, and in 

some cases, restricted access to certain species and tree sizes, limits the number of 

trees sampled. Remote sensing methods can offer a rapid and cost-effective alternative 

method for estimating the local AGB in forests (Lefsky et al. 2002; Lucas et al. 2008; 

Næsset and Økland 2002), and more consideration of such approaches is needed in 

tropical savannas (Asner et al. 2008).  

 



 

Table 2.1: Summary of main methods for above-ground biomass estimation (adapted from Lu et al. (2016)) 

Category Methods and tools Description Advantages Disadvantages 

Field based 

measurements 

methods 

Destructive sampling 

(harvest method) 

Individual tree and its parts 

cut, dried and weighed 

Most accurate and direct biomass 

estimation approach. Primary 

method for establishing allometric 

models 

Destroys trees; time consuming 

and labour-intensive; limited 

number of samples; limitations for 

cutting mature and heavy stems 

 Allometry Tree species with regression 

models between AGB and 

tree-canopy variables 

Accurate; non-destructive after 

allometry established; applied to 

any tree-canopy of corresponding 

species; can be applied to previous 

field measurements 

Site and species specific; in most 

cases needs the destructive 

sampling to establish relations 

Active sensor 

Remote sensing 

 

airborne LiDAR 

Provides own pulsed 

light energy to 

illuminate the object; 

LiDAR metrics based on 

statistical measures of point 

clouds or estimated products 

(individual trees, CHM, etc.) 

regressed against AGB 

Most accurate 3D object 

description; high sample density; 

able to penetrate trees/canopies; 

day-night operation  

High operating costs per area unit; 

Very large datasets that are 

difficult to interpret; does not 

penetrate cloud, absorbed by 

water 

 Radar (SAR) 

emits electromagnetic 

radiation at microwave 

frequencies 

Backscattering coefficients; 

creates an integrated regular 

grid of elevation samples  

Penetrates forest canopy, clouds 

and haze; more appropriate for 

large area coverage; day-night 

operation 

Less accurate than LiDAR; signal 

phase delay problem; limited 

spatial resolution 
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Table 2.1 continued 

Category Methods Description Advantages Disadvantages 

Passive (optical) 

sensor Remote 

sensing  

Imagery (mono) spectral 

and spatial feature 

analysis 

Vegetation tree-canopy cover 

extraction based on spectral 

bands, vegetation indices, 

pixel-based and object-based 

image segmentation and 

classification 

High diversity in image radiometry, 

spatial and temporal resolution, 

suitable for wide range of 

applications; flexibility in 

combination of spectral and spatial 

imagery features; 

Data only related to horizontal 

vegetation structure; dependence 

on weather conditions and sun 

parameters  

 Structure from Motion 
(SfM) and stereo image 
matching  

AGB estimate based on 

variables of generated image-

based dense 3D point clouds 

or estimated products 

(individual trees, CHM, etc.) 

Estimates vertical vegetation 

structure and parameters; High 

diversity in cover, spatial and 

temporal resolution (from UAS to 

satellite) 

No tree/canopy penetration; 

dependence on weather 

conditions and sun parameters; 

requires skilled data analyst 

Remote sensing Integration of optical 
and/or active sensor 
data 

Active sensor data combined 

with optical-sensor 

multispectral bands as extra 

variables 

Gain strength of both sensors to 

improve predictions of AGB; 

contains vertical and horizontal 

information of vegetation structure 

Increased acquisition and 

processing costs. More research 

needed to evaluate efficiency on 

sensor integration 
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Remote sensing uses two primary types of sensors – active and passive. Passive 

sensors detect external electromagnetic radiation (mostly sunlight) that is emitted or 

reflected by the observed object. Active sensors emit their own energy and measure 

the detection radiation that is reflected or backscattered from the target. Sensors of all 

types can be placed to different platforms: land based (mobile or fixed), Unmanned 

Aerial Systems (UAS), airborne and satellite. All platforms can be assisted by 

navigational systems, such as Global Positioning System (GPS) and an Inertial 

Measuring Unit (IMU) to perform an accurate geo-positioning of the sensor (Konecny 

2014). Satellite sensors acquire a large swath with high temporal recurrence, allowing 

sequential monitoring with less precise estimates. In their turn, terrestrial and airborne 

sensors provide data with highest 3D spatial resolution and accurate estimation of 

forest attributes for low coverage area. 

AGB can be measured only indirectly from remote sensing data, by using the 

correlations between biomass and tree or canopy variables, such as crown diameter or 

tree-canopy height (Lu 2006). An indicator with high predictive efficiency for biomass 

estimation is the tree height, which is highly correlated with wood volume (Koch 

2010). Each sensor platform provides data over different spatial scales and enables 

AGB estimates with different levels of uncertainty and errors (Popescu et al. 2013). 

The requirement for exact and spatially accurate data on the height and on the 

three-dimensional (3D) structure of vegetation has long been recognized in the fields 

of forestry and projects on carbon accounting (Hyyppä et al. 2008; Newton 2007). 

Different remote detecting methods have been produced to address these issues, 

producing different levels of achievement. In the past two decades, many researchers 

have reported that active sensors like LiDAR and SAR have a much greater potential 



25 
 

than passive sensors in retrieving data of 3D vegetation structure through vegetation 

penetration capability and interacting with all the vegetation stratum (Englhart et al. 

2011; Lu et al. 2016; Maltamo et al. 2014).  

The past decade has seen an increase in biomass studies and remote sensing 

applications in Australian tropical savannas (Table 2.2). Most studies in the field of 

biomass estimation have only focused on the retrieval of horizontal vegetation 

structure information, like crown/canopy and land cover classifications, and vegetation 

indices. However, most studies lack research on very high resolution active and 

passive sensors which could provide vertical structure information, e.g. estimation of 

canopy/tree heights or height metrics for biomass calculations. There are few studies 

relating to the application of LiDAR  (Lucas et al. 2008; Shendryk et al. 2016) and no 

previous study has investigated the use of stereo imagery for characterising Australian 

savanna vertical vegetation structure and estimation of plot-scale/individual tree AGB. 

Thus, this study assesses and investigates the usefulness of LiDAR, airborne and VHR 

satellite stereo imagery data for the purposes of accurately estimating biomass in 

Australian mesic savannas. 

 



 

Table 2.2: Examples of biomass studies and remote sensing applications in Australian tropical savannas 

Sensor Type Data 

spatial 

resolution 

Estimated parameters and applications  Data samples References 

Airborne Synthetic 

Aperture Radar 

(AirSAR) 

active 5m-10m AGB estimation based on sensor backscatter 

intensity (pixel-based) correlation with DBH/basal 

area 

0.0625 - 1ha 

plots 

(Collins et al. 2009) 

Airborne LIDAR; 

terrestrial LiDAR 

active 0.5-20 

pts/m2 

AGB estimation based on correlation with 

extracted individual tree heights and LiDAR point 

cloud height metrics 

0.0625 - 1ha 

plots 

(Lucas et al. 2008; 

Shendryk et al. 2016) 

Aerial photography passive 0.35-0.50 m AGB based on allometry from vegetation cover; 

supervised classification of orthophotos; mangrove 

canopy height from stereo imagery 

Individual tree 

and canopy 

level 

(Fensham and Fairfax 2003; 

Lucas et al. 2002; Mitchell 

et al. 2007) 

WorldView2 (WV2)  passive 0.5 PAN 

2 m MS 

Mangrove Canopy and tree top delineation from 

parameterized object-based and local maxima 

algorithms; Inverse Watershed Segmentation; 

regression with LAI; vegetation maps 

Individual tree 

and canopy 

level  

(Heenkenda et al. 2016; 

Heenkenda et al. 2015) 

(Whiteside and Bartolo 

2015) 

QuickBird passive 0.6 PAN 

2.4m MS 

parameterized object-based segmentation and 

local maxima (NDVI) tree crown delineation 

Dominant 

trees 

(Whiteside et al. 2011b; 

Whiteside et al. 2014) 
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Sensor Type Data 

spatial 

resolution 

Estimated parameters and applications  Data samples References 

Airborne Hyper-

spectral scanner 

(Specim AISA+) 

passive 0.5-2.5m Vegetation parameters; canopy parameters; 

spectral parameters such as vegetation indices, 

LAI, etc. 

Canopy level (Beringer et al. 2011) 

Advanced Very High-

Resolution Radiometer 

(AVHRR) 

passive 1.1 km Fire detection and mapping based on temperature 

from thermal bands; 

NDVI 

Pixel-based (Russell-Smith et al. 2003) 

ASTER passive 15 m Object-based (OB) image segmentation and land 

cover classification 

Pixel-based (Whiteside et al. 2011a) 

Landsat TM ETM+ passive 30 m Fire mapping (RED,NIR,sNIR bands) and fire 

severity mapping 

Pixel-based (Edwards et al. 2018; 

Goodwin and Collett 2014) 

MODIS passive 1 km NDVI; Gross primary productivity (GPP) along with 

Leaf Area Index (LAI), fraction of absorbed 

Photosynthetically Active Radiation (fPAR), light 

use efficiency (LUE) and meteorological variables;  

Pixel-based (Beringer et al. 2011; 

Kanniah et al. 2011; 

Kanniah et al. 2009) 

MODIS passive 250m, 

500m, 1 km 

Active fire detection and mapping based on 

temperature from thermal bands; 

Pixel-based (Edwards et al. 2013; Maier 

2010) 

 



28 
 

 

2.2 LiDAR remote sensing of vegetation 

Lidar (Light Detection and Ranging) is an active remote sensing technology, 

which emit and detect the reflected light energy to measure distance to the object. 

LiDAR captures the horizontal and vertical distribution of plant physiognomy at high 

spatial resolution in 3D dense point cloud form (Figure 2.1); the most appropriate data 

to estimate biomass by indirect allometry (Maltamo et al. 2014). Depend on used 

platform, LiDAR can be divided into Airborne Laser Scanner (ALS), Terrestrial Laser 

Scanner (TLS) and satellite-mount LiDAR. In contrast to the viewing perspective from 

above provided by satellite and airborne sensors, terrestrial LiDAR provides a clear 

view of the tree stem and can directly determines the Diameter at Breast Height 

(DBH). ALS can estimate biomass from local to regional scale and allows better 

understanding of the variation in forest structure and biophysical parameters at 

multiple spatial scales (Popescu and Hauglin 2014). In this thesis, if no additional 

information is provided, ‘LiDAR’ represents only airborne laser scanner. 

LiDAR processed data (primarily tree height) is increasingly being used as the 

basis for biomass estimation of whole woodland and their components (individual 

plants and their parts). Many studies utilising either small footprint (< 0.5 m radius) or 

large footprint (5 - 10 m) waveform airborne LiDAR have demonstrated an ability to 

recover structural elements such as tree and canopy height, canopy cover and volume 

at accuracies nearly equivalent to, and sometimes better than, through field survey  

(Gobakken and Næsset 2005; Lefsky et al. 1999; Riaño et al. 2003). Most existing RS 

techniques rely on developing allometric models between height metrics and field-

estimated forest biomass (Asner et al. 2013; Meyer et al. 2013). When measuring tree 
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heights using LiDAR data, several factors impact measurement accuracy, including: 

size and reflectivity of the tree, sampling density, LiDAR pulse diameter, and shape 

of the tree crown. 

 

Figure 2.1: LiDAR point cloud profile in study area dominated by Eucalypt tree 

species. 

According to the characteristics of the sensor and the accuracy requirements of the 

vegetation data to be extracted, two main approaches for deriving biomass information 

from LiDAR data have been applied so far: the area-based approach (ABA) (also 

known as the raster-based approach), based on statistical canopy height distributions; 

and the single tree approach, relying on individual tree detection (Barbati et al. 2009). 

In area-based estimation, canopy height data derived from LiDAR are calibrated 

against field measurements and then regressed against the 3D point cloud height 

distributions to predict the corrected standing volume or above ground biomass of the 

defined area (Corona and Fattorini 2008; Levick et al. 2016). Plot size and plot spatial 

arrangement, respectively, strongly influence the accuracy of AGB estimates obtained 
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from LiDAR by ABA (Gobakken and Næsset 2009). By contrast, the individual tree 

detection (ITC) approach is based on crown modelling of height data derived from 

LiDAR. Tree-level inventories are obtained from a sequence of steps that include 

individual tree detection (from a CHM) and delineation, and estimation of tree 

attributes. The individual tree heights and crown sizes derived from the LiDAR data 

are used in the allometric models for AGB estimation (Edson and Wing 2011; Popescu 

et al. 2003).  

The accuracy of AGB estimation depends on multiple factors including both tree-

level detection rates and tree structural parameter’ estimation errors. The frequency of 

systematic omission (missed trees) and commission (over-segmentation) errors is 

affected by the crown detection algorithm and the tree structure (Vauhkonen et al. 

2011). Same time in area-based approaches, the accuracy of predicted forest structure 

metrics decreases as the pulse density decreases (Jakubowski et al. 2013). Thus, 

undetected and false trees, errors in the allometric model predictions and forest 

structure metrics degrade the final accuracy of stand- and plot-level AGB estimates 

(Korpela et al. 2007). 

Promising results for estimating biomass of tropical forests and savannas have 

been reported (Asner and Mascaro 2014; Chen et al. 2015; Colgan et al. 2012; Silva et 

al. 2014) Using discrete-return LIDAR data (6.4 pts m-2), Colgan et al. (2013) was able 

to reach biomass estimation accuracy 14 – 22% of plot mass in South Africa savannas. 

Asner et al. (2008) found that for plot-level estimates of aboveground biomass the 

Mean Canopy Height (MCH) and Quadratic Mean Canopy Height (QMCH) LiDAR 

metrics were the best for Hawaii tropical forests. Hernández-Stefanoni et al. (2014) 

showed that increasing plot size, rather than total sample area, improves height-based 
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LiDAR-derived biomass estimations. Based on LiDAR metrics, Réjou-Méchain et al. 

(2015) provided accurate tropical forest AGB estimation with error of 14% at a 1-ha 

plot-level resolution and of 23% at a 0.25-ha resolution. Silva et al. (2014) predicted 

AGB stocks in fast growing Eucalyptus plantations in Brazil with similar accuracy 

~14% (7.70 Mg ha-1) of plot biomass, by ABA approach. 

In Australia, both airborne and ground-based LiDAR surveying of ecosystems has 

been gaining traction over the last decade (Miura and Jones 2010; Shendryk et al. 

2016; Tickle et al. 2006; Turner 2006). Lucas et al. (2008), by using area-based 

approach, shown strong correlation (r2 = 0.90, RMSE = 11.8 Mg ha-1,) between field 

AGB and the Jackknife estimates from LiDAR, in Queensland mixed species forests. 

Ediriweera et al. (2014) investigated the efficacy of merging LiDAR and Landsat5 TM 

methods to predict and improve plot-scale AGB estimates in subtropical rainforest and 

eucalypt-dominated forest in north-eastern Australia with AGB relative estimation 

accuracy 12 – 18% of plot AGB.   

Estimation of AGB by LiDAR has been mostly restricted due to the recognition 

that a considerable amount of field data are required to verify and calibrate the 

relationship between laser-derived height metrics and forest characteristics by the 

ABA  (Yu et al. 2010). The level of field-based data required cannot be easily justified 

or realized in the low populated and remote vast Australian mainland savannas. 

However, the individual tree-based LiDAR methods using laser densities of  > 5 pts 

m-2 can provide the data needed for the ABA at much lower cost, and provided that 

the data can be adequately calibrated against a stratified sample from ground-based 

assessments in the field (Vastaranta et al. 2012).  
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Similarly, tree-canopy detection efficiency is strongly affected by forest 

conditions, particularly vegetation structure and species, stem density, canopy cover 

and pattern. Thus, the common LiDAR procedures and regression models cannot be 

simply transferred from one site to another without calibration, refinement and 

verification of the procedures. The efficient way to reduce or prevent the systematic 

errors and overcome extensive field work is the combination of ABA and ITC 

approaches (Lindberg et al. 2010; Vastaranta et al. 2012) 

Chapter 3 offers some important insights into LiDAR procedures to integrate both 

individual tree detection (ITC) and area-based approaches (ABA), designed for above 

ground biomass and its uncertainty estimation in tropical savanna. 

 

2.3 Estimating canopy structural parameters from stereo imagery. 

A significant obstruction to the operational implementation of LiDAR for 

woodland evaluation is the high cost of data acquisition, coverage (areal extent) and 

temporal resolution limitations (in comparison with satellite sensors), storage and 

processing software requirements (Asner et al. 2012a). The major initial cost 

component of data acquisition is aircraft deployment, especially if standby costs are 

included. Data storage costs these days are generally minimal compared to the overall 

project value; however software development (time and staff) and hardware costs are 

usually internalised within the organisations (Lee 2008). In contrast with airborne 

remote sensing, satellite datasets have the following advantages: relatively high and 

regular temporal resolution; greater areal extent (large areas are covered by one 

satellite scene) and lower data acquisition costs. As an alternative, optical-based sensor 
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aerial and satellite stereo imagery may also offer the ability to rapidly assess canopy 

height, in an accurate and repeatable manner (Aguilar et al. 2014b).  

Stereo photogrammetry measures the three-dimensional position of a point relative 

to a reference datum from two different perspectives (images) (Pulfrich 1922). 

Repetition of this procedure for the various points, describing the object and its 

surface, results in an image-based 3D point cloud that can be used to generate a Digital 

Surface Model (DSM). Recent developments in technology  have allowed the 

processing of a large amount of imaging data using the techniques known as Structure-

from-Motion (SfM) (Ullman 1979) and Multi-View Stereopsis (MVS) by matching 

corresponding image features occurring in a series of overlapping photographs. 

Particularly, the introduction of Semi-Global image Matching (SGM) technique has 

been key in using optical cameras as a stand-alone solution for dense DSM production 

(Hirschmuller 2008).  

The use of stereo photogrammetry in forestry was originally focused on the 

construction of two cartographic products: Digital Terrain Models (DTMs) and Digital 

Surface Models (DSMs), which are used to describe the underlying terrain and top of 

canopy surfaces respectively. These products are used to generate canopy height 

models (CHM) that subsequently provide accurate estimates of important vegetation 

parameters such as canopy heights, stand volume, and the vertical structure of the 

vegetation canopy. The estimation of canopy heights is performed by the subtraction 

of bare ground values (DTM) from the canopy layer (DSM). An accurate estimation 

of a CHM relies heavily on a good approximation of the ground surface underneath 

(Fatoyinbo 2012). The extraction of 3D information from VHR satellite sensor 

imagery is the subject of a large photogrammetric investigation undertaken for the last 
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decade, and mainly conducted in comparing CHM accuracies from different VHR 

sensors and evaluating different image matching algorithms (Aguilar et al. 2014b). 

While technological innovations such as Simultaneous Localization and Mapping 

(SLAM) and deep MVS (Huang et al. 2018; Saputra et al. 2018) can improve image 

matching capacity, issues related to sun elevation angle (e.g. shadows) and sun-to-

image geometry remain key factors in any optical image product that is acquired and 

used for point cloud and DSM generation (White et al. 2013). For vegetation 

applications, photogrammetric image matching, except terrestrial-based imagery, 

extracts the 3D points only for the upper canopy surface and is incapable of providing 

sub-canopy structure information (Baltsavias et al. 2008). This is the main difference, 

and limitation, when comparing image-based and LiDAR point clouds. In addition, 

the DSMs generated from LiDAR have better vertical accuracy than the DSMs 

generated by image matching due to direct acquisition of 3D coordinates (Baltsavias 

1999b). While VHR satellite imagery provides a greater Area of Interest (AOI) than 

LiDAR, the imagery is compromised by lower data resolution, affecting final product 

accuracy.  

There is a need then to explore methods that can reduce the requirement for 

detailed manual field inventory data acquisition. Unmanned aerial systems (UAS), 

referred to as ‘‘drones’’, have successfully introduced a smaller, cheaper-to-operate 

platform concept, with demonstrated capability for collecting spatially dense, accurate, 

and repeatable measurements for vegetation inventory applications on demand, by 

using SfM and image matching techniques (Colomina and Molina 2014; Tomaštík et 

al. 2017). Once UAS technology has proven to be sufficiently accurate and reliable, it 

can replace or complement manual data acquisition from field inventories.  



35 
 

Chapters 4 and 5 describe the procedures, methods, analyses, factors and principal 

issues used in the photogrammetric processing of stereo-pairs from commercially 

available VHR satellites and UAS imagery in Australian tropical savannas. 

 

2.4 Spatial resolution of remote sensing data and scale factor  

Australian savannas are heterogenous and highly dynamic in terms of woody cover 

change and carbon sequestration due to their vast spatial extent, high productivity, 

vulnerability to climatic effects and fires. To deal with research challenges and to 

guarantee the effective use of remotely sensed data required for assessing savanna 

landscapes, it is necessary to keep an understanding of scale as a fundamental concept 

(Figure 2.2). The scale determines the quality and type of information that can be 

extracted from data (Wulder 1998). Individual trees (herein defined, following the 

Australian Soil and Land Survey Field Handbook (2009), as a woody plant more than 

2 m tall with a single stem or branches well above the base), can be considered as one 

principal unit of measurement and estimation; a primary scale. However, due to cost, 

effort, processing and storage issues, VHR data cannot cover the full area of interest 

(e.g. NT mesic savannas). Until now, most commonly used geo-data have spatial 

resolutions extending from 10 m to ~ 1 km. However, the information that can be 

extracted from these data is generally more useful for landscape-scale assessments, as 

individual trees cannot usually be discerned. 
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Figure 2.2: Relationships between different land mapping scales and remote sensing 

data. 

 

The scale determines the amount of information that can be derived from the 

sensors and is critical to effective use of remotely sensed data for forestry applications 

(Hay et al. 2005). Each source of remote sensing data is provided with different 

acquisition parameters: spatial resolution (pixel size or pts m-2), radiometric resolution 

(sensitivity to EMR), spectral resolution (EMR spectrum range), level of attribute 

detail, accuracy (spatial and attribute) and temporal resolution (Lee 2008). There is a 

direct relationship between the coverage of the area of interest on the ground and the 

image (pixel) spatial resolution (Table 2.3). Spatial resolution defines the level of 

spatial detail depicted in an image. It defines the smallest feature that can be resolved 

by the instrument and, in this sense, is directly related to ground sample distance 

(GSD).  Determining the optimum image spatial resolution could be critical for 

individual tree crown and canopy identification in Australian savannas. This 

requirement forms the basis of the research question that is addressed in this research.  



 

 

 

Table 2.3: Most common RS tools with potential (grey filled boxes) to provide information of vegetation structure and inventory parameters for 

biomass estimation studies, including the measurable tree-canopy parameters. The spatial resolution and coverage data are given in categorical 

scale. 

Sensors 
Spatial 

resolution 

Coverage Tree 
component: 
stem, branch 

Tree crown height Canopy 
height 
metrics 

CHM 

Ind. Tree 
crown 

Canopy 
NDVI 

km2/hr Midstory Overstory Delineation 

Active 
          

Terrestrial LiDAR < 0.05 m < 1         

Airborne LiDAR < 1m < 300         

RADAR sat. sensors 2.5 - 10 m > 8000         

Passive   
        

UAS imagery < 10 cm < 1 
        

Airborne imagery 5 - 50 cm < 300 
        

VHR satellite 
imagery 

0.4 - 2.5 m > 20000 
  

stereo only  stereo only 
   

Hyperspectral 
satellite imagery 

1 - 5 m > 20000 
        

Sentinel, LandSAT, 
SPOT, Aster 

10 - 30 m 
Full, 

5,16 days         

MODIS, AVHRR 250 -1100 m Full, Daily         
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To better ascertain the predictability of vegetation structure, it is necessary to 

provide an ability to discern broad-scale patterns and processes, and relate these to 

finer scales (Hay et al. 2001; Staver 2018). Consequently, and as a compromise, there 

is a need to make use of coarser scale remote sensing data to provide a representation 

of the landscape, but to use finer spatial resolution data to provide critical calibration 

and validation data, algorithms, data processing methodology and perspectives. 

Precisely exchanging data between scales is essential, as many environmental and 

resource management problems can only be dealt with effectively at broad scales (Wu 

and Qi 2000). This thesis therefore set out to use high spatial remote sensing data 

(Lidar and high-resolution stereo imagery) to derive precise and reliable models 

providing information to extrapolate biomass estimates from fine scale to broader 

landscapes. 
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3.0 Abstract 

Understanding the role that the vast north Australian savannas play in the 

continental carbon cycle requires reliable quantification of their carbon stock at 

landscape and regional scales. LiDAR remote sensing has proven efficient and 

accurate for the fine-scale estimation of above-ground tree biomass (AGB) and carbon 

stocks in many ecosystems, but tropical savanna remain under studied. We utilized a 

two-phase LiDAR analysis procedure which integrates both individual tree detection 

(ITC) and area-based approaches (ABA) to better understand how the uncertainty of 

biomass estimation varies with scale. We used estimations from individual tree LiDAR 

measurements as training/reference data, and then applied these data to develop 

allometric equations related to LIDAR metrics. We found that LiDAR individual tree 

heights were strongly correlated with field-estimated AGB (R2=0.754, RMSE = 90 

kg), and that 63% of individual trees crowns (ITC) could be accurately delineated with 

a canopy maxima approach. Area-based biomass estimation (ABA), which 

incorporated errors from the ITC steps, identified the quadratic mean of canopy height 

(QMCH) as the best single independent variable for different plot sample sizes (e.g. 

for 4 ha plots: R2=0.86, RMSE = 3.4 Mg ha-1; and 1 ha plots: R2=0.83, RMSE = 4.0 

Mg ha-1). Our results show how ITC and ABA approached can be integrated to 

understand how biomass uncertainty varies with scale across broad landscapes. 

Understanding these scaling relationships is critical for operationalizing regional 

savanna inventories, monitoring and mapping. 
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3.1 Introduction  

The savanna biome approaches 20% of total land cover and accounts for 

approximately 25% of total gross primary production (GPP), making them a globally 

important carbon sink (Saugier et al. 2001) and an important resource for carbon 

sequestration (Beringer et al. 2011; Lehmann et al. 2014). Despite increased interest 

in terrestrial carbon dynamics following implementation of the Kyoto Protocol, the 

distribution of terrestrial carbon stocks and flows in savanna ecosystems remains 

uncertain (Beringer et al. 2011; Grace et al. 2006). Australia’s tropical savannas cover 

1.9 million km2, accounting for approximately 12% of the world’s tropical savannas 

(Beringer et al. 2015), and it is estimated that they store 33% of Australia’s terrestrial 

carbon (Williams et al. 2004). To fully understand the role that these extensive 

savannas play in the global carbon cycle it is necessary to refine carbon stock estimates 

at landscape and regional scales (Collins et al. 2009). 

Current estimates of carbon stocks in Australian tropical savannas rely heavily 

upon field-based measures of woody vegetation structure which are used to calculated 

biomass through allometric equations derived from destructively sampled trees (Table 

3.1). The extensive field measurements (species, DBH, height etc.) required for 

periodic biomass monitoring is time consuming and expensive. Remote sensing 

methods offer a rapid and cost-effective alternative method of estimating the local 

above-ground biomass (AGB) in many ecosystems (Lefsky et al. 2002; Lucas et al. 

2008; Næsset and Økland 2002), and greater exploration of such approaches and their 

uncertainty is needed in tropical savannas (Asner and Mascaro 2014). Advances in 

airborne/satellite multispectral imagery (passive optical sensors), LiDAR (light 
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detection and ranging) and radar technologies (active sensors) are rapidly facilitating 

the uptake of remote sensing in AGB mapping. 
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Table 3.1: Examples of woodland biomass studies - Biomass estimation allometry by destructive sampling in Australian tropical savannas 

 
Authors Location Species Best allometric equations Results, Notes 

Williams et al. 
(2005b) 

NT,QSL,NSW 
Australia 

12 Eucalyptus species, plus 
Terminalia ferdinandiana and 
Erythrophleum chlorost. 
 

ln(AGB)=ln(D)+(ln(H))2 
ln(AGB) = a +b * ln(D) 

General allometric relationship across 14 woodland 
species, from different regions of northern Australia. DBH 
alone accounts for > 97% of the AGB variation. 

O'Grady et al. 
(2000) 

Tropical 
savanna NT, 
Australia 

Eucalyptus miniata, E. bleeseri, E. 
tetrodonta, E. porrecta, 
Terminalia ferdinandiana, 
Erythrophleum chlorostachys. 
 

AGB comp.= a * (DBH)b 
AGB total = a * (DBH)b 
 

Eucalyptus miniata R2=0.91 (total AGB) 
Eucalyptus tetrodonta R2=0.96 (total AGB) 
Trees community R2=0.95 (total AGB) 

Werner and 
Murphy (2001) 

Kakadu National 
Park NT, 
Australia 

Eucalyptus miniata,  Eucalyptus 
tetrodonta, Eucalyptus papuana 

AGB = a * (DBH)b 
 

Eucalyptus miniata R2=0.99 (total AGB) 
Eucalyptus tetrodonta R2=0.97 (total AGB) 
 

     
Chen (2002) Tropical 

savanna NT, 
Australia 

Eucalyptus miniata, E. bleeseri, E. 
tetrodonta, E. porrecta, 
Terminalia ferdinandiana, 
Erythrophleum chlorostachys. 

AGB = a * (DBH)b 
AGB = a * (DBH2  * H)b 
AGB = a * (H)b 
 

Trees community R2=0.95 (total AGB by DBH alone) 
Trees community R2=0.97 (total AGB by DBH+H) 
Trees community R2=0.73 (total AGB by H alone) 
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In Australia, several successful studies investigating the combination 

airborne/satellite active and passive sensors data have explored biomass estimation in 

savannas. Lucas et al. (2008) illustrated the integration of LiDAR and Compact 

Airborne Spectrographic Imager (CASI) hyperspectral data for estimating AGB and 

component biomass at the individual tree or tree cluster level. Ediriweera et al. (2014) 

showed the efficacy of merging LiDAR and Landsat 5 TM methods to predict and 

improve plot-scale AGB estimates in subtropical rainforest and eucalypt-dominated 

forest in topographically complex landscapes in north-eastern Australia. Tickle et al. 

(2006) have shown that large-scale aerial photography and LiDAR can provide more 

comprehensive and precise estimates of stand level floristics and structure (e.g., 

canopy cover) compared to field measurements alone. Collins et al. (2009) 

investigated the use of polarimetric AirSAR (TopSAR) radar backscatter intensity for 

estimating biomass and carbon storage of Eucalyptus miniata and E.tetrodonta 

dominated open savanna in the Northern Territory, Australia. Optical sensors (except 

stereo imagery) are typically unable to detect stand characteristics (e.g. tree heights, 

DBH)  that can be directly correlated to vegetation biomass (Harrell et al. 1997), and 

atmospheric interference from clouds and smoke haze limit their utility in tropical 

regions (Stibig et al. 2003). For these reasons, tree height and crown shape properties 

are most reliably obtained from active sensors, while species/stand health information 

may be better inferred from imagery, providing synergic capabilities for reliable data 

output (Valbuena et al. 2011).  

Globally, airborne LiDAR sensing has proven to be efficient and accurate for 

the fine-scale estimation of above-ground tree biomass by indirect allometry 

(primarily tree height) (Maltamo et al. 2014). In Australia, airborne LiDAR surveying 

of ecosystems has increased over the last decade (Kandel et al. 2011; Lee and Lucas 
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2007; Miura and Jones 2010; Rombouts et al. 2010; Shendryk et al. 2016). However, 

the applications of LiDAR have not been fully tested for tropical savannas, and 

biomass uncertainty needs further attention. Depending on the sensor used and the 

accuracy required, two main approaches for deriving tree biomass information from 

LiDAR data have been applied to date: (1) the area-based approach - ABA (also known 

as the raster-based approach), based on statistical canopy property distributions; and 

(2) the single-tree approach (individual tree crown – ITC), relying on individual tree 

detection (ITC) (Barbati et al. 2009). 

The ABA with low-point-density data (~ 1 pulse/m2) is more efficient and cost-

effective for both computation and laser data acquisitions (Jakubowski et al. 2013). 

Also, the calculation of cloud metrics is faster and technically easier compared to 

individual tree detection methods, which need more skilled and experienced operators. 

The ABA has become the most used method for biomass estimation in remote 

temperate forests and in ecosystems dominated by deciduous tree species. However, 

considerable field data are required to calibrate the relationship between laser-derived 

height metrics and tree characteristics (Yu et al. 2010). Chave et al. (2004) 

demonstrated that a minimum area of 5 ha of tropical forest is necessary to estimate 

the landscape-scale AGB by LiDAR metrics to within 10% of the ground-based 

estimates, and at least 100 weighted trees should be used for allometric equation 

creation. The individual tree-based LiDAR methods using high laser pulse densities of 

>5 pulses/m2 can reduce amount of expensive fieldwork that is needed for the area-

based approach, and provided that the data can be adequately calibrated against a 

stratified sample from ground-based assessments in the field (Ferraz et al. 2016a; 

Vastaranta et al. 2012).  
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The degree to which individual trees and their crowns are successfully detected 

is the efficiency criterion of ITC. The frequency of systematic omission (missed trees) 

and commission (over-segmentation) errors is affected by the crown detection 

algorithm and the tree structure (Vauhkonen et al. 2011). The efficient way to reduce 

or prevent the systematic errors and overcome extensive field work is the combination 

of ABA and ITC approaches (Lindberg et al. 2010; Maltamo et al. 2004; Vastaranta et 

al. 2012) and semi-ITC approach based on determining how many trees an extracted 

segment/cluster contains and use regression models to estimate the parameters of the 

associated trees (Breidenbach et al. 2010; Ferraz et al. 2016b; Kandare et al. 2016). 

In this study, we integrate both individual tree and area-based LiDAR methods 

for estimating the AGB of tropical savanna in northern Australia, with the goal of 

understanding how uncertainty of estimates varies with spatial scale. We use 

estimations from individual tree LiDAR measurements as training/reference data for 

the area-based LiDAR approach estimators. To achieve this goal, we: (1) establish 

allometric relationships between field-derived individual tree AGB and LiDAR-

derived crown area and tree height; (2) classify individual trees crown and quantify 

commission/omission errors; (3) integrate individual tree and area-based methods for 

savanna biomass and biomass uncertainty estimation; and (4) evaluate uncertainty in 

savanna biomass estimates at different plot scales. 
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3.2 Methods 

3.2.1 Study area and existing field data 

This study was undertaken in Litchfield National Park (13° 08’ S - 13° 14’ S, 

130° 44’ E and 130° 51’ E), 100 km south-west of Darwin, in the Northern Territory, 

Australia. The Litchfield National Park Savanna Supersite (LSS; 12 km2 with mean 

AGB 29.3 Mg ha-1) is typical of high rainfall tropical savanna across north Australia 

(TERN 2012). Savanna distribution in the Northern Territory is determined by the 

seasonality of climate with most rain falling from November to March; mean annual 

rainfall is approximately 1600 mm. Compared to South America and Africa, 

Australian savannas have little topographic relief and are relatively intact (Beringer et 

al. 2011), due to low human population distribution and minimal infrastructure. Within 

the LSS the terrain elevation varies from 210 to 220 m, mean annual maximum 

temperature is 33°C. The savanna woodland vegetation is dominated by Eucalyptus 

spp. and mixed perennial/annual grasses (Landsberg et al. 2011). Above the 1200 mm 

isohyet, savannas are dominated by Eucalyptus miniata and E. tetrodonta  open forest 

with a grass understorey (O'Grady et al. 2000).  

Field data were previously collected from a 100 × 100 m (1 ha) plot in 2013. 

The corners of the plot were established with differential GPS. Then, the plot was 

divided into 25 subplots (20x20 m) and every tree with a height > 1.5 m and DBH > 2 

cm was measured. The DBH, tree height (Suunto PM-5/360PC clinometer), and tree 

species were recorded in the inventory (Table 3.2).  
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AGB was estimated using previously fitted species-specific allometric models 

with tree DBH as independent variable based on the power model (Chen 2002; 

O'Grady et al. 2000; Werner and Murphy 2001; Williams et al. 2005b): 

AGB = a*DBHb            (3.1) 

For other tree species, for which there was no existing biomass equation, the 

AGB was estimated from the general equation used in the Northern Territory, 

Queensland and New South Wales (Williams et al. 2005b) (Table 3.2). 

The two dominant tree species Eucalyptus miniata (82.3%) and E. tetrodonta 

(15.6%) contributed 98% of plot live biomass (Table 3.2). The combined living AGB 

of the entire 1 ha field plot was estimated to be 26.1 Mg ha-1. The dominant and co-

dominant trees in the field plot with a height > 10 m (79 of 239 trees) comprised 85% 

of the living AGB.  

 



 

 

 

 

Table 3.2: Summary of field inventory of 1 ha sample plot and reference AGB estimates  

Tree species 

No. 

Trees 

No. 
Trees 

% 

Max 
height 

(m) 

Mean 
height 

(m) 

Max 
DBH 
(cm) 

Total 
AGB (Kg) 

Total 
AGB 

% 

Allometry 
used 

Allometry equations 

Eucalyptus miniata 179 74.9 22.5 10.47 40.0 21485.0 82.32 Chen (2002) AGB=0.0932*(DBH2.5064) 

Eucalyptus tetrodonta 21 8.8 19 8.5 40.0 4060.6 15.56 Chen (2002) AGB=0.0782*(DBH2.6815) 

Livistona humilis 12 5.0 6.5 3.7 13.0 148.6 0.57 Chen (2002) AGB=0.03*(DBH2 * H)1.0575 

Grevillea pteridifolia 14 5.9 5.5 3.7 9.8 91.0 0.35 

Williams et 
al. (2005b) 

ln(AGB)= 
 -2.0596+2.1561*Ln(DBH)+0.1362*Ln(H)2 

Corymbia latifolia 6 2.5 8.5 6.2 17.5 237.9 0.91 

Pandanus_spiralis 1 0.4 6 6 15.0 67.8 0.26 

Other species 6 2.5 3.2 2.6 4.5 9.6 0.04 
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3.2.2 Airborne LiDAR surveying and canopy height model generation 

Airborne LiDAR data were acquired for the 12 km2 study area by Airborne 

Research Australia (ARA) in June 2013. A Riegl LMS-Q560 full waveform time-of-

flight LiDAR sensor operating at 240 kHz, average flying height 300 m AGL, swath 

width ~300 m, strip spacing 125 m., and flying speed ~ 40 m/s was used. The data 

were decomposed into discrete returns (20 cm footprint) to obtain an average point 

density of 15 returns m-2 (Fig. 3.1).  All further point-cloud processing tasks (e.g. 

points classification, canopy height models (CHMs) creation) were performed with the 

LAStools software modules (rapidlasso GmbH2014). 

        

 

 

Figure 3.1: CHM (0.5m) and LiDAR point cloud profile (west to east) of 1ha reference 

plot dominated by Eucalyptus tree species. 
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3.2.3 Individual tree biomass estimation from airborne LiDAR  

The local maxima approach was used to detect individual trees from the 

LiDAR point cloud. Local maxima were determined from the raster canopy height 

model (CHM), which was interpolated from the dense point data using the 

‘CanopyMaxima’ routine in Fusion (McGaughey 2015).  The local maxima approach 

uses an appropriately sized circular search window for identifying individual canopy 

peaks, rather than a crown delineation. If the search window size is too small, a higher 

number of false peaks will be detected (errors of commission or false positives); if too 

large, a greater number of true peaks will be missed (errors of omission or false 

negatives) (Popescu et al. 2002). The default search window diameter used in Fusion 

is based on conifer species in temperate forests, so we modified the search radius to 

use the height-crown diameter relationship more appropriate for our region. To obtain 

a relationship between the height of eucalypt trees and their crown size, 372 trees 

across the study site were selected in the Fusion LiDAR point cloud data viewer (LDV) 

and crown dimensions were digitized manually. Non-linear regressions were then 

performed to derive the best-fit equations for the crown diameter (Cd) based on the 

tree height (H) relationship. 

The CHM rasters of the 1 ha field plot at spatial resolutions of 0.3, 0.5, and 1m 

were generated to determine the optimal spatial resolution for local maxima 

delineation of individual trees. We also tested the influence of the mean and median 

convolution smoothing filters on local maxima detection. Altogether three filter 

options (models) were tested: no filter, median 3 x 3 filter, and mean 3 x 3 filter. After 
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performing the local maxima detection on each CHM resolution and filter option, the 

most appropriate settings were determined by comparing the spatial off-set between 

automatically generated maxima and field-measured stem locations (n = 239 trees; 

Table 3.2) using GIS analysis.  

Individual trees detected using the most appropriate local maxima settings 

were manually matched with field measured trees using GIS, 3D LiDAR data viewer 

and verification from field observations. We estimated the individual biomass from 

the 239 matched trees by applying existing allometric biomass equations based on 

field-measured DBH (Table 3.2), and established the power model relationship 

between individual tree biomass and LiDAR derived tree height, as well the 

relationship between field-measured DBH and LiDAR derived tree height.  

The additional parameter of ’CanopyMaxima’ routine related to ‘crown size’ 

(radius) computed using average of 16 radial profiles extracted from CHM 

(McGaughey 2015) have been evaluated. The automatically extracted ‘crown size’ 

radius of 372 trees across the study site were linearly regressed against manually 

extracted ones. Additionally, the individual tree AGB was estimated by combination 

a LiDAR height and ‘crown size’, as two independent variables by multiple nonlinear 

regression. 

3.2.4 Accuracy validation and AGB uncertainty calculation of ITC approach 

In our analysis, we assumed that both field measurements of DBH and LiDAR 

derived tree height measurements were robust. Since the ITC local maxima approach 

was used to acquire AGB training data for the ABA, the reliability of tree detection 

became the major error source for biased AGB estimation on plot level due to 



57 
 

omission/commission errors (Vastaranta et al. 2011). Thus, the errors of tree-level 

local maxima tree detection and individual tree AGB uncertainty were considered in 

the process of upscaling AGB from tree to plot levels.  

We performed local maxima accuracy validation by digitally distributing 4 

square plots of 1 ha each across the 12km2 study site. All visible trees crowns (2015 

trees) were manually measured inside these plots with Fusion LiDAR LDV. To 

evaluate the detection and precision rate uncertainty of manual tree measurement 

procedure in Fusion LDV and corresponding impact on AGB estimation, the field 

measured trees from the original 1 ha plot were compared with manually extracted 

ones. Then, the Fusion local maxima routine was evaluated by comparing the manually 

tree crown polygons (2015 trees in 4 ha of validation plots) with the automatically 

generated crown centres from local approach to establish the accuracy and 

omission/commission errors of trees detection. The tree detection rates were calculated 

by following equations (Goutte and Gaussier 2005; Li et al. 2012): 

r = TP / (TP + FN)      (3.2) 

p = TP / (TP +FP)     (3.3) 

Fscore = 2 * ((r * p) / (r + p))    (3.4) 

where, r is the tree detection rate, p is the correctness of the detected trees, Fscore is 

overall accuracy, TP (true positive) is number of correctly detected trees, FN (false 

negative) is number of the trees which were not detected by local maxima (omission 

error), FP (false positive) is number of trees which do not exist in the field (commission 

error).  
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To propagate the AGB uncertainty from ITC to plot level, firstly, the AGB bias 

between all field measured (1 ha) and manually extracted trees was calculated, based 

on obtained tree detection rates and commission/omission errors ratio. Then, the 

obtained bias was introduced to the 4 ha of validation plots to calculate, in its turn, the 

AGB bias caused by local maxima tree detection commission/omission errors. Lastly, 

the total AGB of every plot across the study area (12km2) was corrected by AGB bias 

related to local maxima uncertainty obtained in the previous step. 

3.2.5 Hierarchical integration of individual tree and area-based approaches 

To determine the most appropriate metrics and scales for area-based 

estimations of AGB we digitally surveyed 300 rectangular 4ha sample plots, 1200 1ha 

plots, 4800 0.25ha plots and 19200 0.0625ha (25X25m) plots from throughout the 

entire 12km2 study area covered by the normalized LiDAR data. Raster CHMs with a 

spatial resolution of 0.5m were calculated for each set of sample plots from the LiDAR 

3D point cloud using Fusion. In each plot, individual trees with height >1.5m were 

identified using the local maxima method with a median 3 x 3-pixel kernel filter, due 

to the best settings identified in the previous step. The ITC results were used to acquire 

AGB training data for the ABA. The AGB of every detected individual tree was 

calculated inside each plot by using the power function Eq. (3.6), derived from the 

individual tree height-AGB correlation. The total AGB of each plot was calculated as 

the sum of the AGB of all detected trees in a plot and was used as the training reference 

biomass value. The obtained training AGB were calibrated based on uncertainty 

analysis of local maxima tree detection approach (previous paragraph). 
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LiDAR metrics were calculated using the cloudmetrics utility in Fusion for 

every plot and three different cloud metric sets were calculated with no cut-off, 0.5m 

and 1.5m point cloud ground cut-off thresholds. The training reference AGB of every 

sampled plot was included as the dependent variable, while laser height metrics were 

the independent variables for further multiple stepwise regression analysis. We used 

log-linear multiple stepwise regression with best model estimation implemented in the 

XLSTAT statistical software package. The best regression models were identified from 

the coefficient of determination (R2) and the root mean square error (RMSE). 

 

3.3 Results 

3.3.1 Individual tree detection and biomass estimation 

We found a strong correlation between LiDAR measured tree height (H) and 

crown diameter (Cd) (R2 = 0.70, RMSE = 1.29 m (24% of Cd mean)) (Fig. 3.2a): 

Cd = 1.22 + 0.019*(H)2        (3.5) 

The inclusion of this relationship in our local maxima approach led to the 

efficient detection of overstorey trees. The most appropriate settings derived using the 

‘Canopy Maxima’ routine in Fusion were the 0.5 m CHM and median 3 x 3-pixel 

kernel filter. The mean spatial offset between automatically generated crowns based 

on most appropriate ‘CanopyMaxima’ settings and field validated stem locations 

provided acceptable results (Table 3.3).  
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Table 3.3: Spatial offset between 239 LiDAR detected trees (canopy maxima) and 

field measured stem locations. (RMSE - root-mean-square error, SD - standard 

deviation). 

Tree Heights Mean (m) RMSE (m) SD 

<5m 1.22 1.33 0.53 

5-10m 1.37 1.59 0.81 

10-15m 2.03 2.26 1.01 

>15m 3.43 3.86 1.70 

 

LiDAR tree heights were strongly correlated with field-estimated AGB (R2=0.754, 

RMSE = 90 kg, Fig. 3.2b) based on the power function:  

AGB = 0.0109*(HLidar)3.58   (3.6) 

where, AGB is estimated AGB (kg), and HLidar is LiDAR tree height (m).   
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Figure 3.2: (a) LiDAR height vs. crown diameter (Cd). AGB (b,c,d) and DBH (e,f) 

regression equations with highest R2 against LiDAR tree height. The %Mean is RMSE 

percentage of the mean.  
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Including ‘crown size’ parameter of ’CanopyMaxima’ routine in the regression 

models did not improve AGB estimation. The result of best regression model has 

shown same result (R2 = 0.75, RMSE = 90 kg) with LiDAR height as one independent 

variable. The poor correlation between ‘crown size’ parameter of ’CanopyMaxima’ 

and manually extracted trees crown radius (n = 372 trees, R2 = 0.18, RMSE = 0.94 m) 

shows insufficiency for AGB prediction. This implies that ’CanopyMaxima’ cannot 

correctly extract ‘crown size’ due to considerable variation of crown diameter of 

dominant and co-dominant Eucalypt trees. 

3.3.2 Accuracy validation and AGB uncertainty calculation of ITC approach 

The manually digitized trees distribution by heights (Figure 3.3) and the 

detailed results of the individual tree detection by local maxima approach in 4 ha of 

validation plots are listed in Table 3.4, based on most appropriate canopy maxima 

settings (0.5 m CHM and median 3 x 3 pixel kernel filter). 

 

Figure 3.3: The height class distribution of manually extracted trees (n = 2015) in 4ha 

validation plots. 
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Table 3.4: Accuracy assessment of individual tree detection by local maxima (LM) 

approach in comparison with 2015 manually extracted trees within 4 ha validation 

plots.  

 
All trees 

Trees 
mean H 

Trees with H > 
10m 

Error type 

  Nr m Nr   

Crowns without LM 736 6.3 136 omission 

Correctly matched 1279 8.3 349  

LM inside crowns 125 11.2 43 commission 

LM outside crowns 469 2.8 50 commission 

Total crowns (trees) 2015 7.65 485  

Total LM in crowns 1404  392  

Total LM points 1873  442  

 

The overall tree detection rates (eq. 3.2-3.4) for manually extracted trees (1 ha field 

plot) and local maxima ITC validation (4 ha) plots are presented in Table 3.5: 

Table 3.5: Accuracy assessment for individual tree detection procedures. The trees 

detection rates (r, p, Fscore) of manually extracted trees by Fusion LDV and 

automatically detected by LM approach.  

 

Manually extracted trees    
1ha field plot 

Local maxima trees  
4ha validation plots 

Rates All trees Trees H >10m All trees Trees H >10m 

r (%) 82 94 63 72 

p (%) 85 96 68 79 

F score 84 95 66 75 

 

The overall accuracy of the LiDAR local maxima points to validate our 

individual tree approach was 66 % for all trees, and 75 % for trees > 10m (which 

account for 91 % of the biomass in this system). Due to omission errors of manually 
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trees measurement procedure, the calculated predicted biomass showed biased AGB 

underestimation in 7 % in comparison with 1 ha field data.  After introducing the given 

bias to validation 4 ha plots, the overall systematic error in AGB estimation related to 

ITC local maxima approach indicated the 10 % of AGB underestimation from 

reference data. Thus, for ABA regression analysis, the total AGB of every trained plot 

across study area (12km2) was corrected by 10 %. 

3.3.3 Hierarchical integration of individual tree and area-based biomass 

estimation approaches 

The best estimates of plot-based biomass were obtained from including all 

LiDAR points in the analysis (no cut-off) (Table 3.6). Stepwise regression analyses 

identified the quadratic mean of canopy height (QMCH) (Lefsky et al. 1999) as the 

best single predictor variable of AGB in all cases (Figure 3.4).  
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Figure 3.4: Plots of total AGB versus the best single predictor variable, QMCH (the 

quadratic means of canopy height), based on all echoes and all points (no cut-off) in 

(a) 4 ha, (b) 1 ha, (c) 0.25 ha and (d) 0.0625 ha sample polygons. The RMSE values 

are converted to Mg ha-1.



 

Table 3.6: Best models of cloud metrics derived from multiple stepwise regression compared to AGB.  (P80, P95… - percentiles of the laser 

canopy height distributions, Mean – mean of laser canopy heights, QMCH - quadratic mean of canopy height).  

Plot size (ha) 
Height 
cut-off  
(cm) 

Independent variables Regression Equation R2 
RMSE 

(Mg/ha) 
RMSE % of 
mean AGB  

4 0 QMCH AGB= EXP(9.17+1.39*ln(QMCH)) 0.86 3.40 11.6 

  P75, P95 AGB= EXP(7.13+0.093*ln(P75) +1.64*ln(P95)) 0.90 2.93 10.0 

4 50 QMCH AGB= EXP(8.27+1.42*ln(QMCH)) 0.76 4.47 15.2 

  P50, QMCH AGB= EXP(7.52-0.44*ln(P50) +2.16*ln(QMCH)) 0.78 4.30 14.7 

4 150 QMCH AGB= EXP(7.94+1.51*ln(QMCH)) 0.74 4.64 15.8 

  P50, QMCH AGB= EXP(7.21-0.70*ln(P50) +2.50*ln(QMCH)) 0.76 4.50 15.4 

1 0 QMCH AGB= EXP(7.82+1.37*ln(QMCH)) 0.835 4.0 13.6 
  P80, P95 AGB= EXP(6.15+0.134*ln(P80) +1.44*ln(P95)) 0.85 3.79 12.9 

1 50 QMCH AGB= EXP(6.84+1.44*ln(QMCH)) 0.74 4.97 17.0 

  P60, QMCH AGB= EXP(6.60-0.41*ln(P60) +1.96*ln(QMCH)) 0.75 4.91 16.7 

1 150 QMCH AGB= EXP(6.49+1.54*ln(QMCH)) 0.72 5.17 17.6 

  P40, Mean AGB= EXP(6.21-0.70*ln(P40) +2.39*ln(Mean)) 0.74 5.00 17.0 

0.25 0 QMCH AGB= EXP(6.47+1.36*ln(QMCH)) 0.77 5.43 18.5 
  QMCH, P95 AGB= EXP(5.72+1.04*ln(QMCH) +0.48*ln(P95)) 0.78 5.35 18.2 

0.25 50 QMCH AGB= EXP(5.37+1.48*ln(QMCH)) 0.68 6.39 21.8 

  P60, QMCH AGB= EXP(5.23-0.22*ln(P60) +1.77*ln(QMCH)) 0.69 6.36 21.7 

0.25 150 QMCH AGB= EXP(5.01+1.58*ln(QMCH)) 0.66 6.62 22.6 

  P40, Mean AGB= EXP(5.00-0.50*ln(P40) +2.13*ln(Mean)) 0.67 6.53 22.3 

0.0625 0 QMCH AGB= EXP(5.08+1.37*ln(QMCH)) 0.65 9.12 31.1 
  Mean, QMCH AGB= EXP(4.74-0.25*ln(Mean) +1.71*ln(QMCH)) 0.65 9.09 31.0 

0.0625 50 QMCH AGB= EXP(3.75+1.59*ln(QMCH)) 0.57 10.06 34.3 

  P70, QMCH AGB= EXP(3.79-0.23*ln(P70) +1.82*ln(QMCH)) 0.58 10.05 34.3 

0.0625 150 QMCH AGB= EXP(3.40+1.68*ln(QMCH)) 0.55 10.40 35.5 
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The simple split-sample or hold-out method of cross-validation was performed 

to assess the accuracy of the predictive models of total AGB based on QMCH. We 

used 70% of data plots for the training set and 30% for the test set. For AGB, the R2 

values in the cross-validation procedure increased from 0.72 to 0.92, when comparing 

the 0.0625 ha and the 1 ha plots (Table 3.7). Results of the cross-validation procedure, 

as well as AGB quantitative assessment of the 1 ha measured field data, indicate that 

the models have reasonable predictive power in the study area. 

Table 3.7: Cross-validation procedure:  AGB training set (based on QMCH metric) 

regressed against the AGB data obtained from the Individual tree approach (Eq. 3.3). 

No height cut-off was applied. 

Plot size (ha) 
No. Obs 

Train/Test 
R2 RMSE (Mg/ha) 

4 210/90 0.95 2.51 

1 840/360 0.92 3.34 

0.25 3360/1440 0.78 5.40 

0.0625 13440/5760 0.72 8.28 

 

3.4 Discussion 

3.4.1  The effect of individual tree detection on the accuracy of biomass 

estimation  

The accuracy of individual tree detection has a direct effect on the accuracy of the 

final AGB estimation and is affected by the detection algorithm and its 

parameterization (Kaartinen et al. 2012). In our case, it was related to: (1) the spatial 

resolution of the chosen raster CHMs; (2) an appropriately sized circular height-crown 
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diameter relationship search window for identifying individual canopies; (3) the 

choice of smoothing filters; and (4) vegetation structure. 

The CHM spatial resolution has large impact on detection of small trees < 10 m 

(omission error) and duplicated local maxima detections (commission error) of tall 

trees crowns. We found that small, understorey and intermediate trees could not be 

reliably identified with the local maxima approach at all resolutions (omission error 

from 40%, 0.3m-0.5m CHM resolution, to 60% at 1 m CHM resolution). Similarly, 

depending of ITC approach, many other studies (Duncanson et al. 2014; Edson and 

Wing 2011; Ferraz et al. 2012; Reitberger et al. 2009), shown low detection rates (<40 

%) in supressed and small trees due to poor representativeness in point clouds and 

overstore obscuration. However, the error of omission for trees < 10m tall had minor 

influence on final biomass calculations as these small trees account for less than 10% 

of total AGB across the entire study area (12 km2). 

The occurrence of false tree peaks (errors of commission, false positives) added 

further challenges. Only 21% of commission errors related to multi LMs in 

corresponding tree crowns, while the remaining proportion represent falsely detected 

trees (Table 3.4). We found that using the 0.3 m CHM significantly increased (by 

~30%) the number of extra LM in corresponding tree crown of dominant trees (H > 10 

m). In turn, this leads to lower detection rate of dominant trees and to substantial AGB 

overestimation. The detection of dominant and co-dominant trees remained stable by 

using the 0.5 and 1 m CHMs resolutions, providing a high tree detection rate (>70%) 

for subtropical Eucalyptus spp. savanna. 

The obtained overall tree detection rate (63%) match those observed in recent 

Shendryk et al. (2016) study for Eucalyptus spp. forest in south Australia. In their 
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study, the tree detection rates (r) varied from 55% to 67% depend on LiDAR point 

density by using LiDAR full-waveform information based on tree trunk detection 

using conditional Euclidean distance clustering and post-processing of detected tree 

trunks. Also, our findings is consistent with Duncanson et al. (2014) research related 

to deciduous species in western USA which algorithm correctly identified 70% of 

dominant trees, 58% of co-dominant trees, 35% of intermediate trees and 21% of 

suppressed trees by watershed delineation. Ferraz et al. (2012) demonstrated higher 

detection rates for dominant (> 90%) and dominated (65%) Eucalypt trees by using 

3D segmentation.   

In our study, the above described omission and commission errors do not 

compensate for each other which obviously leads to systematic and biased estimation 

of AGB. After introducing the AGB correction (7% underestimation) related to 

manually extracted trees procedure, we got the overall underestimation of AGB based 

on chosen local maxima ITC approach equal to 10%. As the individual tree heights 

were aggregated to the plot level, the introduced AGB bias correction is scale-invariant 

and independent from plot sampling.   

One of the issues related to tree detection accuracy was the significant effect of the 

local maxima search window size relative to the tree crown size. Therefore, 

appropriate filter dimensions require careful selection (Popescu et al. (2002); Turner 

(2006)). As a result, the individual tree detection accuracy can be improved by 

clarification of height-crown diameter relationships before each project when 

undertaking the canopy maxima approach.  

Our results of correlation between individual tree AGB and corresponding LiDAR 

height (eq. 3.6) are in agreement with  Chen (2002) who found a similar correlation 



70 
 

(R2=0.73) by using tree height as a single parameter in biomass prediction based on a 

destruction approach in Eucalypt tropical savanna of northern Australia. 

3.4.2 Hierarchical integration of individual tree and area-based approaches for 

improved savanna biomass estimation 

Our area-based biomass estimation approach identified the QMCH as the best 

single variable independently from plot sample sizes. This finding was expected as 

QMCH places a greater weighting on the upper canopy LiDAR points, thus 

emphasizing the role of dominant and co-dominant trees in LiDAR metrics (Lefsky et 

al. 1999). Although other independent variables (percentile heights: P60, P75, P90; 

Mean of Laser canopy heights) provide good estimates of total AGB (Table 3.6), we 

propose to use the QMCH in most cases and this is consistent with other studies (Asner 

et al. 2008; Kandel et al. 2011; Rombouts et al. 2010).  

In our study, we demonstrated that where field-plot data are spatially limited, it is 

possible to use a hierarchical integration approach based on AGB uncertainty 

calculation and calibration to upscale AGB estimates from individual trees to broader 

landscapes. The main limitation of this study related to fact that presented values of 

AGB uncertainties can be applied only in local areas with similar Eucalyptus spp. 

vegetation and LiDAR acquisition parameters. Positively, the presented approach can 

be relatively easily performed by using the computationally fastest and simplest local 

maxima technique (Kaartinen et al. 2012) and digitally delineated tree crowns as 

trained “true” reference data. It can thus be suggested that ITC rates can be improved 

by implementation into framework the semi-ITC algorithms to prevent the systematic 

errors on the tree segment level (Maltamo et al. 2014). Due to lack of independent field 
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data across the whole study site for our ABA output results validation, a further study 

with more focus on AGB estimation accuracy assessment of is therefore suggested. 

A key limitation of the monitoring and mapping of vegetation in large remote areas 

with LiDAR is that whether high-density data are necessary to obtain accurate results 

at the plot-scale  (Jakubowski et al. 2013). If airborne LiDAR were to become standard 

for monitoring large areas of northern Australia, it is likely that only low densities of 

1-2 pulses m-2 could be achieved. Many studies have reported that reducing plot pulse 

densities (1 pulse m-2) has no adverse effects on the quality of the fit of volume or 

biomass models when using statistical height metrics as predictor variables (Næsset 

and Gobakken 2008; Thomas et al. 2006). In our case, to perform the individual tree 

detection approach and AGB calibration based on manually digitized trees, high-

density LiDAR data (>10 pulses m-2) still are necessary. Our results demonstrate that 

only a small area (5 ha in our case) of high-density data need to be used to estimate 

and update regression equations that relate laser data to field observations, and then 

generalise the calibrated prediction of AGB for the whole area using low-density 

LiDAR metrics.  

3.4.3 The effect of plot size on LiDAR area-based approach model performance 

Plot size strongly influenced the accuracy of AGB estimates obtained from LiDAR 

metrics. We found that regression model fits and estimated accuracy improved 

noticeably as plot size increased from 0.0625 ha to 4 ha (Table 3.6; Fig. 3.5). 

Similarly, Frazer et al. (2011) showed that predictions of total AGB improved 

markedly as plot size increased from 0.0314 ha (10 m radius) to 0.1964 ha (25 m 

radius). Gobakken and Næsset (2009) argued that the accuracy of sample plot positions 
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and the size of the sample plots are the important factors affecting the precision of 

AGB calculations based on LiDAR data. Asner and Mascaro (2014) point out that the 

difference between LiDAR-predicted and field-estimated aboveground carbon 

density, declines towards 10% at 1 ha sample plot size. 

There are several reasons why increasing the field plot size should be considered 

when estimating ABG from airborne LiDAR data. Plot edge effects decrease with 

larger plot size and this improves the accuracy of AGB estimates (Mascaro et al. 2011). 

Edge effects arise because trees located just outside the plot boundary still have some 

portion of their crowns falling within the plot (Levick et al. 2016; Mascaro et al. 2011).  

 

Figure 3.5:  Observed stem localized AGB estimates RMSE for plot sample sizes from 

0.0625 to 4 ha, based on QMCH regression analysis against AGB with no cut-off point 

cloud threshold in 12 km2 study area. 
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A larger plot has a lower perimeter-to-area ratio, resulting in fewer potential 

edge-effects. Also, the plot edge-effect may cause over- or under-estimates due to large 

trees in small plots and an increase in co-registration errors between field and predicted 

data, whether or not the LiDAR area-based or individual tree procedures are applied. 

In our study, the use of 1 and 4 ha plots for the LiDAR ABA provided the best 

estimation of total AGB. Thus, larger 1-4 ha grid sizes reduce the error caused by edge 

effects and are more appropriate suitable for large area biomass estimations across 

north Australia with airborne LiDAR. 

3.5 Conclusions 

The two-phase ITC-ABA procedure adopted here can be applied in northern 

Australia and other remote areas, where road networks are non-existent or sparse and 

field access if limited and costly. We found that the sparse crown distribution and 

relatively low stand density of trees in this tropical savanna enables sufficient (> 70%) 

detection accuracy of dominant and co-dominant trees. The method we applied here is 

most effective for trees that are relatively isolated and for a CHM with 0.5 -1 m 

resolution. Above ground biomass and the uncertainty of estimation can be quantified 

from LiDAR data in tropical savanna by integrating both individual tree detection and 

area-based approaches, facilitating regional savanna inventories, monitoring and 

mapping. 
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4.0 Abstract 

The reliability of airborne LiDAR for delineating individual trees and 

estimating aboveground biomass (AGB) has been proven in a diverse range of 

ecosystems, but can be difficult and costly to commission. Point clouds derived from 

structure from motion (SfM) matching techniques obtained from unmanned aerial 

systems (UAS), could be a feasible low-cost alternative to airborne LiDAR scanning 

for canopy parameter retrieval. This study assesses the extent to which SfM 3D point 

clouds, obtained from a light-weight mini-UAS quadcopter with an inexpensive 

consumer action GoPro camera, can efficiently and effectively detect individual trees, 

measure tree heights, and provide AGB estimates in Australian tropical savannas. Two 

well-established canopy maxima and watershed segmentation tree detection 

algorithms were tested on canopy height models (CHM) derived from SfM imagery. 

The influence of CHM spatial resolution on tree detection accuracy was analysed, and 

results were validated against existing high-resolution airborne LiDAR data. We found 

that the canopy maxima and watershed segmentation routines produced similar tree 

detection rates (~70%) for dominant and co-dominant trees, but yielded low detection 

rates (<35 %) for suppressed and small trees due to poor representativeness in point 

clouds and overstory occlusion. Although airborne LiDAR provides higher tree 

detection rates and more accurate estimates of tree heights, we found SfM image 

matching to be an adequate low-cost alternative for detection of dominant and co-

dominant tree stands. 
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4.1 Introduction 

Accurate and reliable information about forest structure and composition is 

critical for forest management, biomass estimation, and monitoring of health status 

(Trumbore et al. 2015). Canopy structural parameters can be extracted directly or 

indirectly by ground-based, airborne or spaceborne remote sensing techniques. 

Advances in airborne/satellite multispectral imagery (passive optical sensors), LiDAR 

(light detection and ranging) and radar technologies (active sensors) over varying 

spectral, spatial and temporal scales are rapidly facilitating the benefits of remote 

sensing use in measurements and monitoring of forest structure. Globally, airborne 

LiDAR sensing has proven to be efficient and accurate for the fine-scale estimation of 

forest structure parameters by indirect allometry (primarily tree height (H)) based on 

high-density 3D point cloud canopy height models (CHM) (Asner and Mascaro 2014; 

Goldbergs et al. 2018a; Lefsky et al. 2002; Maltamo et al. 2014). Accurate estimation 

of canopy height is a key parameter for remote quantification of forest structure, for 

both individual tree crown and plot-based canopy metrics.  

Innovations in computer vision and digital photogrammetry have led to 

development of the structure from motion (SfM) technique for generating 3D point 

clouds from stereo imagery that is similar in many aspects to LiDAR point clouds 

(Colomina and Molina 2014). SfM relies on algorithms that reconstruct the 3D 

geometry and detect 3D object coordinates by simultaneous matching of the same 2D 

object points in every possible image throughout the multiple overlapping set of 

imagery. Camera positions and image geometry are reconstructed simultaneously 

using automatically measured tie points by a multi-view matching technique (Westoby 
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et al. 2012). Image blocks are geo-referenced through a combination of global 

navigation satellite systems (GNSS) and inertial navigation systems (INS) with or 

without ground control points (GCP). In the last decade, due to advances in high 

performance computing, hardware miniaturization, cost reduction of GPS and INS, 

lightweight Unmanned Aerial Systems (UAS) have developed into an alternative field-

portable remote sensing platform that enables low-cost collection of very high-

resolution image data when and where it is needed. The combination of UAS and 

modern SfM matching techniques has a wide range of applications for forest 

management and inventory needs with low cost, high performance and flexibility 

(Paneque-Gálvez et al. 2014; Tang and Shao 2015; Torresan et al. 2017). 

These advances have potential to change the way we obtain tree parameters - 

such as location, height and canopy cover, for estimation and monitoring of 

aboveground biomass (AGB). Australia’s tropical savannas cover 1.9 million km2, 

accounting for approximately 12% of the world’s tropical savannas (Beringer et al. 

2015). It is estimated that they store 33% of Australia’s terrestrial carbon (Williams et 

al. 2004). Estimation of greenhouse gas emissions due to extensive and annual burning 

in north Australia and changes in standing carbon stocks rely upon pre-and post-fire 

calculations of biomass (Russell-Smith et al. 2009). Commonly, monitoring of 

vegetation and measurement of biomass change relies on extensive field 

measurements (species, diameter at breast height (DBH), height etc.) (Russell-Smith 

et al. 2009). However, over much of the landscape, field data collection is limited by 

accessibility, especially during the wet season. Our working hypothesis is that 

incorporating low-cost UAS image data into the existing field data collection 

framework can enhance performance and flexibility and improve final product outputs.  
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To date, there have been several successful studies investigating the potential 

of UAS to measure and monitor structural properties of different types of Australian 

forest (Hung et al. 2012; Wallace et al. 2016; Wallace et al. 2012; Whiteside and 

Bartolo 2016). Wallace et al. (2016) compared airborne LiDAR and imagery SfM 

point clouds for assessing absolute terrain height, and the horizontal and vertical 

distribution of Eucalyptus tree canopy elements. While they found that airborne laser 

scanning (ALS) provides more accurate estimates of the vertical structure of forests 

across the larger range of canopy densities, SfM was found to be an adequate 

standalone low-cost alternative for surveying forest stands, estimating 50% of canopy 

cover and 82% of tree top locations (H > 5m). Hung et al. (2012) assessed a technique 

for the automatic segmentation and object detection of tree crowns in Australian open 

savanna based on UAS imagery spectral classification and object shadow information, 

detecting >75% of the trees. However, the application of low-cost UAS image data for 

characterising vegetation structure and estimation of the plot/individual tree AGB has 

not been fully tested for Australian tropical savannas. 

The main aim of this study is to evaluate the potential for imagery from 

consumer-grade light-weight and low-cost UAS (< $2000) for estimating tree 

structural parameters and quantifying biomass in Australian tropical savannas. To 

achieve this goal, we: (1) analyse the effect of gimbal/non-gimbal use on SfM 

performance and tree detection accuracy; (2) analyse the influence of SfM CHM 

spatial resolution on tree detection accuracy; (3) assess the applicability and accuracy 

of canopy maxima and watershed segmentation tree detection algorithms; and (4) 

compare the reliability of CHMs derived from LiDAR and UAS SfM 3D point clouds 

for individual tree detection and biomass estimation. 



84 
 

The main advantage of small and low-cost UAS is their ability to collect 

imagery with high spatial and temporal resolution. Stable and correct alignment of the 

images can be achieved by camera platform-stabilizing (gimbal use) during data 

acquisition. The base kit of many low-cost UAS do not contain a gimbal due to 

additional weight and cost. Therefore, we analyse the effect of gimbal/non-gimbal use 

on SfM performance and tree detection accuracy. 

4.2 Methods  

4.2.1 Study area 

This study was undertaken in Litchfield National Park (13° 10’ S, 130° 47’ E), 

100 km south of Darwin, in the Northern Territory, Australia. The study area (2.2 ha, 

flat terrain with elevation 215 m, mean AGB 29.3 Mg ha-1) is representative of high 

rainfall tropical savanna across north Australia (TERN 2012). Savanna structural 

distribution in the Northern Territory is determined primarily by the seasonality of 

climate with most rain falling from November to March; mean annual rainfall is 

approximately 1600 mm. Compared to South America and Africa, Australian savannas 

have little topographic relief and are relatively intact (Beringer et al. 2011), due to low 

human population and minimal infrastructure. Within the study area, the vegetation is 

dominated by Eucalyptus miniata and E. tetrodonta open forest (>30% canopy cover) 

contributing more than 70% of the total tree basal area (O'Grady et al. 2000).  

4.2.2 Airborne LiDAR and reference trees extraction 

Existing airborne LiDAR data were used as reference data for this study. 

LiDAR data were acquired for a 25 km2 area of Litchfield National Park, including the 
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study area, by Airborne Research Australia (ARA) in June 2013 and made available 

by the AusCover facility of the Terrestrial Ecosystem Research Network (TERN). A 

Riegl LMS-Q560 full waveform time-of-flight LiDAR sensor operating at 240 kHz, 

average flying height 300 m AGL, swath width ~300 m, strip spacing 125 m, and 

flying speed ~ 40 m/s was used. The data were decomposed into discrete returns (20 

cm footprint) to obtain an average point density of 15 returns m-2. All further point-

cloud pre-processing tasks (e.g. point cloud classification, CHMs creation) were 

performed with the LAStools software modules (Isenburg 2014). In our further 

analysis, we assumed that LiDAR point cloud classification and LiDAR derived 

ground surface needed for CHM generation were accurate and correct. 

To extract the reference data from LiDAR data, all visible trees with a height 

> 1.5 m across the study area (2.2 ha) were selected in the Fusion LiDAR point cloud 

data viewer (LDV) (McGaughey 2015) and circular crown dimensions with tree top 

heights were digitized manually. To update the extracted information to the UAS 

imagery acquisition date (2016), fieldwork was undertaken to assess and correct for 

structural changes. 

A total of 1277 trees were extracted in Fusion LDV as reference data for 

individual tree detection (ITD) and plot biomass estimation. The selected trees 

spanned a broad range of height classes, with a mean of 7.45 m and a maximum height 

of 25 m (Figure 4.1). 258 individuals were taller than 10 m and were considered 

overstory trees. The trees in the field plot with a height > 10 m comprised 87% of the 

living AGB (Figure 4.1). 
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Figure 4.1: The height class and cumulative AGB (red line) distribution of reference 

trees (n = 1277) in the 2.2 ha study area. 

The AGB of every reference tree was estimated using a previously fitted 

general allometric model for Eucalyptus spp. (RMSE 90 kg with plot level accuracy 

of 10%) with tree height as independent variable based on the power model (Goldbergs 

et al. 2018a): 

    AGB = 0.0109*(H)3.58                       (4.1) 

where, AGB is estimated AGB (kg), and H is tree height (m).  

4.2.3 UAS platform and image data acquisition 

The commercially available mini-UAS quadcopter Solo (3D Robotics) was 

used for this study. The maximum payload of this platform is 700 g. The camera was 

a GoPro HERO4 Silver (GoPro, Inc, USA) with a 4000 × 3000 pixel CMOS detector 
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(1.55 µm pixel size, 4.35 mm fixed focal length) that captured images in automatic 

exposure mode. The standard fish-eye lens was replaced with a 4.35mm lens to reduce 

image distortions and adjust the field of view for this application with the infrared 

blocking filter removed. 

The two UAS airborne flights of the study area were conducted on 4 and 19 

July 2016 with the same acquisition settings (f/2.8, 1/929 - 1/2732 sec, ISO 100, 2.5 – 

3 m/s wind speed) but with a different gimbal and lens filter setup. During the first 

flight (12:00 AM local time), the gimbal-mounted platform was used with a 600nm 

long pass lens filter (Hoya R60) providing the Red+NIR/NIR/NIR spectral channels. 

During the second flight (11:00 AM local time), the gimbal-mounted platform was not 

used, but with a BG3 (Schott) lens filter, providing NIR/NIR/Blue+NIR spectral 

channels. Use of the NIR bands provided improved discrimination between vegetation 

and non-vegetation. For both flights, the flying height was ~120m above ground level 

providing ∼4.4 cm ground sample distance (GSD). Each image was geotagged, using 

the GPS, and the triggering time recorded. In both cases, the imagery was collected 

with high forward and side overlaps of at least 80%, in continuous shoot mode (1 

image per second), at a flight speed of 10m/s. 



 

 
Figure 4.2: The 2.2ha study area: (a) with GCPs locations (∆ - full GCP (XYZ), O – height GCP (Z)); (b) dominated by Eucalyptus spp.; 

(c) in the north Australian tropical savanna (in green).  
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The collected imagery was not initially considered for the current study, so we 

were restricted to measuring well identified man-made (poles, concrete slab corners) 

and natural (tree stumps) objects as ground control points (GCPs), 11 weeks later. 

Eight full (XYZ) and eight height (Z) GCPs were established across the study area to 

perform image block geo-referencing (Figure 4.2). The GCPs were surveyed using a 

ProMark3 (Magellan Navigation, Inc, USA) differential GPS. As no permanent GPS 

base station was available within a 100 km radius, the temporal base and rover setup 

were used with a final absolute point accuracy < 1 m.  

4.2.4 Image data processing and point cloud generation  

Corrupted and low-quality UAS images were removed preserving 80-90% 

forward overlap. Seventy-seven (77) gimbal and ninety-two (92) non-gimbal flight 

images were chosen for further processing (Figure 4.3). Two photogrammetric 

software packages Photomod and PhotoScan, with different implemented matching 

algorithms, were used in parallel conventional photogrammetric image data processing 

to fulfil the given study tasks, based on automated workflows. Photomod has been 

chosen for processing, as one of the authors is commonly using it. PhotoScan was 

added due to its low cost and high popularity among UAS users and researchers. 

Photomod 6.2 (Racurs, Russia) allows for the extraction of geometrically 

accurate spatial information from almost all commercial imagery, whether obtained 

from film, digital cameras, UAS, or high-resolution satellite scanners. For 3D point 

cloud generation, Photomod uses semi-global matching (SGM), an SfM global 

matching technique performed at the pixel level with pathwise aggregation of a global 

cost function (Hirschmüller 2011). The second software PhotoScan 1.3.1 (Agisoft 
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LLC, Russia) has a user-friendly processing workflow with its own image-matching 

algorithm, similar to the scale invariant feature transform (SIFT) object recognition 

algorithm and pair-wise depth map computation for dense surface reconstruction 

(Agisoft 2011).  

 

Figure 4.3: Workflow outline for this case. The two UAS imagery sets with and 

without gimbal setup, and LiDAR reference data were used to perform individual tree 

detection and AGB estimation. The software used are shown in blue boxes. 

Image post-processing commenced with radiometric corrections, applied to 

both flights’ imagery data, by using only Photomod tools. The same radiometrically 

corrected images were used for further processing in both software packages. Then, 

automatic tie point calculation and bundle-block adjustment with the camera self-

calibration algorithm was applied in both software to obtain camera orientation 
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parameters (Figure 4.3). The stereo mode for manual measurements of GCPs was used 

in Photomod, as only a semi-automatic mono approach was available in PhotoScan.   

We extracted 3D dense point clouds for both flights in Photomod with the 

default settings based on the census transform (CT) matching cost function. Due to 

insufficient quality (high noise level) of the generated raw 3D point cloud, a gridded 

digital surface model (DSM) with 10 cm defined cell size was used. Then, after a DSM 

null cell fill interpolation, the DSM was transformed to the LAS point cloud format 

for further processing. 

The 3D dense point clouds were generated for both flights in PhotoScan in 

‘High resolution’ mode (~ 9cm GSD) with ‘mild’ depth filtering and exported to LAS 

format for subsequent processing. 

All point-cloud processing tasks (e.g. point classification, CHMs creation) 

were performed with the Fusion software modules (McGaughey 2015). The digital 

terrain models (DTM) of SfM acquired point clouds, needed for CHM generation, 

were identified using the GroundFilter and GridSurfaceCreate tools of the Fusion 

software. The vertical accuracy evaluation of the SfM based DTMs were performed 

by their comparison with the LiDAR based terrain model. 

4.2.5 Local maxima tree detection approach and CHM resolution choice  

The local maxima approach, computationally the fastest and simplest 

algorithm (Kaartinen et al. 2012), was used to detect individual trees from the image 

derived CHMs, interpolated from the 3D dense point data using the ‘CanopyMaxima’ 

routine in Fusion (McGaughey 2015). The local maxima approach uses an 

appropriately sized circular search window for identifying individual canopy peaks, 
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rather than crown delineation. If the search window size is too small, a higher number 

of false peaks will be detected (errors of commission; false positives); if too large, a 

greater number of true peaks will be missed (errors of omission; false negatives) 

(Popescu et al. 2002). The default search window diameter used in Fusion is based on 

conifer species in temperate forests, so we modified the search radius to use the height-

crown diameter relationship more appropriate for the study area. To obtain a 

relationship between the height of eucalypt trees and their crown size, the 1277 

manually digitized reference trees were selected by performing non-linear regression. 

To determine the optimal spatial resolution for local maxima detection of 

individual trees, we used only Photomod processed gimbal flight CHMs with the 

assumption that local maxima efficiency is mostly dependent on vegetation structure 

rather than SfM algorithms and software choice. The raster CHMs were generated in 

Fusion at spatial resolutions of 0.3, 0.4, 0.5, and 1m, based on previous results showing 

0.5m CHM resolution as optimal for LiDAR based local maxima models in Eucalyptus 

spp. tropical savanna (Goldbergs et al. 2018a). The median convolution smoothing 

filter was applied to all CHMs for local maxima detection with preserved local peaks 

in the final CHMs. Every two maxima with closest location distance 0.60 m (tree 

height < 10 m) and 2.30 m (tree height > 10 m) were merged based on the minimum 

distance between the reference trees. After performing the local maxima detection on 

each CHM resolution, the most appropriate CHM resolution was determined by 

comparing detection rates for trees > 10 m using GIS analysis and field observation 

validation.  
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Tree detection rates were calculated using the following equations (Goutte and 

Gaussier 2005; Li et al. 2012): 

r = TP / (TP + FN)      (4.2) 

p = TP / (TP +FP)    (4.3) 

        Fscore = 2 * ((r * p) / (r + p))   (4.4) 

where, r is the tree detection rate or recall, p is the correctness of the detected trees or 

precision, Fscore is overall accuracy, TP (true positive) is number of correctly detected 

trees, FN (false negative) is number of trees which were not detected (omission error), 

FP (false positive) is number of extra trees which do not exist in the field (commission 

error).  

4.2.6 Individual tree detection processing 

After determination of the most appropriate spatial resolution of the CHM for 

local maxima routine, eight models were chosen for the final individual tree detection 

(ITD) processing. These models include four (gimbal and non-gimbal) canopy maxima 

and four watershed segmentation models based on Photomod and PhotoScan 3D data 

raster CHMs. For all models, we only identified individual trees with height > 1.5 m. 

Additionally, the individual tree detection routines were applied on dominant and co-

dominant trees with heights > 10 m. 

The watershed segmentation workflow was performed in SAGA GIS freeware 

(Conrad et al. 2015). The CHMs (ASCII raster format) were imported from Fusion 

into SAGA. A Gaussian filter with kernel radius 2 pixels and standard deviation of 30 

were applied. To preserve the local peaks for the smoothing filter, the maximal height 
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values of maxima seeds from the non-smoothed surface were assigned to the final 

segments. A 1.5 m height break limit threshold was applied to CHMs before 

segmentation. During watershed segmentation, the segments were joined based on 0.5 

m seed to saddle difference threshold. Finally, the extracted segments were exported 

to Quantum GIS freeware (QGIS 2017) for further analysis. All segments smaller than 

0.32 m2 (tree height < 10 m) and 2 m2 (tree heights > 10 m) were deleted based on the 

minimum values of the reference trees.  

4.2.7 AGB estimation and data validation  

The ITD results were used to calculate plot AGB for every model. The AGB 

of every estimated individual tree was calculated by using Eq. (4.1). The total plot 

AGB of each model was calculated as the sum of the AGB of all trees in a plot and 

was compared to the reference biomass value. Non-linear regression was also 

performed to check the correlation between reference tree AGB and the corresponding 

crown area segment obtained in the watershed segmentation process. To perform the 

ITD validation and comparison, the canopy maxima and watershed segmentation 

routines were applied to the LiDAR based 0.5 m resolution CHM. The tree height 

difference analysis was performed for every model, based on every matched tree 

height compared with reference tree height. 
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4.3 Results 

4.3.1 Bundle-block adjustments 

Table 4.1 shows the accuracies of the bundle-block adjustments based on 

quality statistics (root mean square errors (RMSE) in the X, Y and Z coordinates of 

ground control points and means of rotation angles (pitch, roll and yaw) provided by 

corresponding software. The bundle-block adjustment of the non-gimbal flight was the 

least accurate, as expected due to the instability of the platform, leading to non-

systematic errors of object recognition, and of pair-wise depth map computation 

during tie point matching (Figure 4.4). 

Table 4.1: Results of bundle-block adjustments of two flights, where: Ϭo – the overall 

accuracy of the photogrammetric measurements; RMSE – root mean square errors 

based on GCP measurements; pitch, roll and yaw –  mean sensor orientation angles. 

 

 

 

 

 

  

Ϭo 

(pix) 

RMSE (X) 

(m) 

RMSE (Y) 

(m) 

RMSE (Z) 

(m) 

Pitch 

(deg) 

Roll 

(deg) 

Yaw 

(deg) 

Gimbal 
Photomod 0.38 0.17 0.13 0.31 0.02 0.04 2.8 

PhotoScan n/a 0.19 0.16 0.36 -0.05 0.28 2.8 

Non-
Gimbal 

Photomod 0.97 0.33 0.29 0.33 -12.5 10.6 -37 

PhotoScan n/a 0.25 0.28 0.44 -12.7 8.2 -37 
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Figure 4.4: The block schemes (imagery footprints and projection centers) of 

two UAS flights based on block adjustment results (Photomod) (a) with gimbal 

and (b) without gimbal. 

 

4.3.2 Accuracy of the SfM based ground surfaces 

The vertical accuracy evaluation of the SfM based ground surfaces were based 

on comparison of the raster DTMs cells (0.40 m) with the corresponding LiDAR 

reference data and are shown in Table 4.2. It is apparent that all SfM based DTM 

models show ground overestimation in comparison with LiDAR ground surface data. 

The largest differences in the terrain representation are provided by models based on 

non-gimbal flight data. 
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Table 4.2: The results of the comparison the SfM based (DTMSfM) and LiDAR 

(DTMLiDAR) raster ground surfaces, based on corresponding elevation cell difference 

statistics: mean error, root mean square error (RMSE) and standard deviation (SD). 

DTMSfM – DTMLiDAR 
Photomod PhotoScan 

Gimbal Non-gimbal Gimbal Non-gimbal 

Mean Error (m) 0.12 0.27 0.08 0.41 

RMSE (m) 0.22 0.43 0.19 0.54 

SD (m) 0.19 0.34 0.17 0.35 

 

4.3.3 Optimal CHMs resolution choice 

We found a strong relationship between LiDAR measured Eucalyptus spp. tree 

heights (H) and crown diameters (Cd) (R2 = 0.84, RMSE = 0.81 m (30% of Cd mean)), 

according to the following relationship: 

Cd = 1.22 + 0.018*(H)2        (4.5) 

The inclusion of this relationship in the local maxima routine led to the efficient 

detection of overstory trees. Table 4.3 lists the tree detection rates for different image-

derived CHM resolutions (Figure 4.5), which were used for optimal spatial resolution 

determination for the local maxima tree detection routine. The 40 cm resolution CHM 

provided the highest rate of detected trees (r) and overall accuracy (Fscore). We found 

that using the 30 cm CHM markedly increased, by 100%, the number of extra local 

maxima (false tree peaks) in the tree crowns of dominant trees. This led to lower 

precision (59%) of dominant tree detection and to substantial AGB overestimation.  



98 
 

 

Figure 4.5: Study area subset (35 x 42 m) of Photomod processed raster CHMs 

with different GSD resolutions and applied 3x3 smoothing kernel filter. (a) 

Original 10 cm GSD, (b) 30 cm, (c) 40 cm, (d) 1 m and (e) LiDAR 50cm CHM. 

White circles represent the crowns of reference trees (> 10 m). 

 

Table 4.3: Eucalyptus spp. tree (height > 10m) detection rates (r), using eq. 4.2-4.4, 

correctness of the detected trees (p), and overall accuracy (F score) based on local 

maxima for 30, 40, 50 and 100 cm CHM resolutions derived from the Photomod 

gimbal flight data.  

 

 

 

 

4.3.4 Local Maxima Individual tree detection and watershed segmentation 

results 

The 40cm resolution CHM was used for further local maxima processing and 

watershed segmentation as the optimal spatial resolution, Table 4.3. Overall, the 

 CHM resolutions 

Rates 30cm 40cm 50cm 100cm 

r 69% 70% 66% 64.% 

p 59% 71% 72% 77% 

F score 64% 71% 69% 69% 
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canopy maxima and watershed segmentation routines were not able to perform 

sufficiently reliable tree detections of all trees in the study plot (Table 4.4). 

Table 4.4: Eucalyptus spp. tree (n = 1277) detection rates (r), using eq. 4.2-4.4, 

correctness of the detected trees (p), and overall accuracy (F score) based on local 

maxima and watershed segmentation results using raster 40 cm CHMs. 

 
Local Maxima Watershed Segmentation 

 
Photomod PhotoScan 

LiDAR 

Photomod PhotoScan 

LiDAR 
Rates Gimbal 

Non-
gimbal 

Gimbal 
Non-

gimbal 
Gimbal 

Non-
gimbal 

Gimbal 
Non-

gimbal 

r 42% 43% 41% 43% 61% 32% 34% 35% 36% 43% 

p 74% 68% 76% 60% 69% 76% 79% 81% 71% 83% 

F score 53% 53% 54% 50% 65% 45% 48% 49% 48% 57% 

 

The canopy maxima and watershed segmentation routines achieved adequate 

tree detection rates for trees with heights > 10 m (Figure 4.6; Table 4.5), except in the 

case of the non-gimbal PhotoScan model. The low precision rate (p) is explained by a 

higher number of false tree detections and the high commission/omission trees ratio 

(1.9). 

Table 4.5: Eucalyptus spp. tree (H >10 m; n = 258) detection rates (r), using eq. 4.2-

4.4, correctness of the detected trees (p), and overall accuracy (F score) based on local 

maxima and watershed segmentation results using raster 40 cm CHMs. 

 

 

 Local Maxima Watershed Segmentation 

Rates 

Photomod PhotoScan 

LiDAR 

Photomod PhotoScan 

LiDAR 
Gimbal 

Non-
gimbal 

Gimbal 
Non-

gimbal 
Gimbal 

Non-
gimbal 

Gimbal 
Non-

gimbal 

r 70% 71% 71% 70% 80% 67% 68% 69% 71% 81% 

p 71% 72% 72% 57% 78% 68% 69% 72% 56% 72% 

F score 71% 71% 71% 63% 79% 68% 69% 71% 63% 76% 



 

 

Figure 4.6: Horizontal transect (1.6m wide) of study area subset. Reference LiDAR 3D point cloud (green dots), PhotoScan extracted point cloud 

(grey dots – vegetation; brown dots – classified terrain), Photomod DSM (blue line), PhotoScan DSM (red line) and their corresponding 0.4 m 

raster DSMs used for local maxima and watershed segmentation. 
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4.3.5 AGB estimation 

Given the limitations of the local maxima and watershed segmentation results 

for the detection of all trees, only trees with heights > 10 m were chosen for further 

AGB estimation/comparison and tree height difference analysis (Table 4.6). The 

dominant and co-dominant trees in the field plot with a height > 10 m (258 of 1277 

trees) comprised 87% of the living AGB. 

Table 4.6: Matched tree height differences (mean error values and standard deviation 

(SD)) and total plot AGB differences based on local maxima and watershed 

segmentation results (trees height > 10m). Negative values represent an 

underestimation. 

 
Local Maxima Watershed Segmentation 

 
Photomod PhotoScan Photomod PhotoScan 

  Gimbal 
Non-

gimbal 
Gimbal 

Non-
gimbal 

Gimbal 
Non-

gimbal 
Gimbal 

Non-
gimbal 

Mean Error (m) -0.28 -0.04 0.09 0.55 -0.25 -0.08 0.12 0.68 

SD (m) 1.22 1.36 1.18 1.42 1.27 1.39 1.21 1.50 

AGB plot diff (%) -11% 7% 12% 46% -4% 14% 15% 57% 

 

The high commission/omission tree ratio (1.9) and average 55 cm tree height 

overestimation resulted in significant total plot AGB overestimation (+46%) in the 

non-gimbal PhotoScan model. Photomod based models underestimated H, and the 

corresponding AGB, compared to the PhotoScan and LiDAR based models. 

The non-linear regressions of the tree reference AGB and the corresponding 

crown area segments obtained in the watershed segmentation process were poorly 

correlated (for H > 10m; PhotoScan: R2 = 0.12, RMSE = 191 kg/tree, 77% of mean; 
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Photomod: R2 = 0.15, RMSE = 160 kg/tree, 65% of mean). These results can be 

explained by the poor correlation between the reference ’tree crown area’ (calculated 

as, Pi*r2) and extracted tree segments from the watershed segmentation (for H > 10m; 

PhotoScan: R2 = 0.25, RMSE = 21 m2, 64 % of mean; Photomod: R2 = 0.28, RMSE = 

20 m2, 60% of mean).  

 

4.4 Discussion 

4.3.1 Accuracy of individual tree detection based on canopy maxima and 

watershed segmentation approaches 

The accuracy and completeness of CHMs generated from 3D dense point 

clouds have a direct effect on individual tree detection performance. CHM generation 

is affected by the SfM matching algorithm and accuracy of 3D scene geometry 

reconstruction from 2D images. In our study, it was primarily related to: (1) accuracy 

of the bundle-block adjustment; (2) vegetation structure; (3) the spatial resolution of 

the raster CHMs; (4) an appropriately sized circular height-crown diameter 

relationship search window for identifying individual canopies by the local maxima 

routine; and (5) the effectiveness of the chosen SfM matching algorithm. 

Important factors in the consideration of bundle-block adjustment accuracy are 

the number of GCPs needed for image geo-referencing, their distribution, and camera 

self-calibration calculations. Agüera-Vega et al. (2017) and Goldstein et al. (2015) 

showed that optimal results for UAS image bundle-block adjustment and SfM can be 

reached with 10 - 15 signalized GCPs. In our case, the GCP measurements were 

performed after the image data acquisition, so we were restricted to measuring well 
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identified man-made (poles, concrete slab corners) and natural (tree stumps) objects. 

Due to the limited number of such GCPs across the study area, the height (Z) GCPs 

were added to preserve the block homogenous accuracy. As vertical accuracy of 

bundle-block adjustment is extremely influential on tree heights measurements, we 

suggest measuring additional non-signalized or even signalized height (Z) GCPs 

across the study area, based on regular locational pattern. In this study, the Photomod 

package produced better results related to the enhanced vertical accuracy of the 

bundle-block adjustment, attributable to the stereo-mode for GCP manual 

measurements, which is not available in PhotoScan.  

The accurate representation of the terrain is crucial for characterizing the 3D 

structure of vegetation which is necessary for CHM calculations (Wallace et al. 2016). 

The current study found that Eucalyptus spp savanna vegetation structure is 

sufficiently transparent for accurate terrain reconstruction by SfM matching 

techniques. Based on our results, ~ 50% of all 3D point cloud extracted points related 

to the ground surface, which negates the need to use an external digital terrain model 

for CHM generation (Figure 4.6). On the other hand, crown transparency had direct 

impact on tree detection rates using SfM matching. These findings suggest that the 

optimal image data acquisition time is between the end of the wet and start of the dry 

seasons, when canopy cover of Australian tropical savanna is at maximum (Russell-

Smith et al. 2015). Overall SfM based ground surfaces provided accurate and 

applicable representation of the terrain across the study plot (Table 2). The largest 

differences in the non-gimbal SfM based models likely originates from the poor 

reconstructed image geometry during image block relative orientation (tie point 

matching) and 3D point cloud SfM calculations (high noise; Figure 4.6).  
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The spatial resolution of the CHM greatly impacts the detectability of small 

trees < 10 m (omission error), whilst simultaneously impacting the local maxima 

detection of tall tree crowns (commission error). We found that small, understorey and 

intermediate trees could not be reliably identified with the local maxima approach at 

all resolutions, where the detection rate was 35 % at 0.3 m - 0.4 m CHM resolution, 

reduced to 25 % at 1 m CHM resolution. Similarly, depending on the ITD approach, 

many other LiDAR studies (Duncanson et al. 2014; Edson and Wing 2011; Ferraz et 

al. 2012; Reitberger et al. 2009), demonstrate similarly low detection rates of small 

trees (< 40 %), describing poor representativeness in point clouds due to overstory 

obscuration. However, the omission error for trees < 10 m, in our study had a minor 

influence on the final biomass estimates, since all small trees account for 13 % of total 

AGB only.  

The occurrence of false tree peaks (H > 10 m) added further challenges. The ~ 

40% commission error is related to multi-local maxima in corresponding tree crowns, 

while the remaining proportion represent falsely detected trees. We found that using 

the 0.3 m CHM significantly increased (by ~100%) the number of extra local maxima 

in corresponding tree crowns. In turn, this led to greater commission errors and to 

substantial AGB overestimation. The detection of dominant and co-dominant trees 

remained stable for the 0.5 and 1 m CHMs resolutions, providing a reliable tree 

detection rate (65% - 70%) for tropical Eucalyptus spp. savanna (Table 4.3).  

Despite the fact that all models (Tables 4.4 and 4.5) showed similar tree 

detection rates, our findings demonstrate slightly better results related to models based 

on the PhotoScan 3D point cloud, especially with watershed segmentation. This 

variance could be attributed to different matching algorithms used in the two software 
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packages. Although all SfM based models showed generally adequate tree detection 

rates, LiDAR based measurements were better by 17% for all trees and by 9% for 

dominant and co-dominant trees. Comparison of the LiDAR and SfM point cloud 

vertical profiles (Figure 4.6) show that SfM does not capture the foliage distribution 

of the midstory and understory canopy layers. Same time, the SfM point cloud provide 

a greater point density than LiDAR data and depend on image resolution and used 

matching algorithms. It is likely, that the discrepancy in detection rates between 

LiDAR and SfM could be partly ameliorated by using a camera with a larger sensor 

and oblique imagery, which is an important consideration for future research.  

Another issue related to tree detection accuracy was the significant effect of 

the local maxima search window size relative to the tree crown size. Therefore, filter 

dimensions require careful selection (Popescu et al. 2002; Turner 2006). As a result, 

individual tree detection accuracy can be improved by clarification of height-crown 

diameter relationships before each project when undertaking the canopy maxima 

approach. Therefore, it may be the case that watershed segmentation can be used as a 

key tree detection approach as it does not need the height-crown diameter relationship 

calculation. To minimize tree detection commission errors, the watershed 

segmentation needs definition of the threshold value for segments join. Another 

advantage of watershed segmentation use over a local maxima approach is that it 

provides additional tree attributes, such as crown delineation and canopy area data. 

Similarly, the watershed segmentation approach cannot correctly extract tree segment 

areas due to considerable variation in crown diameter and the crown transparency of 

dominant and co-dominant Eucalypt trees. Thus, the crown area segments extracted 
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by the watershed segmentation cannot improve the AGB estimation of Eucalypt trees 

in Australian tropical savannas. 

4.3.2 The effect of camera calibration precision on the accuracy of tree height 

and biomass estimation 

In this study, the accuracy of the CHM had a direct effect on final AGB 

estimation given indirect allometry based only on tree height. Under/overestimation of 

tree heights (Table 4.6) led to corresponding variation in plot AGB estimation, from -

11% to +15% for trees (H > 10 m), depending on the model (except in the case of the 

non-gimbal PhotoScan model). The Photomod gimbal-based CHMs tended to 

underestimate tree height (~ -25 cm), while the PhotoScan models overestimated (~ 

+10 cm). The tree height underestimation in the Photomod models can be partly 

explained by smoothing filters and interpolation process applied during DSM creation 

from the 3D point cloud. As well, the results from Photomod and PhotoScan are likely 

to be related to volatility and errors in the camera’s self-calibration process during the 

independent block-bundle adjustments (Figure 4.7), which therefore affected the 

vertical accuracy of the extracted digital surface model (James and Robson 2014). 
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Figure 4.7: GoPro camera lens distortion plots based on camera self-calibration results 

in Photomod and PhotoScan. The estimated camera distortions are presented at the 

same scale (x161) across all figures.  

 

The differences in the self-calibration results may be explained, firstly, by the 

fact that all GCPs are located on flat terrain (< 0.5 m height range) which is 

disadvantageous in terms of accuracy and correlation between camera parameters; it 

is a non-optimal approach to producing metrically corrected and scene-independent 

calibration (Luhmann et al. 2016). Based on James and Robson (2014), another 

possible explanation for this discrepancy is that the self-calibrating bundle adjustment 

of non-metric cameras may not be able to derive lens radial distortion accurately so 

that a systematic vertical error may remain even with sufficient numbers of GCPs. We 
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anticipate that a camera with a larger sensor and detector pixel size can provide better 

accuracy in tree height estimation due to its more stable internal sensor geometry and 

better radiometry.  

The Photomod based model of the non-gimbal flight provided slightly better 

results in comparison with the gimbal flight, especially in the case of several tall tree 

detections (Figure 4.8). These results are likely to be related to noticeable changes of 

camera orientation angles and the fact that the camera was not angled at nadir, during 

the non-gimbal flight. Besides self-calibration issues, the tree detection omission and 

commission errors do not compensate for each other which obviously leads to 

systematic under/overestimation of AGB in each corresponding model.  
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Figure 4.8: Study area subsets (28 x 24 m) demonstrating the better results of the non-

gimbal over the gimbal derived raster CHMs. CHM resolution is 40cm GSD. White 

circles represent the crowns of reference trees (> 10 m). 
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4.3.3 Aspects and limitations of data acquisition by GoPro HERO4 camera 

The main limitation of the GoPro camera is that the very small sensor (1.55 

µm detector pixel size) in combination with a small lens aperture has low sensitivity 

to light (low signal to noise ratio and low dynamic range). Additionally, the operations 

of the camera are limited by the availability only of automatic shooting and continuous 

data acquisition modes (1 second in our case). As a result, to provide sufficient shutter 

speed (< 1/1000 sec) for image acquisition, the camera must be operated in sunny 

conditions with a sun angle >50°. Hence, we do not recommend using the acquired 

GoPro imagery without basic radiometry pre-processing (contrast, sharpness etc.). 

Direct geo-referencing, based only on on-board GoPro GPS data, cannot be 

used for accurate forestry applications due to the low accuracy of the mobile GPS (5 - 

20 m absolute error, in our case). The GCPs must be measured for indirect image geo-

referencing and camera self-calibration. This study, and our experience in UAS data 

processing, has demonstrated that on-board GPS precision is not a major factor 

defining successful UAS imagery processing results. More important is ability to 

deliver radiometrically corrected and undistorted images with high overlap and stable 

camera orientation angles, which is in agreement with Bosak (2011). This can be 

achieved by camera platform-stabilizing (gimbal use) during data acquisition. Despite 

the fact that the non-gimbal acquisition reduces the cost and weight of the equipment 

and sometimes can provide better results in the tree detection (Figure 4.8), we 

recommend using a gimbal for accurate UAS mapping. The gimbal can help prevent 

unexpected problems related to image block relative orientation (tie point matching) 

and 3D point cloud matching (high noise, which has impact on point classification 

accuracy (Table 4.2; Figure 4.6)). In most cases, the problems we’ve mentioned 
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cannot be solved by an inexperienced user and require highly skilled photogrammetric 

ability and experience, and comprehensive software tools (stereo mode, pair-wise error 

deep analysis etc.). Taking all these factors together, we conclude that a GoPro camera 

with gimbal can be used for AGB estimation of the dominant and co-dominant trees 

in Australian tropical savannas with a plot accuracy +/- 15% (without counting both 

small and understory tress). Furthermore, the limitation of this study related to fact that 

presented individual tree detection results can be applied only in local areas with 

similar Eucalyptus spp. vegetation. 

4.5 Conclusions 

The main aim of this study was to evaluate the efficiency of consumer light-

weight and low-cost UAS imagery (< $2,000) for estimating tree structural parameters 

and quantifying biomass in Australian tropical savannas based on well-known canopy 

maxima and watershed segmentation tree detection algorithms. We found that the 

canopy maxima and watershed segmentation routines could achieve similar tree 

detection rates (~70%) for dominant and co-dominant trees, but low detection rates 

(<35 %) for small trees due to poor representativeness in the point clouds and overstory 

obscuration. The GoPro camera, with gimbal setup and sufficient number of GCPs, 

can be used for acceptable (+/- 1.2 m) height estimation of dominant and co-dominant 

trees. We conclude that this low-cost UAS option currently cannot be used for reliable 

AGB estimation due to unstable sensor internal geometry, which affected the vertical 

accuracy of extracted CHMs. Although LiDAR provides higher tree detection rates 

and more accurate estimates of tree heights, image matching was found to be an 

adequate low-cost alternative for detection of dominant and co-dominant tree stands 

in Australian tropical savannas.  
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5.0 Abstract 

Obtaining reliable measures of tree canopy height across large areas is a central 

element of forest inventory and carbon accounting. Recent years have seen an 

increased emphasis on the use of active sensors like Radar and airborne LiDAR (light 

detection and scanning) systems to estimate various 3D characteristics of canopy and 

crown structure that can be used as predictors of biomass. However, airborne LiDAR 

data are expensive to acquire, and not often readily available across large remote 

landscapes. In this study, we evaluated the potential of stereo imagery from 

commercially available Very High Resolution (VHR) satellites as an alternative for 

estimating canopy height variables in Australian tropical savannas, using a semi-global 

dense matching (SGM) image-based technique. We assessed and compared the 

completeness and vertical accuracy of extracted canopy height models (CHMs) from 

GeoEye 1 and WorldView 2 VHR satellite stereo pairs and summarised the factors 

influencing image matching effectiveness and quality. 

Our results showed that stereo dense matching using the SGM technique 

severely underestimates tree presence and canopy height. The highest tree detection 

rates were achieved by using the near-infrared (NIR) band of GE1 (8 – 9 %). WV1-

GE1 cross-satellite (mixed) models did not improve the quality of extracted canopy 

heights. We consider these poor detection rates and height retrievals to result from: i) 

the clumping crown structure of the dominant Eucalyptus spp.; ii) their vertically 

oriented leaves (affecting the bidirectional reflectance distribution function); iii) image 
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band radiometry and iv) wind induced crown movement affecting stereo-pair point 

matching. Our detailed analyses suggest that current commercially available VHR 

satellite data (0.5 m resolution) are not well suited to estimating canopy height 

variables, and therefore above ground biomass (AGB), in Eucalyptus dominated north 

Australian tropical savanna woodlands. 

 

 

  



119 
 

5.1 Introduction 

Mapping of forests to assess their status and productivity is of increasing 

importance given their role in the global carbon cycle and the wide range of ecosystem 

services they can provide (Franklin 2001; Rogers et al. 2012). The collection of 

accurate and precise data related to forest structure, biomass and species composition 

has become an important part of forest management, inventories and monitoring 

(Trumbore et al. 2015). Different remote sensing methods have been used to address 

these issues, with varying levels of success. During the past 20 years, there has been 

an increasing emphasis in the use of active sensors like Radar and airborne laser 

scanning light detection and ranging (LiDAR) systems and stereo passive optical 

sensors (airborne and satellite imagery) to estimate various 3D characteristics of 

canopy and crown forest structure (Fatoyinbo 2012; Lu et al. 2016; Newton 2007). 

Results obtained differ between studies, depending on the sensor type, tree species and 

site conditions. Worldwide, LiDAR data, combined with up-to-date advanced data 

processing methods, have proven to be efficient and precise tools for indirect fine-

scale estimation of forest 3D structure parameters (primarily tree height) derived from 

high-density 3D point clouds (Asner and Mascaro 2014; Goldbergs et al. 2018a; 

Lefsky et al. 2002; Maltamo et al. 2014). 

However, relatively high acquisition costs prevent airborne LiDAR from being 

used across vast territories, and for regularly updating maps of forest structural state 

and dynamics. Australia’s tropical savannas cover 1.9 million km2, accounting for 

approximately 12% of the world’s tropical savannas (Beringer et al. 2015). When 

considering alternatives to airborne LiDAR for continuous wide-area surveys, more 

cost-effective approaches utilising satellite data need to be considered. The main 
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advantages of satellite data over airborne remote sensing data include higher temporal 

resolution, lower cost, wider area coverage and spatially more homogeneous image 

content with multispectral information (Immitzer et al. 2016). Recently, there has been 

growing interest in the use of Very High Resolution (VHR) satellite-derived stereo 

imagery to generate dense digital surface models (DSM) analogous to LiDAR data to 

support forest inventory and monitoring (White et al. 2013). Structure from motion 

(SfM) and photogrammetric stereo matching techniques (Ahmadabadian et al. 2013; 

Hirschmuller 2008) for generating dense DSM from stereo satellite and aerial imagery 

rely on algorithms that restore the 3D geometry and calculate 3D object coordinates 

by simultaneous pixel-based matching of the same 2D object points in every possible 

image. 

To date, several studies have effectively evaluated the combination of modern 

SfM image matching techniques and unmanned aerial systems (UAS) to extract tree 

biophysical and vertical structural parameters in different types of Australian forest 

(Hung et al. 2012; Wallace et al. 2016; Wallace et al. 2012; Whiteside and Bartolo 

2016). Goldbergs et al. (2018b) evaluated the efficiency of consumer light-weight and 

low-cost UAS aerial imagery (< $2,000) for estimating tree structural parameters and 

quantifying biomass in Australian tropical savannas. The study found that the canopy 

maxima and watershed segmentation routines could achieve tree detection rates for 

dominant and co-dominant trees of ~70%, which is similar to results from airborne 

LiDAR.   

However, the performance of image matching applied to VHR satellite stereo 

imagery for the retrieval of forest inventory attributes has not been studied intensively. 

The most successful studies are related to boreal and coniferous forests with dense 
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canopy cover and planophile foliage. St-Onge et al. (2008) assessed the accuracy of 

boreal forest canopy height metrics estimations based on canopy height models (CHM) 

comparison of an IKONOS stereo pair (1m resolution) and LiDAR data in the study 

area located in Quebec, Canada (bias -0.38m and RMS 4.24m). Neigh et al. (2014) 

found IKONOS Geo stereo data to be a useful low-cost LiDAR alternative for CHM 

generation (R2 0.71 and RMSE 2.6m) in dense coniferous forests, where high-quality 

digital terrain models (DTMs) were available. d'Angelo and Reinartz (2011) evaluated 

WorldView-1 stereo imagery DSMs models against LiDAR data in Spanish steep 

mountain forests (carob, Aleppo pine trees) and obtained 4.86m standard deviation 

(SD) error. Immitzer et al. (2016) demonstrated the potential of WorldView-2 (WV2) 

stereo data together with Germany National Forest Inventory field plots (beech, oak) 

to generate maps of the growing stock with explained 56% of the variability. Persson 

and Perko (2016) indicated that stereo matching of WV2 satellite images is suitable 

for forest height mapping in boreal (spruce, pine) forests, where a Lorey’s mean height 

could be estimated with a RMSE of 1.5 m (8.3%). For similar tree species, Yu et al. 

(2015) achieved similar results for plot (1024m2) Lorey’s mean height estimation with 

a RMSE of 1.4 m (6.63%). Straub et al. (2013) reported an RMSE of 44.4% for 

estimating timber volume at plot level and 19.6% at stand level in a complex mixed 

forest (Germany) using solely height data derived from stereo WV2. Aguilar et al. 

(2014c) confirmed that the quality of the extracted DSMs largely depended on the 

target land cover, being better for DSMs covering flat areas and best accuracy was 

attained for the case of pure along-track same-date stereo pairs. 

However, there is currently little experience of how accurately forest attributes 

can be estimated using VHR satellite stereo dense image matching, particularly in open 
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and heterogeneous forests and savannas with a complex vertical and horizontal 

structure. In this research, we have filled this knowledge gap through the assessment 

of both GeoEye-1 (GE1) and WorldView-1 (WV1) stereo imagery for woodland 

structure parameter extraction and biomass estimation in Australian mesic savannas.  

The main aim of this study was to evaluate the potential for stereo imagery, 

from commercially available VHR satellites, for estimating canopy height variables in 

open canopy Australian tropical savannas. To achieve this goal, we: (1) evaluated and 

compared the completeness and vertical accuracy of extracted canopy height models 

(CHMs) from GE1 and WV2 VHR satellite stereo pairs, in the same area and 

conditions, by using a LiDAR-derived CHM as reference; (2) analysed the effect of 

acquisition imagery geometry on stereo matching performance and canopy detection 

accuracy; (3) analysed the influence of stereo satellite spectral band radiometric 

characteristics on canopy detection accuracy and completeness; and (4) considered the 

influence of vegetation structure and the environmental conditions on CHM extraction. 

5.2 Methods 

5.2.1 Study Area 

Litchfield National Park is located 100 km south of Darwin (13°10′S, 

130°47′E), in the Northern Territory (NT), Australia (Figure 5.1). Our study area was 

located on the Tableland Plateu in a research “SuperSite”, covering approximately 25 

km2. The area is representative of high rainfall tropical savanna (mean annual rainfall 

1600 mm). The terrain is flat,  elevation range is 203-228 m, and represents the 

dominant ecosystem type across northern Australia (TERN 2012). The rainfall is 

highly seasonal with most rain falling from October to April. During the fire season 
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(May to September), the understorey progressively cures with increasing biomass 

flammability (Maier and Russell-Smith 2012b). The study area is predominantly 

composed of savanna woodlands dominated by evergreen Eucalyptus miniata and E. 

tetrodonta, contributing more than 80% of the total above-ground tree biomass 

(Goldbergs et al. 2018a; O'Grady et al. 2000). 

 



 

 

Figure 5.1: The 25 km2 study area with elevation range 203-228 m: (a) in the north Australian tropical savanna (in green); (b) fully covered by 

WV1 (white box outline) and partly by GE1 (yellow box outlie); (c) photograph of the study area, dominated by Eucalyptus spp. 

 



125 
 

5.2.2 Airborne LiDAR data 

Available LiDAR data were collected over the study area by Airborne 

Research Australia (ARA) in June 2013 and made available by the AusCover facility 

of the Terrestrial Ecosystem Research Network (TERN). The LiDAR data were 

collected with a Riegl LMS-Q560 full waveform sensor operating at 240 kHz, swath 

width of ~250 m, strip spacing of 125 m, with an average flying height above ground 

level (AGL) of 300 m, and flying speed of ~40 ms-1. Although this study utilised the 

full waveform LiDAR system, the data were decomposed into 5 discrete returns with 

20 cm footprints. The average LiDAR point density was 15 returns per m2. Analyses 

related to the LiDAR data pre-processing, such as point cloud classification and CHM 

calculation, were carried out with the LAStools processing scripts (Isenburg 2014). The 

derived LiDAR-based CHM was used as reference data for this study. 

5.2.3 Satellite data 

Two pairs of along-track stereo GeoEye-1 (GE1) and WorldView-1 (WV1) 

imagery were obtained. No other imagery was available for the study area. The main 

characteristics of the imagery are given in Table 5.1 and Figure 5.2. The images were 

100 km2 OrthoReady Stereo (OR2A) tiles, i.e. radiometrically (16 bit) and sensor 

corrected, projected to a plane using a Universal Transverse Mercator (UTM) map 

projection and had no topographic relief applied with respect to the reference ellipsoid, 

making them suitable for photogrammetric processing. While the WV1 imagery fully 

covered the study area, the GE1 stereo pair had 80% (20 km2) coverage (Figure 5.1). 
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Table 5.1: Characteristics of stereo satellite imagery pairs (WV1 and GE1) acquired 

at the study site, where: PAN – panchromatic, R – red, G – green, B - blue, NIR – 

near-infrared sensor bands. All angles are given in degrees. 

Spacecraft Image ID 
Acquisition 

date/time 
Bands 

Resolution 

GSD(m) 

Convergence 

angle 

Bisector 

angle 

Asymmetry 

angle 

Sun 

elevation 

WV01 
102001004098A300, 

1020010041D67000 

20 Jun 15 

00:37 PM 
PAN 0.5 42.5 73.9 3.83 52.6 

GE01 
1050410012C94300, 

1050410012C94400 

02 Jun 15 

11:14 AM 

PAN,                 

R,G,B,NIR 

0.5                         

2 
34.6 82.3 3.95 48.1 

 

 

 

Figure 5.2: Polar diagrams of satellite stereo pairs: acquisition geometry describing 

the relative positions (elevation and azimuth angles) of the sun (yellow stars) and the 

sensors (red dots) to the target (circle centre). The given numbers of sensor positions 

(WV11, WV12, GE11, GE12), in each stereo pair, correspond to acquisition time and 

catalogue order. All angles are given in degrees.  
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5.2.4 Image data processing and sensor orientation 

Two photogrammetric software packages, Photomod and PCI Geomatica, 

were used for regular parallel photogrammetric image data processing, related to 

image orientation, dense point DSM extraction and DTM creation. Photomod V6.3 

(Racurs, Moscow, Russia) and PCI Geomatica V2017 (PCI Geomatics, Richmond 

Hill, Ontario, Canada), are complete and integrated desktop software packages that 

features tools for remote sensing, digital photogrammetry, geospatial analysis and map 

production. PCI Geomatica was included due to its high popularity among VHR 

satellite stereo imagery users and researchers, and to perform an independent parallel 

assessment of the processing results. 

For dense DSM generation, both software packages use semi-global image 

matching (SGM) carried out at the pixel level (Hirschmüller 2011). In contrast to 

global matching approach, which seek to match every pixel in 2D image space, the 

SGM aggregate the matching (disparity) costs along several (8,16,32) symmetrical 

paths (1D constraints). As result, the SGM still achieves similar accuracy as global 

matching but makes process of matching more efficient and significantly faster 

(Hirschmuller 2008).  

Image pre-processing commenced with pan-sharpening, which was applied to 

the GE1 imagery. While PCI Geomatica provides only one default pan-sharpening 

algorithm, we chose the most robust enhanced principal component analysis pan-

sharpening method (from 3 others) in Photomod, as it does not require radiometric 

correction.  
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External sensor orientation was performed with an empirical model based on 

rational  functions with rapid positioning capability (RPC) data, refined by a zero-

order polynomial adjustment that required just one ground control point (GCP) 

(Grodecki and Dial 2003). To meet our research aims, image geo-referencing accuracy 

was improved by automatically measured tie points and ten manually positioned 

GCPs. Four out of the ten GCPs were surveyed using a ProMark3 (Magellan 

Navigation, Inc., San Dimas, CA, USA) differential GPS. As no permanent GPS base 

station was available within a 100 km radius, a temporal base and rover setup were 

used with a final absolute point accuracy of ~1 m. Due to a limited number of well-

identified man-made GCPs (poles, concrete slab corners) across the study area (4 of 

10) and to achieve the best co-registration, the coordinates of six well-identified 

natural (tree stumps) objects were transferred from the LiDAR data. The GCPs were 

manually measured in stereo mode in Photomod. Only a semi-automatic mono 

approach was available in PCI Geomatica. Fewer GCPs were used for geo-registration 

of the GE1 imagery due to its partial coverage of the study area.  

5.2.5 DSM, DTM and CHM extraction from VHR stereo satellite imagery 

Altogether, six along-track models per program (WV1: PAN; GE1: PAN, R, 

G, B, NIR) were chosen for 0.5 m resolution grid DSM generation by using an SGM 

matching algorithm.  Additionally, four cross-satellite grid DSM models were 

extracted, which comprised mixed stereo pairs combining single across-track images 

from both WV1 and GE1 sensors. 

We extracted a DSM for each model in PCI Geomatica with default SGM 

settings, (not readily changeable), and applied a low pass smoothing filter (average 
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filter using a small filter size). In contrast to PCI Geomatica, Photomod allows the 

user to interact with all SGM settings starting from the number of calculation 

directions (paths) through to the disparity map interpolation distance and smoothing 

filter radius. After testing various SGM settings, we used slightly modified Photomod 

SGM default settings based on the census transform (CT) matching cost function with 

increased pixel cost calculation radius (5) and calculation paths (16); and a decreased 

penalty value (50) for parallax change by more than one pixel. 

In total, four DTMs (0.5 m) were created, by using both programs’ DSM 

editing tools, from PAN-based DSM models. The DSM filtering performance and the 

vertical accuracy evaluation of the DTMs were performed by comparison with the 

LiDAR-based gridded (1 m) DTM. The DTMs were then used for further CHM 

creation for all models. 

The 0.5 m resolution grid CHM creation per model and comparison workflow 

was performed in SAGA GIS (Conrad et al. 2015) by subtracting the DTM from the 

corresponding gridded DSM. In every extracted along-track CHM model, we 

identified (selected) only grid values which represented a canopy height > 2 m. Thus, 

as no man-made objects (buildings etc.) existed, the height break threshold 2 m was 

applied automatically on all grid CHMs. The void values were assigned to the cells of 

all models < 2 m.  
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5.2.6 Accuracy assessment of CHMs 

The LiDAR-derived CHM dense point cloud was gridded to 0.5 m by assigning 

the elevation of the highest return within each grid cell to the grid cell centre and used 

as reference data. The accuracy and quality of the image-derived along-track CHMs 

was assessed in two ways: completeness and vertical accuracy. The completeness of 

the image and LiDAR-derived CHMs was assessed as the proportion of grid cells 

representing “canopy” (H > 2m) of the total number of cells.  

The vertical accuracy of the image and LiDAR-derived grid CHMs was 

assessed by matched cell (pixels) value comparison. The grid cell of any image-based 

model considered as matched in case of existence of corresponding valid (non-void) 

cell from LiDAR derived reference CHM. Descriptive statistics were calculated for all 

matched CHM grid cells in every model. The vertical accuracy of the matched cells 

was assessed by using robust accuracy measures suited for non-normal error 

distributions, as proposed for the accuracy assessment of digital elevation models 

(DEM) by Höhle and Höhle (2009). We modified the measures in relation to bias 

estimation between the reference data and the extracted CHMs. The set of accuracy 

measures (Table 5.2) are: mean bias difference between reference and modelled cells, 

median (50%) and 75% difference quantiles, median bias (%) - relation between the 

median of differences and reference (LiDAR) median vegetation matched cell heights; 

and the normalized median absolute deviation (NMAD). The NMAD is more resilient 

to outliers in comparison to standard deviation, as it is proportional to the median of 

the absolute differences between errors and median error.  
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Table 5.2: Accuracy metrics for extracted CHMs, where: ∆hj = difference between 

reference (LiDAR) and extracted CHM cell (j) values, and m = median quantile. 

Accuracy measure Notational expression 

Mean ∆ℎ̅̅̅̅ =
1

𝑛
∑∆ℎ𝑗

𝑛

𝑖=1

 

Median (50%) quantile 𝑄̂∆ℎ(0.5) = 𝑚∆ℎ 

75% quantile 𝑄̂∆ℎ(0.75) 

Normalized median absolute deviation 𝑁𝑀𝐴𝐷 = 1.4826 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(|∆ℎ𝑗 −𝑚∆ℎ|) 

Median bias (%) 𝑚𝑏𝑖𝑎𝑠 =
𝑚∆ℎ

𝑚𝑟𝑒𝑓.
∗ 100 

 

The accuracy and quality of the image-derived four cross-satellite models was 

assessed by visual comparison of the extracted DSMs, and all image-based CHMs 

(without height threshold cut) in comparison with the LiDAR, and presented in Tukey 

box plots (McGill et al. 1978). 

 

5.3 Results 

5.3.1 Accuracy of stereopair orientation 

Table 5.3 shows the accuracies of the stereopairs orientation, based on quality 

statistics, root mean square errors (RMSE), of the X, Y and Z coordinates of the GCPs. 

The geo-positioning adjustment of the GE1 imagery was the least accurate, due to 

fewer GCPs. Another explanation for this is that identification of the same natural 

GCPs differed in the WV1 and GE1 pairs due to radiometric and geometric 

differences.  The orientation of the Photomod-based models was better in comparison 
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with the PCI Geomatica ones, due to the manual GCP measurements in stereo mode. 

The use of stereo mode was especially important for the correct identification of the 

less accurate natural GCPs extracted from the LiDAR data. 

Table 5.3: Root mean square errors (RMSE, based on GCP measurements) of 

orientation of three stereo pairs for Photomod and PCI Geomatica, where: WV1 – 

WorldView1, GE1 PAN – panchromatic GeoEye1, GE1 MS – pansharpened 

multispectral GeoEye1. 

Stereo pair Software Nr. GCP RMSE X (m) RMSE Y (m) RMSE Z (m) 

WV1 
Photomod 

10 
0.27 0.41 0.48 

PCI Geomatica 0.38 0.53 0.62 

GE1 PAN 
Photomod 

7 
0.71 0.82 0.60 

PCI Geomatica 0.76 0.93 0.87 

GE1 MS 
Photomod 

7 
0.61 0.66 0.57 

PCI Geomatica 0.78 0.82 0.78 

 

5.3.2 Accuracy of the stereo imagery SGM based ground surfaces 

The vertical accuracy evaluations of the DTMs, obtained from the 

panchromatic imagery, were based on a comparison of the grid DTM cells with the 

corresponding LiDAR DTM grid reference data, Table 5.4. Most SGM-based DTM 

models overestimated in comparison with the LiDAR DTM, except the PCI 

Geomatica GE1 model. The largest differences in the terrain representation are 

provided by models based on GE1 image data and can be explained by its less accurate 

sensor orientation in comparison with WV1 data. Despite the better sensor orientation 

results of the Photomod-based models over the PCI Geomatica (Table 5.3), the results 

were worse in the DTM comparison. This discrepancy is related to the efficiency of 



133 
 

PCI Geomatica which provided a more robust, comprehensive, simple to use DSM 

filtering and editing tool set. 

Table 5.4: Comparison of the SGM-based (DTMSGM) and LiDAR (DTMLiDAR) - 

ground surfaces, based on corresponding elevation cell difference statistics: mean error 

and standard deviation (SD) (in metres). Negative values represent an underestimation. 

DTMSGM – DTMLiDAR 
WV1 20-06-15 GE1 02-06-2015 

PCI Geomatica Photomod PCI Geomatica Photomod 

Mean (Bias) 0.10 0.23 -0.33 0.37 

SD 0.28 0.39 0.62 0.71 

 

 

5.3.3 Completeness and vertical accuracy of SGM based CHMs 

The completeness of the image-derived CHMs was assessed by comparison 

with the LiDAR-derived CHMs, Table 5.5. Three Photomod-based CHMs derived 

from GE1 blue, green and red bands are not presented due to their similarity with the 

PCI Geomatica models. The most striking result to emerge from the data is that stereo-

dense matching using the SGM technique failed in all models. No significant 

differences were found between models except for the model based on the NIR band 

of the GE1 stereo pair. The next discussion chapter, therefore, moves on to discuss the 

reasons of that outcome. 
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Table 5.5: The completeness of image-derived CHMs compared with LiDAR-derived 

CHMs, where: first row - the ratio between the number of grid CHM cells representing 

canopy (H > 2m) and total number of cells; second row -  the percentage of image-

derived CHMs matched cells (H > 2m) with LiDAR CHM. PCI = models extracted 

from PCI Geomatica, PH = Photomod; Pan, Blue, Green, Red and NIR = are sensor 

bands used for corresponding CHM extraction. All values are given in percentages.  

 

 
LiDAR WorldView 1 LiDAR GeoEye 1 

 
25 km2 

PCI 
Pan 

PH 
Pan 

20 km2 
PCI 
Pan 

PH 
Pan 

PCI 
Blue 

PCI 
Green 

PCI 
Red 

PCI 
NIR 

PH 
NIR 

Canopy cover (%) 36.7 0.82 1.6 35.2 0.4 0.7 0.05 0.32 0.03 4.3 5.4 

LiDAR matched 
completeness (%) 

100 1.46 2.9 100 0.74 1.3 0.09 0.42 0.05 7.6 9.1 

 

 

Descriptive statistics were calculated for all matched LiDAR and image-based 

CHM grid cells (0.5 m, H > 2 m), in every model (second row, Table 5.5), and 

presented in Tukey box plots (McGill et al. 1978), Figure 5.3.  
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Figure 5.3: All matched LiDAR and corresponding image-based CHM grid cells in 

corresponding models (X axis), where: the vertical boxes represent the data range (Y 

axis, meters) between the lower (Q1 = 25%) and higher (Q3 = 75%) quartiles; the 

whisker length is within 1.5 times the interquartile range of Q1 and Q3; the red cross 

represents the mean value of the data; the horizontal line in the box is the statistical 

median; the blue point represents the maximum value of the dataset. PCi = PCI 

Geomatica; PH = Photomod based models with sensor band accordance. 

 

The vertical accuracy assessments of the CHMs (matched cells, H > 2 m), 

Table 5.6, are based on the accuracy measurements given in Table 5.2. Due to a 

negligible number of matched cells, the GE1 DSM models related to blue, green and 

red bands were not analysed. All models, except for the NIR-based, have high 

underestimation bias with respect to the reference LiDAR data. 
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Table 5.6: Vertical accuracy assessment (Table 5.2) of extracted image-based CHMs, 

compared to the LiDAR (matched cells, H > 2 m), where PCI – PCI Geomatica and 

PH – Photomod based models, PAN – panchromatic and NIR – near-infrared. Values 

in metres, except median bias (%). Negative values represent an underestimation. 

Accuracy measure 
WorldView 1 GeoEye 1 

PCI PAN PH PAN PCI PAN PH PAN PCI NIR PH NIR 

Mean (bias) (m) -4.6 -5.6 -4.9 -5.7 -4.2 -4.5 

Median (50%) (m) -3.7 -4.6 -3.8 -5.1 -2.9 -3.4 

75% quantile (m) -0.7 -1.5 -0.8 -1.6 -0.4 -0.7 

NMAD  4.6 5.9 4.4 5.8 4.5 5.3 

Median bias (%) 37% 37% 53% 52% 25% 26% 

 

 

5.3.4 The accuracy of the cross-satellite CHMs 

The descriptive statistics of the cross-satellite CHMs (all grid cells, no height 

threshold) are presented in Figure 5.4, comparing with the reference LiDAR data and 

the best NIR band image-based model. All cross-satellite models demonstrated 

negligible correlation with the reference data, with extremely high overestimation and 

high variance. Relatively, reasonable results were obtained only for open terrain areas 

without canopy cover and in a few areas of the WV12-GE12 model where images were 

acquired opposite the sun direction (forward scattering). 
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Figure 5.4: Box plots of LiDAR and corresponding PCI Geomatica image-based 

CHMs (X axis), where cross-satellite model names correspond to image locations in 

Figure 5.2. Each box represents the data range (Y axis, metres) between the lower (Q1 

= 25%) and higher (Q3 = 75%) quartiles; the whisker length is within 1.5 times the 

interquartile range of Q1 and Q3; red cross – mean value of data, statistical median as 

a horizontal line in the box. 

 

5.4 Discussion 

DSM generation from VHR stereo satellite imagery is unreliable in the tropical 

savanna ecosystem that we studied. There were no significant differences among the 

DSM models, except for the NIR-derived model, which only provided an 8-9 % 

canopy detection rate. If the proportion of detected trees is as low as it was in this 

study, it is clear that there would be considerable underestimation of canopy heights 

(Table 5.6). However, these results provide important insights into the factors and 
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causes driving this negative outcome. The accuracy and completeness of DSMs 

generated by the SGM matching algorithm had a direct effect on canopy detection 

performance. In our study, it was related to a complex of interdependent factors, 

including: (1) vegetation structure and species composition; (2) observation geometry 

dependent reflectance (bi-directional reflectance factor, BRDF); (3) wind induced 

crown movement; (4) accuracy of image orientation and extracted CHMs and; (5) 

image band radiometry. 

5.4.1 Eucalyptus miniata/tetrodonta structure 

Canopy detection in savannas with low canopy cover and an open canopy 

structure is more difficult than in a forest with a closed canopy, since open canopies 

allow more sunlight to penetrate the forest canopy and result in the return of a mixed 

signal to the sensor. Eucalyptus miniata and E. tetrodonta are characterised by the 

presence of rigid and narrow leaves, vertically orientated (erectophile) in response to 

the high sun intensity (similar to needle leaves), making their canopies relatively more 

transparent when viewed from above (Goodwin et al. 2005; Jacobs 1955), Figure 

5.5a,5.5b. The reflectance of canopies is also influenced by tree-crown density and 

canopy cover, represented by the Leaf Area Index (LAI), and understorey reflectance. 

Hutley et al. (2011) describe LAI along a rainfall gradient starting at a value of ~1, in 

the region encompassing our study site, down to 0.4, compared to a range of 0.5 to 5.5 

in Eastern Australian Eucalypt dominated habitats (Woodgate et al. 2015). 
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Figure 5.5: Eucalypt tree crown with clumped-leaf-grain structure, random 

vertical/horizontal clump organization and gaps, where: (a) a photograph of E.miniata 

vertically oriented and narrow leaves; (b) sparse, clump structure of E.miniata crown; 

(c) scheme of tree crown structure representing two-level clump hierarchy and 

transparency during image acquisition; (d) example of tree object (leaf clump) missing 

(moving) on one of the images due to wind effect. 
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Eucalypt tree crown structure is represented by a two-level clump hierarchy. 

Every big branch forms a clump (normally 3 - 7 m in diameter) which constitutes the 

first level of the crown hierarchy. Each branch clump consists of a group of smaller 

objects (leaf clumps, 0.5 - 2 m in diameter) that form a second level of the tree crown 

structural hierarchy and are arranged around small branches interspersed with large 

crown gaps (Jacobs 1955). Additionally, the tight leaf concentration around branches 

and large intra crown gaps result in low foliage cover with a variety of crown shapes 

(Culvenor 2000), where mean foliage projective cover in the study area is 20%.  

Because leaf arrangement is tightly clumped, every Eucalypt tree crown has a 

clumped-leaf-grain structure with a random vertical/horizontal clump and gap 

organization (Figure 5.5c). Such a heterogeneous structure exhibits a small cross 

section when seen from above the canopy. As a result, the canopy is transparent and 

shows little contrast with the background. The sunlight, scattered by a clump, when 

colliding with another clump within the same crown, is more likely to escape through 

the mid crown lateral surface, resulting in relatively low upward reflection (Schull et 

al. 2011). As result in most cases, due to the clumped and transparent pattern of 

Eucalypt canopy structure, the fewer number of SGM image-matched points are 

unable to derive the upper canopy surface.   

Our tests in the field confirmed that Eucalyptus miniata and E. tetrodonta are 

strongly affected by wind. We undertook continuous zenith photography of the tree 

crowns with time intervals 5 and 20 sec. from a fixed ground position, under similar 

conditions (5 - 6 m-1s) as for the dates of image acquisition. The images demonstrated 

the tree crown and leaf clump movement, and deflections of up to several meters, 

(Figure 5.5d). As a result, within the time interval between the image pair (up to one 
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minute), tree crowns or parts thereof, are in vastly different locations violating the 

fundamental assumption of the SfM technique that both images capture exactly the 

same scene from two different locations. Thus, image objects disappear, in this 

instance the trees, from the CHM, and therefore account for a substantial error in the 

detection rates. 

5.4.2 Vegetation reflectance and contrast effects 

Reflectance of vegetation strongly varies with sun-sensor viewing geometry 

and is affected by a complex mixture of variables, including canopy, understorey and 

ground layer structure, species composition, soil type and soil moisture. These can be 

accounted for by the bidirectional reflectance distribution function (BRDF) (Gerard 

and North 1997). In our case, due to the leaf clumping, consequent crown 

transparency, proportionally low canopy cover and wind effect, the digital 

photogrammetric and computer vision techniques had to deal with complex mixed 

pixels, which included information related to the ground layer, foliage, crown woody 

parts, understorey components and shadows (Figure 5.6a,5.6b). 
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Figure 5.6: WV1 stereo imagery fragments (110 x 170 m) of the study area with 

extracted canopies (yellow polygons, H > 2 m), where: (a) left and corresponding (b) 

right image (toward sun) of the first stereo pair fragment, E.miniata/terodonta spp. 

dominant, with failed SGM technique; (c) left and corresponding (d) right image 

(toward sun) of the second stereo pair fragment with grouped broad leaf Ironwood 

(Erythropleum cholorostachys) trees and successful SGM-based CHM extraction; and 

corresponding hemispherical photographs of E.miniata/tetrodonta (e) and; Ironwood 

tree copses (f). 
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The sparse canopy pattern, highly scattered reflectance, and the relatively small 

brightness range between the shadows and sunlit areas, such as at the top of the canopy, 

resulted in insufficient image contrast for tree canopy separation (detection). This can 

be seen in images acquired opposite the sun direction (forward scattering) and creating 

a blurred effect (Figure 5.6b). In most cases, it was then impossible to detect tree 

crowns correctly during dense DSM extraction by SfM matching. SGM matching was 

more successful in dense groups of planophile leaf species, such as Ironwood 

(Erythropleum cholorostachys) (Figures 5.6c, 5.6d). Coexisting broad leaf species fill 

in the canopy gaps and reduce crown transparency, smoothing the roughness of the top 

of canopy shape thus increasing the reflectance, as crown shape topology has been 

found to have a significant influence on overall reflectance (Gerard and North 1997). 

To increase the canopy detection rate, there must be sufficient image contrast 

between the canopy and the understorey. If the understorey and canopy have similar 

spectral properties, like Eucalyptus spp., the matching technique is less likely to 

identify the top of the canopy, and thus the surface elevation measurement at the 

feature's location would be more representative of the ground (background) elevation. 

This finding is in agreement with Montesano et al. (2017) who showed that contrast 

and brightness between vegetation and the ground surface primarily determines 

whether elevations from SfM are derived from somewhere at the top or within the 

canopy, or from the ground. These findings were further supported in areas with 

burned understorey (Figure 5.7), which provided a darker background. In most such 

areas, the SGM canopy detection shows positive results in comparison to surroundings 

areas, which can be explained by the higher brightness/contrast between vegetation 
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and the darker ground surface (charred material). These findings also could partly 

explain the differences in completeness (Table 5.5) between WV1 (200% higher rate) 

and GE1 PAN imagery, as the areas with burned understorey were only covered by 

the WV1 images.   

 

Figure 5.7: Two WV1 imagery fragments (1600 x 1200 m each) of the study area 

covering sites with burned understorey. Extracted canopy segments are depicted as 

yellow polygons. The burned understorey areas appear darker grey. 

 

The highest tree detection rates were achieved by using the NIR band of GE1 

imagery (Figures 5.8, 5.9), ~20 times higher than the green band results (Table 5.5). 

This is understandable, as photosynthetic Eucalypt vegetation spectra generally have 

the same shape and magnitude as other vegetation spectra dominated by chlorophyll 

and have the highest reflection in the NIR (Kumar et al. 2010), providing higher 

contrast between canopy and the bare ground surface. As in most cases, the ground is 

also covered in vegetation, it seems possible that these results are due to the high 

reflectance and transmittance of leaves with less pronounced shadow components and 

NIR BRDF effects in the spectral signature of the scene. However, the overall tree 
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detection rate is still unsatisfactorily low. Again, this likely arises because the reflected 

radiation received by the sensor integrates the reflectance from leaves, branches, stems 

of the trees, as well from the ground cover, dry leaves and soil. The final spectral 

signature consists of a greater combination of all these surface components in such 

open Eucalypt savanna. 



 

 

Figure 5.8: GE1 imagery fragment (170 x 120 m) of the study area with extracted image-based CHMs (yellow polygons; H > 2m) related 

to corresponding image bands (background) in comparison with reference LiDAR data (green polygons with yellow fill; H > 2m). All 

images are in the sun direction (backward scattering). 
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  Photomod WV1 PAN     PCI Geomatica WV1 PAN 

  Photomod GE1  NIR      PCI Geomatica GE1 NIR 

 

Figure 5.9: Two horizontal transect examples of successful CHM SGM matching based on 

WV1 PAN and GE1 NIR imagery in comparison with reference LiDAR 3D point cloud (green 

dots), where: PCI Geomatica 0.5 grid CHMs are solid lines and corresponding Photomod 

CHMs are dashed lines. Images are in the sun direction (backward scattering). 
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This study has been unable to demonstrate that cross-satellite (mixed) models 

could improve the quality of extracted DSM (Figure 5.4). This result could be 

attributed to radiometric differences between images, which are related to differences 

in acquisition dates, image geometry and different sensors. After stereo visual 

inspection of image DSM outliers, we found that a significant contributing factor was 

the effect of the movement of the shadows of single trees (displacement) between 

images due to different sun positions and sun-to-sensor geometry. Surprisingly, in 

most cases, the shadow displacement was insufficient to adversely affect cell matching 

along the clearly expressed shadow edges. Contrary to the radiometric differences, 

many DSM outliers were still correctly matched (mostly along shadow edges of single 

trees) and lead to incorrect height calculations (mostly overestimation). As a result, we 

cannot recommend using cross-satellite (mixed) imagery for DSM extraction in areas 

with clearly identifiable individual tree shadow patterns (Fig. 5.6a). 

 

5.4.3 Ground estimation and DTM quality analysis 

Accurate modelling of the terrain (DTM) is critical for CHM calculation. The 

results of this study indicate that Eucalypt-dominated savanna vegetation structure is 

sufficiently transparent to undertake accurate terrain reconstruction by SfM matching 

techniques. The present findings are consistent with our previous research (Goldbergs 

et al. 2018b) which found that the overwhelming majority of all 3D DSM point 

extractions related to the ground surface, negating the need to use an external digital 

terrain model for CHM generation. No significant differences were found between 

DTMSfM and DTMLiDAR, both providing similar representation of the terrain across the 

study plot. In our case, the default and automatic filtering procedures of the DSM 
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editing tools were acceptable for DTM extraction across the flat (20 m terrain height 

range) study area.  

In addition, we assessed the efficiency of filtering procedures applied on rough 

terrain (150 m vertical range) using the same NIR band extracted DSM (with high tree 

detection rates) in an area outside of our available reference LiDAR data (Figure 

5.10). Our results indicate that rough terrain DSM filtering, using LiDAR-based or 

photogrammetric techniques, requires an operator for the DSM manual editing process 

to achieve acceptable results in DTM creation. This is mostly due to limited visibility 

of the ground to successfully extract vegetated areas from the SfM based models, 

resulting in large gaps of ground area in the DSM. The removal of non-ground 

elevation values from the steep and vegetated rough terrain DSM, based only on 

automatic filtering tools, can lead to the elimination of good surrounding ground 

elements/cells, that otherwise contain artefacts related to above ground features. These 

results match those observed in DeWitt et al. (2017), who showed that subsequent 

filtering may reduce the effect of above-ground features, but at the cost of fine-scale 

terrain details. We should note, that depending on the terrain roughness and proportion 

of vegetation in the area, the DSM semi-automatic filtering process can take significant 

time. 

Another important finding was that SGM-based canopy detection was more 

successful in rough terrain compared to flat areas. This may be explained by the fact 

that the rough terrain contains many creeks and therefore a lot of riparian vegetation, 

which has mostly planophile leaf orientation and much less transparency with higher 

canopy cover.  
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Figure 5.10: Visual comparison of DSM and corresponding DTM (800 x 700 

m): (a) DSM (0.5m) extracted by SGM using NIR band of GE1 imagery; (b) 

corresponding DTM (150 m elevation range) after applying automatic and 

semi-automatic DSM filtering and editing techniques (PCI Geomatica).   

 

5.4.4 Considerations, limitations and recommendations for data processing by 

stereo WV1 and GE1 satellites 

It is reasonable to expect that the uncertainty in the canopy detection by SfM 

based techniques will vary from area to area depending upon many interrelated factors 

(Table 5.7). However, determining how much information (reflected energy, 

vegetation detail etc.) is needed from the tree crown for an acceptable result by SfM, 

is still unknown. In our recent research (Goldbergs et al. 2018b) the SfM based 

techniques achieved high tree detection rates (~70%) for dominant and co-dominant 

trees by using low-cost unmanned aerial systems (UAS) imagery (5 cm resolution). 

Taken together, these results suggest that there is an association between SfM 

efficiency and spatial resolution. The fine spatial resolution of the data can help to 
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reduce such factors like clumping vegetation structure and crown transparency. It is 

unlikely that an SfM technique based on single stereo pair measurements will allow 

accurate tropical savanna canopy extraction. The successful UAS-based results, 

image-to-sun geometry and object reflectance rules suggest multiple view angle image 

measurements are required. Further research should be done to investigate the source 

imagery resolution dependency and along-track multiple view image satellite 

measurements (e.g. triple stereo Pleiades) influence on SfM efficiency in tropical 

savannas.  

Research is also needed to analyse satellite images acquired in different 

seasons, that is, to investigate the effect of tree leaf deciduousness and background 

(grass and litter) conditions on the quality of extracted DSMs. Unfortunately, in this 

research, stereo satellite imagery had very similar sensor-to-target and sun-to-sensor 

geometry (Table 5.1; Figure 5.2), acquired under similar seasonal and climatic 

conditions. This fact did not allow us to perform a comprehensive analysis of the effect 

of the image geometry differences (e.g. convergence, bisector and sun angles) and their 

influence on the quality of the extracted DSMs. This is an important issue for future 

research, especially in the extreme case, sun elevation angle 90o, (February and 

October); and possible along-track stereo satellite image acquisition or multiple 

satellite constellation, where the path direction and/or image-to-target is perpendicular 

to the sun-to-target direction (principal plane). 

 



 

Table 5.7: Summary of factors influencing SGM-based DSM quality and accuracy. (Derived from analyses in north Australian tropical savannas). 

 

 

Factor Level of influence  Affected by Affected on  Possible solutions, comments 

Vegetation 

clumped-leaf-grain 

structure and leaf 

vertical orientation  

Highest Type of vegetation (species 

etc.) 

 

Amount of scattering and reflection 

energy; on canopy transparency; 

canopy separation from the ground; 

BRDF 

Data acquisition with maximal leaf-on conditions 

(January to June) and highest contrast/brightness 

differences between canopies and ground: NIR band 

use, after understorey fire; optimal image-to-target 

geometry (further research needed); 

Multiple (more than two) along-track imagery 

acquisition (e.g. satellite triple stereo imagery) or 

multiple satellite constellation, where the path 

direction and/or image-to-target is perpendicular to 

the sun-to-target direction. 

Stem density, 

tree canopy 

formation, canopy 

cover 

High Vegetation spp. and structure, 

terrain relief.  

 

Crown/canopy shadowing; 

individual tree and ground surface 

detectability. 

Canopy/crown 

shadows 

High  Sun position, sun-to-image 

geometry; vegetation structure 

and transparency. 

Efficiency and quality of image 

matching, individual tree and ground 

surface detectability. 

Wind High  

(if speed > 5m/s) 

 

Wind speed Leaf clump displacement due to wind Data acquisition under low wind conditions (3 m/s) 

Terrain, steep relief Depend on terrain 

geomorphology 

 Ground surface detectability and 

quality of extracted DSM and DTM 

needed for CHM generation 

DTM creation by semi-automatic DSM editing and 

filtering program tools with operator interaction. 

External high quality DTM use 

Stereo imagery 

(image-to-target) 

geometry 

Depend on image 

acquisition 

parameters 

Sensor and acquisition 

parameters (e.g. convergence, 

bisector angles).  

2D projected object geometry in 

images; parallax.  

Data acquisition with optimal image-to-target 

geometry (further research needed) 

 

Sun-to-image 

geometry 

Highest By positions of sensor and sun 

during imagery acquisition. 

 

Imagery radiometry and its 

differences; efficiency and quality of 

image matching. 

Imagery along-track path perpendicular to sun-to-

target direction; along-track multi view imagery 

acquisition e.g. triple stereo imagery (further research 

needed) 

Imagery spatial 

resolution 

High Sensor type and data 

acquisition parameters.  

 

Image and object spatial geometry, 

object and it’s parts detection and 

identification 

Imagery with higher spatial resolution use 

Poor initial stereo 

model absolute 

geo-referencing 

High, 

Critical with 

external DTM use 

Number and accuracy of 

measured GCP 

 

Stereo model absolute vertical (DSM) 

and horizontal accuracy 

 

Additional number of GCP, especially height points; 

Stereo measurements of GCPs 
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No significant differences were found between Photomod and PCI Geomatica 

photogrammetric software, both providing similar results of the extracted CHMs 

across the study area. The Photomod based models showed slightly better canopy 

detection results thanks to the modified SGM default settings. We should note 

however, that modifying and testing the new SGM settings required additional 

operator and machine time, and extra operator attention for further DSM filtering. The 

PCI Geomatica provides slightly better SGM results based on default settings than 

Photomod, an advantage for non-experienced users.  

In terms of manual stereo digitizing/extraction of tree crowns in Photomod, 

and based on our stereo restitution experience, we have defined the following rules 

associated with SGM for regions with similar vegetation structures. If an experienced 

stereo operator cannot approximately identify (i.e. digitize in stereo) the shape, and 

accurately extract the height, of the crown (like on stereo model, Figure 5.6a, 5.6b), 

the SGM will fail with a 99% probability. However, if the operator can perform the 

stereo restitution of the approximate shape and height of the tree crown, the probability 

of image matching success will be > 30%. Omitting the necessary time for object 

extraction, the human visual capacity still has advantage over automated SGM 

techniques in such relatively sparse (~30% canopy cover) savannas with clumping and 

transparent Eucalypt vegetation.   
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5.5 Conclusions 

The main aim of this study was to evaluate the potential for stereo imagery, 

from commercially available VHR satellites, to estimate canopy height variables in 

open canopy Australian tropical savannas. In this study, we only examined the SGM 

image matching algorithm, limited by sensor-to-target and sun-to-sensor geometry. 

We found that stereo dense matching using the SGM technique failed in all models of 

both GeoEye-1 (GE1) and WorldView-1 (WV1) stereo imagery. The results of this 

study show that the highest tree detection (completeness) rates (8 – 9 %) were achieved 

by using the NIR band of GE1 imagery, while the next best were PAN-based models. 

Both sets of stereo satellite imagery provided similar very low results (1 – 2 %). This 

study has been unable to demonstrate that WV1-GE1 cross-satellite (mixed) models 

could improve the quality of extracted DSM. Taken together, these results suggest that 

commercially available VHR satellites (0.5 m resolution) not well suited to estimating 

canopy height variables and AGB in open canopy Australian tropical savannas. 

Despite the negative outcome, this study offers some insight into factors 

causing the poor SGM image matching. After comprehensive analysis of these factors, 

it was found that the problem is related to the clumping crown structure of the 

dominant overstorey Eucalypt trees, and their erectophile foliage, affecting the 

bidirectional reflectance distribution function, in combination with low sensor 

resolution and crown movement due to wind. These results provide key insights into 

possible future areas of research. We hope our findings and recommendations can 

improve the understanding of the complex factors affecting canopy detection 

performance by SfM image matching applied derived from VHR satellite stereo 

imagery. 
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6.1 Summary 

This final chapter provides an overview of the major results and outcomes from 

this research study, recapping the key findings, problematic and conclusions. In the 

next sections, the research findings, problems are summarized, synthesized and 

discussed in order of common and most important issues related to defined aims and 

objectives of this thesis. These sections include: summary of research outcomes (6.1); 

crown delineation and segmentation problematic (6.2); biomass uncertainty estimation 

(6.3); comparison the airborne LiDAR and optical sensors in terms of efficiency for 

biomass estimation (6.4); and consideration the spatial resolution of optical sensors for 

individual tree crown and canopy identification (6.5) in Australian mesic savanna. 

Research limitations and recommendations for future research are proposed in 

Sections 6.6 and 6.7.  

The main aim of this dissertation was to assess the ability of VHR remote 

sensing data (LiDAR, airborne and VHR satellite imagery) to extract tree biophysical 

and vertical structural parameters to reliably estimate biomass and carbon stocks in 

Australian mesic savannas. Three research components were investigated to obtain the 

results. These components included the evaluation of Above-Ground Biomass (AGB) 

estimation uncertainty by using airborne LiDAR data; estimation of tree structural 

parameters from CHM derived by image-based matching technique from UAS data; 

and finally, an evaluation the potential for VHR stereo satellite imagery to estimate 

canopy height variables in Australian tropical savannas. The following series of 

research activities by using corresponding data sources were undertaken: 
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Reference data (refer Chapter3: Goldbergs et al. (2018a): 

• Field data were collected from a 1 ha plot and every tree with a height 

> 2 m and DBH > 2 cm was measured. The DBH, tree height and tree 

species were recorded in the inventory; 

• AGB of every reference tree was estimated using previously fitted 

species-specific allometric models with tree DBH as independent 

variable. 

 Airborne LiDAR data (refer Chapter3: Goldbergs et al. (2018a): 

• The local maxima and watershed segmentation approaches were used 

to detect individual trees from LiDAR based canopy height models; 

• Allometric relationships between field-derived individual tree AGB 

and corresponding LiDAR derived crown area and tree height were 

calculated; 

• 300 rectangular 4 ha sample plots, 1200 1 ha plots, 4800 0.25 ha and 

19,200 0.0625 ha (25 ×25 m) plots from throughout the entire LiDAR 

covered 12 km2 study area were established to determine the most 

appropriate metrics and scales for area-based estimations of AGB; 

• estimations from individual tree LiDAR measurements are used as 

training/reference data for all established plots across entire study area 

to develop allometric equations related to LIDAR metrics; 

• The errors of tree-level local maxima tree detection and individual tree 

AGB uncertainty were considered in the validation process, based on 

obtained tree detection rates and commission/omission errors ratio. The 
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obtained biases were introduced to every plot reference data across the 

study area. 

UAS imagery (refer Chapter4: Goldbergs et al. (2018b): 

• The light-weight mini-UAS quadcopter with an inexpensive consumer 

action GoPro camera was used for imagery acquisition across the study 

area (2.2 ha); 

• The local maxima and watershed segmentation approaches were used 

to detect individual trees from the image derived CHMs, computed 

from extracted 3D dense point clouds; 

• The influence of CHM spatial resolution on tree detection accuracy was 

analysed, and the results were validated against reference airborne 

LiDAR data. 

VHR Stereo satellite imagery (refer Chapter5: (Goldbergs et al. 2019)): 

• The potential of stereo imagery from commercially available VHR 

satellites was evaluated as an alternative for estimating canopy height 

variables by using semi-global dense matching (SGM) image-based 

technique; 

• The completeness and vertical accuracy of extracted CHMs from 

GeoEye 1 and WorldView 2 satellite stereo pairs were assessed and 

compared against reference airborne LiDAR data. 

The general results of the thesis are summarised and compared in Table 6.1. In 

the next sections, the given research results are synthesized and discussed. 



 

Table 6.1: A summary and comparison of the LiDAR and optical imagery, used in this research, for tree detection and height estimation. 

 LiDAR  UAS stereo photogrammetry 1 VHR satellite stereo  

Tree detection and delineation 

methodology 

Canopy Maxima and watershed 

segmentation 

Canopy Maxima and watershed 

segmentation 
CHM pixel-based comparison 

Raw data spatial resolution 15 – 18 pts/m2 GSD 0.04 m GSD 0.5m 

Optimal CHM resolution used 0.5 m 0.4 m 0.5 m 

All tree detection rate 

 

45-60 %  30-40 % 1-3 % (PAN band) 

7-9 % (NIR band) 

Dominant and co-dominant tree 

detection rate 

75 % 70 % - 

Height estimation accuracy 
N/A2 1.20m (SD)3 

-0.30 – 0.10 m (Mean bias)) 

 

-4 - -6 m (Mean bias) 

AGB estimation 

accuracy 

RMSE 3.40 Mg ha-1 

SD 12% of plot AGB4  

RMSE ~ 5 Mg ha-1 

SD 17% of plot AGB 

N/A5 

DTM estimation 

Accuracy (LiDAR compared) 

N/A 0.18 m (SD) 0.30 - 0.70 (SD) 

                                                            
1 Gimbal flight only (refer to Chapter 4) 
2 Not available due to lack of accurate tree height field measurements (refer to Chapter 3) 
3 In comparison with LiDAR data 
4 Standard Deviation (SD) calculated based on 29.3 Mg ha-1 mean plot AGB across study area (12 km2) 
5 AGB estimation was not possible due to severe underestimation of tree presence and canopy height (Chapter 5) 
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6.2 Crown delineation and segmentation 

6.2.1 Individual tree detection and delineation  

In this research, I applied canopy maxima and watershed tree crown detection 

and delineation approaches using LiDAR and stereo imagery data, focusing on the 

upper crown surface (CHM) and its spatial arrangement. The main reason for using 

the Canopy Maxima and watershed segmentation approaches is the speed and 

simplicity of processing. A disadvantage of these approaches is that they are limited 

by the CHM, which, due to interpolation, is unable to detect trees below the upper 

canopy. The issue is more pronounced in LiDAR data, where only the first returns per 

pulse are used for CHM creation, whereby a lot of information remains unclaimed. 

Canopy maxima and watershed segmentation performed far better for separating 

dominant and co-dominant trees than for small trees.  

The most significant issue encountered by crown delineation algorithms is the 

problem of over-segmentation (commission errors), as these assume that each crown 

has only one dominant peak, versus under-segmentation (omission errors), where one 

or more abutting or overlapping tree canopies are identified as a single tree. This issue 

is of concern in Eucalypt stands with mixed canopy areas, where large canopies have 

a tendency to be subdivided, and small closely located canopies tend to be aggregated. 

This research confirmed that the problem could be partly minimized by using a CHM 

with a locally optimised spatial resolution after applying smoothing filters preserving 

local maxima (Gougeon and Leckie 2003). This research has demonstrated that 

detection of dominant and co-dominant trees remained stable by using 0.5 and 1 m 

(LiDAR), 0.4 - 1 m (UAS) CHM resolutions providing a high tree detection rate (> 
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70%). Thus, the above-described omission and commission errors could be minimized 

and partly compensated by concentrating on dominant and co-dominant tree detection. 

The difficulty in delineating small trees is not only due to overstorey 

obscuration, but also due to tree size and shape, poor representativeness in point clouds 

and relatively coarse (0.4 -1 m) CHMs. The small trees could not be reliably identified 

with canopy maxima nor watershed segmentation approaches. Reference trees 

provided AGB calculations (Chapter 3), small trees (H < 10m) accounted for 15% of 

the total AGB in the study area. For this reason, I suggest that further research needs 

to be undertaken for dominant and co-dominant tree detection accuracy enhancement 

to minimize commission and omission errors. 

6.2.2 The influence of Eucalypt structure on tree detection 

In this study, I found that internal Eucalypt crown structure affected the 

efficiency of tree detection, for both active and optical sensors. The results of this study 

indicated that the problem is related to the clumping crown structure of the dominant 

Eucalypt overstorey, and their erectophile foliage, affecting the Bidirectional 

Reflectance Distribution Function (BRDF). These results match those observed in 

earlier studies (Culvenor 2000; Gerard and North 1997; Turner 2006). Eucalypt 

crowns mostly have multiple peaks; this is challenging for the canopy maxima 

approach which tries to detect the highest pixels within a localised search window 

based on the relationship between tree height and crown size (i.e., the higher the pixel 

the larger the search window). Eucalypt crowns are not uniform, having irregular 

crown edges, and highly variable size and shape, intra-crown gaps (Turner 2006), such 

that the canopy maxima approach leads to high commission errors. To improve the 

tree detection accuracy in this case, 3D approaches for single tree segmentation 
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(delineation) can be applied (Mongus and Žalik 2015). Ferraz et al. (2012) proposed a 

method applied directly to the 3D point clouds for the characterisation of multi-layered 

forests from LiDAR data using iterative clustering based on a mean shift algorithm. 

Further work is required to establish this in Australian savannas 

Additionally, similar to Shendryk et al. (2016), I determined that the watershed 

segmentation approach did not improve tree detection efficiency nor accuracy, since 

crown shape and width estimates were poorly correlated with reference data. Again, it 

is highly probable that the key issue is due to highly fragmented crowns consisting of 

clumps of branches, interspersed with intra-crown gaps. In this case, the isolated 

branches are often classified as separate crown units, creating false local maxima and 

tree segments. As a result, applying smoothing filters to lower resolution CHMs is a 

compromise, that is, an ‘efficiency threshold’, which cannot fully eliminate the 

commission errors in tree detection by either the canopy maxima nor the watershed 

segmentation approaches. Therefore, I suggest that an area-based biomass estimation 

(ABA), incorporating errors from the ITC steps, could be one of the optimal solutions 

for estimation of AGB by LiDAR in Australian savannas. 
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6.3 Savanna biomass estimation 

6.3.1 Hierarchical integration of individual tree and area-based approaches for 

biomass estimation by LiDAR 

The ABA estimation method, with low-point-density data, is more efficient 

and cost-effective for both computation and laser data acquisitions. The calculation of 

point cloud height metrics is faster and technically easier compared to individual tree 

detection methods. The results of this study indicated that 1 ha and 4 ha sample plots 

provided more accurate estimates of AGB when using LiDAR cloud height metrics 

(Chapter 3). The area-based biomass estimation approach, which incorporated errors 

from the ITC steps, identified that the quadratic mean of canopy height (QMCH) was 

the best single independent variable for different plot sample sizes (e.g. for 4 ha plots 

RMSE = 3.4 Mg ha-1, SD = 12% of plot AGB; and 1 ha plots RMSE = 4.0 Mg ha-1, 

SD = 14% of plot AGB).  

The larger plot size minimizes edge effects and co-registration errors, and 

maximizes the precision and accuracy of the output data. However, in practice, a large 

number of reference data are needed for a large sample plot, which can be costly and 

time consuming. The proposed two-phase framework reduces the need for extensive 

fieldwork by combining the advantages of both individual tree detection and ABA. 

The approach can be relatively easily performed by using the computationally fastest 

and simplest local maxima technique and manually digitised delineated tree crowns as 

the trained reference data. This study demonstrated that only a small area (1 ha in this 

case) of high-density data (>10 points m-2) need to be used to estimate and update 

regression equations that relate laser data to field observations, and then generalise the 

prediction of AGB for the whole area using low-density LiDAR metrics. 
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6.3.2 Biomass uncertainty estimation based on hierarchical integration of 

individual tree and area-based approaches 

The reasons for systematic errors of estimates based on the local maxima and 

watershed segmentation approaches are as following. Firstly, due to the vegetation 

structure (6.2.2) of tropical savannas, all trees cannot be detected by the ITC approach. 

The omission and commission errors, as described in Section 6.2.1, do not fully 

compensate for each other. Secondly, the number of stems is underestimated because 

obscured trees are less likely to be detected (Maltamo et al. 2004). Finally, this study 

has shown that the dominant and co-dominant trees are more readily correctly 

identified. As result, the total plot biomass is underestimated; or overestimated, in the 

case of a high proportion of commission errors. 

Due to omission/commission errors, the reliability of tree detection was a 

major error source, biasing AGB estimation at the plot level when undertaking 

hierarchical integration of individual tree and area-based approaches. Thus, the errors 

of local maxima tree detection and individual tree AGB uncertainty must be considered 

in the process of upscaling AGB from tree to plot. This study provided a framework, 

describing how AGB uncertainty can be calculated and validated based on available 

reference field data or/and manually measured trees from the LiDAR point cloud. 

Total plot AGB should be corrected based on an uncertainty analysis of the local 

maxima tree detection approach. In this study, the overall systematic error in AGB 

estimation using the ITC local maxima approach was of the order of 10% 

underestimation compared to the reference data. 
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6.3.3 Biomass estimation from image-based derived 3D point clouds 

In these analyses, I applied canopy maxima and watershed segmentation 

approaches to UAS image-based canopy height models in combination with LiDAR 

reference data to fit non-linear models for biomass estimation. The UAS data were 

compared with LiDAR data, as the spatial distribution of trees and the uncertainty in 

the ITC approach couldn’t be assessed by the UAS data itself. Besides the 

omission/commission errors related to the efficiency of the individual tree detection 

approaches, the accuracy and completeness of CHMs generated from image-based 3D 

dense point clouds are also affected by: (1) the accuracy of the bundle-block 

adjustment (image geo-referencing); (2) sun-to-image and image-to-object geometry; 

(3) and the effectiveness of the chosen SfM matching algorithm. Thus, under similar 

data acquisition conditions (e.g. weather and the spatial resolution of the data), LiDAR 

data provide higher tree detection rates and more accurate estimates of tree biomass 

then corresponding image-based data. Despite this, this research concluded that UAS 

imagery, with gimbal, can be used as a standalone sensing technology for AGB 

estimation of the dominant and co-dominant trees in Australian tropical savannas, with 

a plot accuracy of 15% (without counting understorey trees). Possible area of future 

research would be investigation of UAS imagery acquisition using multiple viewing 

angles, in addition to nadir. Presumably, it will able to provide direct assess the spatial 

distribution of trees and improve ITC accuracy from image-based 3D dense point 

clouds. 

This research also concluded that camera calibration is critical to tree height 

estimation accuracy. I anticipate that a camera with a larger sensor and detector pixel 

size could improve matching performance during individual tree detection and provide 
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better accuracy in tree height estimation due to its more stable internal sensor geometry 

and better radiometry. This is an important issue for future research. 

 

6.4 LiDAR vs optical sensors 

6.4.1 Data acquisition 

In comparison to LiDAR, optical sensors are strongly influenced by solar 

illumination, sensor-to-target and sun-to-sensor geometry (i.e. BRDF). As a result, the 

shadows of the canopy can greatly limit matching efficiency. In contrast, LiDAR 

systems are not influenced by the presence of shadows or daylight, and therefore data 

can be acquired day or night. In Australian tropical savannas, it is important to bear in 

mind that wet season cloud, and dry season smoke haze, restrict the use of satellite-

based sensors and make seasonal monitoring problematic (Collins et al. 2009).  

Airborne sensors have wider swaths, a more effective field of view (FOV), and 

are more flexible in terms of image overlap in both the along-track and cross-track 

strip directions. Thus, for the same number of flying hours with LiDAR, large format 

airborne imagery can cover a much larger area. As an integrated part of data 

acquisition, the UAS requires operator presence at a field site, which then limits the 

UAS remote operating range and adds costs to field and travel activities.  

6.4.2 Data geo-referencing  

Thanks to the integration of accurate Global Positioning Systems (GPS) and 

Inertial Navigation Systems (INS), LiDAR provides direct 3D raw point (X,Y,Z) data 

with 5–20 cm vertical accuracy, 2-4 times better than planimetric, and an error of ca. 
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0.5–2 cm per 100 m of flying height for typical attitude errors and a scan FOV angle 

of 30 degrees (Baltsavias 1999b). Despite the fact that modern optical sensors are also 

equipped with GPS/IMU, allowing direct image geo-referencing, this research has 

shown that an integrated image orientation with in-field high-accuracy and signalized 

GCPs (with additional costs) is still required to achieve the corresponding vertical and 

planimetric accuracy with the LiDAR data.  

Accurate image geo-referencing (aero-triangulation), used for tree/canopy 

attribute estimation, is based on GCP measurements, and thus is an additional 

processing step for any optical sensor. Since tree heights are based on above ground 

elevation, it is important that the extracted digital surface (DSM) and terrain (DTM) 

models used for CHM creation are appropriately accurate. This study has shown that 

errors incorporated into an image geo-referencing (orientation) process, for example 

due to cheap and inaccurate GPS/IMU or incorrectly measured GCPs, will be 

propagated into the DSM, DTM and finally into the CHM estimation.  

6.4.3 Point cloud comparison 

Overall, there are many more factors that can influence the results of image-

derived 3D point clouds, thus making the prediction of the accuracy and error 

propagation much more complicated. Factors, like poor geo-referencing, low image 

texture, low radiometry differences between images, shadows, and the BRDF effect, 

do not affect LiDAR based 3D point clouds. 

Previous studies have reported that LiDAR-based models (~10 pts m-2) provide 

more accurate attribute estimations (such as maximum and mean tree height, volume 

and basal area) in coniferous forest than image-based models (Bohlin et al. 2012; 
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Järnstedt et al. 2012). The ability of LiDAR to penetrate the canopy could be essential 

in areas with rough terrain, or in riparian vegetation, which has much less transparency 

due to higher canopy cover. Additionally, small morphological features, such as 

cracks, lateral ridges, pressure ridges and step wise morphology can be recognizable 

in LiDAR models, providing the interpreter unprecedented detail. 

However, with low LiDAR point density (< 1 pts m-2), the advantage of 

photogrammetry is in break lines and mass point capture, whereas the sampling of 

LiDAR data is predetermined and measured points may not lie on break lines. The use 

of manual stereo restitution and verification is also a strength of photogrammetry. The 

potential advantage of optical sensors (mostly satellite) is related to the use of 

multispectral information for biomass estimation vegetation indices; it also enables 

visual interpretation of species, segmentation and other vegetation inventory attributes. 

A further study with more focus on spectral data use from imagery is therefore 

suggested.  

6.4.4 Automation and data processing time 

Due to additional processing steps, such as precise integrated image geo-

referencing, 3D point cloud calculation and DTM filtering, the time required to acquire 

and process image data into a useable point cloud is much higher than for LiDAR. 

Thanks to the necessity for direct and precise 3D point cloud retrieval, LiDAR systems 

have a higher degree of automation and faster data delivery. Professional and freeware 

programs (Lastools, Fusion) provide full and integrated sets of tools for LiDAR data 

handling and processing. All LiDAR data post-processing, like point cloud 

classification and CHM creation, can be fully automated, without manual interaction, 
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in open and relatively flat areas like in the Australian tropical savannas. In most cases, 

these activities don’t need advanced operator knowledge nor experience.  

This research has shown that photogrammetric processes still need many 

manual and semi-automated interactions related to sensor orientation, optimal setting 

testing for image matching, DSM and DTM filtering, and careful accuracy assessment 

after each processing step. There are currently no freeware programs available for 

complete and comprehensive photogrammetric data processing and image handling. 

The photogrammetric workflow requires highly skilled photogrammetric ability and 

experience. 

6.4.5 Cost-effectiveness 

The evaluation of cost-effectiveness of remote sensing methods appears to be 

limited by the large number of variables to consider, including the project goals, the 

size of the study area, the final product accuracy, the spatial resolution of the RS data, 

the cost of data acquisition, software and hardware availability, data processing 

framework, consideration of workflow time, technical expertise of staff, etc. The 

comparison between satellite and airborne methods, such as UAS vs WorldView, is 

sometimes irrelevant because they are used for different tasks, related to different 

resolutions and cover areas. 

Four main sources of expense are encountered during remote sensing: the cost 

of data acquisition; set-up costs (e.g. hardware and software); field survey time; and 

the time required for image processing (analysis) (Mumby et al. 1999). A general list 

is provided in Table 6.2. The data processing to data acquisition cost ratio can be 

raised significantly if accurate fine-scale mapping is required. If there are no set-up 
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costs, the total costs fall dramatically. Field survey (reference data collection), which 

is a necessary aspect particularly for aerial photography, constitutes a significant 

proportion of remote sensing cost, especially in remote vast Australian tropical 

savannas, including, beside field measurements, the staff travel time/allowance, RS 

equipment, vehicle lease, maintenance and fuel costs. 

LiDAR data acquisition remains expensive in comparison with large format 

airborne photography (2-3 times) and satellite stereo data (at least 10 times). At the 

same time, factors like automation, relative simplicity in data handling and post-

processing, accuracy of the final product, and processing time, increase the cost-

effectiveness of using LiDAR substantially. Thus, LiDAR has become increasingly 

competitive compared to aerial photography and even VHR satellites. I have observed 

that project and production managers do not always prefer the least expensive remote 

sensing technique. In practice, the main requirements are related to equipment 

simplicity in handling and maintenance, and reliability and efficiency of data 

processing to achieve an acceptable degree of accuracy. The selection of technology 

for future savanna research and applications will depend on the objectives, the 

characteristics of the study and available budget. 
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Table 6.2: Cost-effectiveness of each remote sensing mapping approach, used in this study. 

 LiDAR Airborne stereo photogrammetry VHR stereo satellite 

Raw data acquisition 

($/1km2) 
>1000 

200 to 2000 (UAS case) 

UAS lease cost; 
> 80 

GCP field measurements Optional 

Mandatory (~$1000) per scene; plus, staff 

travel costs, equipment, vehicle lease and 

fuel cost 

Mandatory (~$1000) per scene; plus, staff 

travel costs, equipment, vehicle lease and 

fuel cost 

Software ($) Freeware $5,000 (Agisoft Photoscan, Photomod UAS) $10,000 (Photomod, PCI Geomatica) 

Post processing time and 

costs 

Almost fully automatic; less 

processing steps and time 

Semi-automatic processing; 

Manifold processing time than for LiDAR 

 

Semi-automatic processing; 

Greater processing time; 

~ $ 40 km-2 orthophoto and DTM creation 

 

Skill required 
Available scripts, basic 

expertise 

Theoretical and practical photogrammetry 

expertise required;  

Theoretical and practical photogrammetry 

expertise required;  

 

 



175 
 

 

6.5 Consideration of spatial resolution  

6.5.1 LiDAR point density 

The most important parameter describing the spatial resolution of a LiDAR point 

cloud is the point or pulse density. A pulse (pls) is a laser signal sent out from the lidar 

system towards the ground and a point (pts), referred to as a return or echo, is the 

signal reflected from the target back to the lidar system. Similar to the resolution of 

optical sensors, the point density of LiDAR data defines the number of measurements 

(samples) per area unit sampled, given as pls m-2 or pts m-². 

The most important limitation of the monitoring and mapping of large forest areas 

by LiDAR is that it is not economically practicable to collect data with more than 

several laser pulses per square metre (Næsset and Gobakken 2008). Collecting higher 

point density data is costly, and processing these data can be problematic. Conversely, 

collecting LiDAR data, with lower point density over larger areas, encourages large 

area mapping but at the potential risk of losing accuracy. Previous studies have 

reported that accuracy remains relatively high until low pulse densities are used (e.g. 

1 – 2 pulses m-2) (Magnussen et al. 2013; Turner 2006). Coverage and lidar pulse 

density affect LiDAR acquisition cost (Baltsavias 1999a). As a result of the 

compromise between cost, coverage and density, large area data users must either 

order low pulse density data covering a large area or a higher pulse density data that 

concentrates on a subsection (Jakubowski et al. 2013). 

If airborne LiDAR were to become standard for monitoring large areas of northern 

Australia, it is likely that only low densities of 1–3 points m-2 could be achieved, 
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allowing the establishment of the empirical relationship between plot-level derived 

LiDAR data metrics and the target plot-level inventory variable (e.g. AGB) by 

regression techniques. As this research was based on an average LiDAR point density 

of 15-18 points m-2, the relevant question to be addressed is whether the low-point 

density (1–3 points m-2), medium-point density (3 – 6 points m2) and spaceborne 

LiDAR data can provide sufficient accuracy to reliably estimate the Eucalypt 

tree/canopy structure metrics (e.g. tree height, crown shape and canopy height metrics) 

and therefore to accurately predict the AGB Thus, the point density issue is an 

important issue for future research. This was not undertaken here given that simulation 

experiments based on LiDAR thinning can’t adequately model the corresponding data 

acquisition parameters, such as flight altitude, LiDAR pulse energy, the footprint and 

the pattern. 

6.5.2 Spatial resolution of imagery 

This research has shown that determining the optimum image spatial resolution is 

critical for individual tree crown and canopy identification. Spatial resolution defines 

the level of spatial detail depicted in an image. It defines the smallest feature that can 

be resolved by the instrument and, in this sense, is directly related to ground sample 

distance (GSD). This research has demonstrated that tree detection efficiency is related 

to different spatial scales of image data, especially in comparison between UAS and 

stereo satellite imagery. In this comparison, the data differed in the ratio between the 

constant size of objects in a scene and the different spatial resolutions of the images 

(GSD 4 cm for UAS vs. 50 cm for satellite imagery). At a high spatial resolution (e.g. 

4 cm), when the GSD is significantly smaller than the size of the image objects, many 
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neighbouring pixels, representing objects, are more likely to be matched, resulting in 

the extraction of an object’s surface, for example the tree crown (Fig 6.1).  

  



 

a)       b)           c) 

  

Figure 6.1: Spatial resolution: a) Successful extract of a single Eucalypt tree (height 13m, diameter=3m) from UAS imagery (GSD 4cm) 

represented by the 3D point cloud (red dots) with average point density 150 pts m-2; b) corresponding CHM grid (40cm) used for canopy maxima 

and watershed segmentation tree detection algorithms; and c) corresponding WV1 image (50cm) with failed image matching failure. Black grid 

lines are spaced 50cm and the blue dot is the extracted local maxima from the UAS imagery.
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As the GSD increases, the number of pixels comprising the object decreases, 

with the likelihood that neighbouring pixel similarity also decreases. In this case, the 

number of potential pixel matches decreases, reducing the capacity to estimate (fix) 

the object surface. Further increases in GSD result in the pixel value being influenced 

by multiple objects (foliage, ground etc), leading to an averaging of the spectral canopy 

response (brightness and contrast). Due to the clumped crown structure of Eucalypts, 

and their erectophile foliage, affecting the BRDF, relatively low satellite sensor 

resolution (GSD 50cm) leads to unsatisfactory image matching results. 

This research set out to determine the number of matched points per tree or tree 

clump required for successful detection, using image matching techniques. The area 

parameter of all detected tree/canopy (UAS and stereo satellite research) segments was 

used to fulfil this task. A simple descriptive statistical analysis of the detected tree 

crown/canopy area (m2) was used to evaluate the impact of sensor spatial resolution 

by comparison with reference tree area values (n = 2015, Chapter 3) (Table 6.3) 

Table 6.3: Descriptive statistics (quantiles) of the areas of detected tree 

crowns/canopies based on watershed segmentation compared to the reference data. All 

values are given in m2. UAS - 4cm GSD drone imagery (Chapter 4); GE1 NIR – 

GeoEye1 50cm GSD NIR band imagery (Chapter 5). 

Quantiles 
% 

LiDAR reference data UAS 
All trees 

GE1 NIR 
All trees All trees Trees>10m 

25 2.4 13.2 1.3 14.3 

50 3.6 25.3 3.4 31.7 

75 9.9 49.8 11.4 77.0 

90 38.2 74.0 33.7 168.2 
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It is apparent from Table 6.3 that UAS imagery, achieved a high individual 

tree detection rate and provided similar results to the LiDAR data, with only slight 

underestimation of crown areas, due to the difficulty of detecting trees with small 

crowns (< 3m2) and inaccurate crown edge detection.  The most striking result to 

emerge from the satellite imagery, was the inability to detect trees with crown areas 

less than 10 m2, accounting for about 75% of all live trees in the study area. It seems 

that the satellite imagery, at the given spatial resolution, was only capable of detecting 

dominant and co-dominant trees (H > 10m, crown > 15 m2). Very high values for the 

GE1 imagery (75% and 90% quantiles) compared to the reference data, indicate the 

groups of merged crowns/canopy delineation instead of single/individual tree 

detection. 

In this research, the stereo satellite imagery was unable to detect ~ 90% of trees 

(H > 10 m). To determine the number of matched points per tree, or tree clump, 

required for successful detection, it was assumed that 10% of detected trees represent 

the canopies with the greatest area, where factors such as clump structure, leaf 

orientation, wind etc, are neglected, with dependence only on spatial resolution. The 

90 % percentile of the crown size of the reference trees (H>10m) is ~ 75m2, Table 6.3. 

Thus, 75 m2 was defined as the threshold of successful tree detection.  In the case of 

the of GE1 and WV1 imagery, 75 m2 corresponds to 300 pixels (0.5m x 0.5m). This 

relationship between crown area and image resolution has ascertained the minimum 

number (300) of matched pixels required for successful tree crown detection, and 

extrapolated other crown areas (Figure 6.2). 
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Figure 6.2: Relationship between the crown area and image spatial resolution based 

on 300 (minimum) matched pixels for successful tree (H > 10m) detection/delineation 

by using stereo satellite stereo imagery in Australian savanna. The red box represents 

50% (Median) of all trees across the 4 ha validation plots (n = 2015, Chapter 3). The 

dashed black line represents 50% (Median) of trees (H > 10m) across 4 ha validation 

plots (n = 485).  

These findings suggest that the pixel size of the optical imagery should be < 12 

cm to detect/delineate at least 50% of all tree crowns (3.9 m2) and < 30cm to detect 

50% of dominant trees (H>10m, 25 m2) by image matching techniques. It is important 

to bear in mind the possible bias in these responses after introducing the factors which 

have a direct impact on tree detection by image matching (Table 7 from chapter 5). 
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The most important limitation lies in the fact that given relationship between crown 

area and image resolution based on specific tree detection rate using stereo satellite 

stereo imagery in Australian savanna. These findings suggest that another possible 

area of future research would be to investigate optical stereo imagery in a resolution 

range between 0.15 and 0.30 m (large format sensor airborne imaging) for estimating 

canopy structural parameters in open canopy Australian tropical savannas (Figure 

6.3). 

 

Figure 6.3: Dominant tree detection rate dependence on stereo image resolution. 

(Based on interpolation of UAS and satellite stereo image matching data in Australian 

tropical savannas).  

It is important to bear in mind that the spatial arrangement and physical 

properties of the tree/canopy, sensor-to-target and sun-to-sensor geometry, sensor 

pixel size, and contrast of an object of interest compared with its surroundings, will 
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influence the electromagnetic radiation reflected from the scene and recorded by the 

sensor. My investigation of NIR band efficiency in terms of tree/canopy detection 

showed that the higher the contrast/brightness between crown and surrounding pixels, 

the less strict we have to be with the image resolution. If the contrast is low, the 

resampling will totally diminish point or line objects, so that they cannot be 

distinguished from the surroundings. For example, in the case of the GoPRO camera 

(Chapter 5), it can be expected that another camera with the same GSD resolution, but 

higher detector size like the Sony NEX series, can improve tree detection rates and 

provide better accuracy in tree height estimation due to its better radiometry. Further 

research is suggested focusing on AGB estimation accuracy by using UAS cameras 

with a bigger sensor detector (pixel) size. Also, the selection of the right pixel size will 

remain an issue to the application and project objectives. 

6.6 Research limitations  

A key limitation of the monitoring and mapping of vegetation in large remote 

areas with LiDAR is whether high-density data are necessary to obtain accurate results 

at the plot-scale. In the hierarchical integration of individual tree and area-based 

approaches for improved savanna biomass estimation, high-density LiDAR data (> 10 

pulses m−2) are necessary to generalise the calibrated prediction of AGB for the whole 

area using low density LiDAR metrics. The quality of the AGB estimates depends on 

the size of the reference data used to construct and/or validate the allometric model. 

The main limitation of this study relates to the observation that AGB uncertainties can 

be applied only to local areas with similar Eucalypt dominated vegetation and LiDAR 

acquisition parameters. 



184 
 

There are many limitations with the single-tree detection methods used in this 

study. Depending on the ITC approach, this study demonstrated similar low detection 

rates of small trees (20-40%) using either LiDAR and UAS imagery data. The AGB 

estimation results in an overestimation/underestimation due to missing and false 

detected trees. Edge-detection using the watershed segmentation approach is also 

problematic due to Eucalypt crowns with numerous isolated branches extending 

beyond the core crown area. The only way to improve the accuracy of the AGB 

predictions is to improve the tree detection rates by using different methodological 

(e.g. parametric and non-parametric semi-ITC) approaches.  

The main limitation of the UAS approach was the very small sensor (1.55 µm 

detector pixel size) of the GoPro camera, in combination with a small lens aperture, 

giving a low sensitivity to light (low signal to noise ratio and low dynamic range). 

Hence, this study does not recommend using the GoPro-derived imagery without basic 

radiometric pre-processing (contrast, sharpness, etc.). Another limitation is related to 

the fact that the self-calibrating bundle adjustment of non-metric cameras may not be 

able to derive lens radial distortion accurately enough, so that a systematic vertical 

error may remain even with sufficient numbers of GCPs, which leads to 

under/overestimation of tree heights and corresponding variation in plot AGB 

estimation. 

In this research, the two sets of stereo satellite imagery had a very similar 

sensor-to-target and sun-to-sensor geometry, as they were acquired under similar 

seasonal and climatic conditions. This fact did not allow for a comprehensive analysis 

of the effect of image geometry differences (e.g. convergence, bisector and sun angles) 

and their influence on the quality of the extracted DSMs. 
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6.7 Practical implications and recommendations 

This research has several practical applications to be applied in Australian 

mesic savannas. Firstly, it has established a two-phase AGB estimation procedure: (1) 

using estimations from individual tree LiDAR measurements as training/reference 

data; and then applying these data to (2) an area-based LiDAR estimation of AGB to 

create the allometric equations related to LIDAR metrics. The two-phase procedure 

can be easily applied in remote areas, where road networks are non-existent or sparse, 

and is a cost- and labour-effective method as it requires less measurement in the field 

to calibrate LiDAR estimates than previous remote sensing techniques. This method 

can be most effective in identifying individual dominant and co-dominant trees from 

CHM with 0.5–1 m resolution. AGB and the uncertainty of estimation can be 

quantified from LiDAR data by integrating both individual tree detection and area-

based approaches. This provides a framework for regional savanna inventories, 

monitoring and mapping. The focus on dominant and co-dominant trees allows for 

minimizing uncertainty, associated with single-tree detection approaches (commission 

and omission errors) by providing sufficient (> 70%) tree detection rates. 

The airborne LiDAR and image-based derived estimations accuracy of the tree 

parameters depend on the following two limitations. Firstly, the overlapping between 

a dominant target tree and its neighbours may have influenced the estimation of tree 

parameters (commission/omission errors). Secondly, the crown penetration (UAS) and 

the point density (airborne LiDAR) could be insufficient to describe individual tree 

crown shapes and tree components like stems and branches. Such error-causing 

problems possibly can be corrected, and more accurate results in the extraction of tree 
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parameters can be obtained using combination of LiDAR, UAS and Terrestrial Laser 

Scanner (TLS) data. Further work is required to establish this. 

Whilst the initial cost of LiDAR data acquisition may appear high in 

comparison with VHR satellite and airborne large format imagery, factors like 

automation, relative simplicity in data handling and post-processing, accuracy of the 

final product, and processing speed increase the cost-effectiveness of using LiDAR 

substantially. 

Recent trends in spaceborne LiDAR (Ice Cloud and Land Elevation Satellite 

(ICESat), Global Ecosystem Dynamics Investigation (GEDI)), and the combination of 

LiDAR with full colour imagery could provide an alternative methodology for better 

mapping of pan-tropical vegetation (Hajj et al. 2017). In an ideal scenario, LiDAR can 

be utilised within a multi-scale hierarchical framework, including other high (satellite 

based active (SAR and LiDAR) and passive (Sentinel-2) sensors) and medium 

resolution RS tools (e.g. Landsat), forming part of any regional savanna sampling or 

monitoring strategy. The key use of LiDAR would then be for data collection to 

establish local regression models, biomass mapping and dynamic change detection. 

Since active RS provides a straight forward procedure to estimate canopy vertical 

structure metrics, the errors and uncertainties associated with structural effects can be 

reduced in the combined approaches. The use of LiDAR within a multi-sensor 

framework provides an efficient method for understanding how scale impacts local to 

regional estimation of vegetation attributes. 

A comprehensive change detection (with 2-3 years gap) pilot study would help 

to gain a better understanding of biomass dynamics and its changes due to factors such 

as fires, weed expansion (e.g. Gamba grass, Andropogon gayanus) and climate change. 
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Additionally, such a pilot study should focus on an assessment of low (1–3 points m-

2) and medium-point density (3 – 6 points m-2) LiDAR data, and integration with VHR 

mono-satellites used for object-based tree crown delineation. Also, topography should 

be an additional parameter of interest due to challenges of data processing and the 

interactions with vegetation fuel characteristics and fire behaviour.  

Although LiDAR data provide higher tree detection rates and more accurate 

estimates of tree heights, image matching was found to be an adequate low-cost 

alternative for the detection of dominant and co-dominant tree stands in local areas of 

tropical savannas. The main advantage of small and low-cost UAS is their ability to 

collect imagery with high spatial and temporal resolution. A stable and correct 

alignment of the images can be achieved by camera platform stabilisation during data 

acquisition. 

The findings of this study suggest that the implementation of low-cost UAS 

imagery into the existing field data collection framework can enhance its performance 

and flexibility, and improve the final product output. It is recommended to use low-

cost UAS image acquisition during each field campaign at least as a visual record. 

Further experimental investigations are needed to estimate the planimetric and vertical 

accuracy of image-based CHMs by using direct geo-referencing (no GCPs). 

Despite the inadequacy of the stereo satellite imagery for canopy detection in 

Australian savannas, this research has offered some insights into the causes for the 

poor SGM image matching: the clumping crown structure of the dominant Eucalypt 

overstorey; the effect of  erectophile foliage on BRDF; low sensor resolution and 

crown movement due to wind. The comprehensive analysis of the effect of the image 

geometry differences (e.g. convergence, bisector and sun angles) and their influence 
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on the quality of the extracted DSMs and along-track stereo satellite constellation, 

where the path direction and/or image-to-target is perpendicular to the sun-to-target 

direction (principal plane), are important issues for future research. As well, further 

research should be undertaken to investigate the dependency on image resolution for 

image matching efficiency in tropical savannas. 
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6.8 Contribution to Knowledge 

This research has highlighted the efficiency of small footprint LiDAR and 

VHR optical remote sensing data (UAS and VHR stereo satellite imagery) to extract 

tree biophysical and vertical structural parameters for the purposes of accurately 

estimating biomass (RMSE <15 % of plot Mean AGB), and hence carbon stocks, in 

Australian mesic savannas. 

The main contributions of this thesis to the body of scientific knowledge are: 

• Understanding how uncertainty of biomass estimation varies with spatial scale 

by integrating both individual tree detection and area-based approaches. 

• Area-based (ABA) biomass estimation, incorporating errors from the 

individual tree detection step identified that the quadratic mean of canopy 

height (QMCH) is the best single independent variable for AGB estimation.  

• Large 1-4 ha ABA plot size choice is more suitable for accurate area biomass 

estimations across north Australia with airborne LiDAR. 

• The detection of dominant and co-dominant trees by LiDAR and UAS 

remained stable by using 0.5 and 1 m CHM resolutions, providing a high tree 

detection rate (> 70%) for tropical Eucalyptus-dominated savanna, based on 

the canopy maxima and watershed segmentation routines. 

• Light-weight and low-cost UAS imagery (<$2,000) can be used for the AGB 

estimation of the dominant and co-dominant trees in Australian tropical 

savannas, with a plot accuracy of 15% (without counting both small and 

understorey trees). 
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• Commercially available stereo VHR satellites (0.5 m resolution) are not well 

suited to estimate canopy height variables and AGB in open canopy Australian 

tropical savannas, due to severely underestimating tree presence and canopy 

height. The highest tree detection (completeness) rates (8 – 9 %) were achieved 

by using the NIR band of stereo satellite imagery. 

• Despite the negative outcome from the use of stereo satellite imagery, this 

study offered insight into complex factors affecting canopy detection 

performance by SfM image matching related to the clumping crown structure 

of the dominant overstorey Eucalypt trees, and their erectophile foliage. 
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