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A B S T R A C T

Fire has a diverse range of impacts on Earth's physical and social systems. Accurate and up to date information
on areas affected by fire is critical to better understand drivers of fire activity, as well as its relevance for
biogeochemical cycles, climate, air quality, and to aid fire management. Mapping burned areas was traditionally
done from field sketches. With the launch of the first Earth observation satellites, remote sensing quickly became
a more practical alternative to detect burned areas, as they provide timely regional and global coverage of fire
occurrence. This review paper explores the physical basis to detect burned area from satellite observations,
describes the historical trends of using satellite sensors to monitor burned areas, summarizes the most recent
approaches to map burned areas and evaluates the existing burned area products (both at global and regional
scales). Finally, it identifies potential future opportunities to further improve burned area detection from Earth
observation satellites.

1. Introduction: impacts of biomass burning

Fire is a natural disturbance agent in many ecosystems, helping to
promote diversity and natural regeneration (Kelly and Brotons, 2017).
However, fire has also been used since the beginning of human history
as a tool for hunting, land management and deforestation (Pyne, 1995).
Fire cycles were historically associated with climate oscillations, par-
ticularly with temperature increases in boreal and temperate regions
(Marlon et al., 2013), and with multimillennial-scale changes in pre-
cipitation amount and timing in tropical regions (Daniau et al., 2013).

However, in the last centuries, human factors have taken pre-
dominance, either as a source of ignition or as a force of fire suppres-
sion, especially in developed countries. These alterations of natural fire
regimes can have negative impacts on biodiversity, forest structure and
resilience, particularly in equatorial regions where evergreen forests
have become vulnerable to fire (Gilroy et al., 2014; Lewis et al., 2015).
Biomass burning is widely recognized as one of the critical factors

affecting atmospheric chemistry, as a significant share of aerosols and
greenhouse gas emissions are produced from burning (Knorr et al.,
2016; van der Werf et al., 2010). Fires also affect carbon budgets
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(Thonicke et al., 2010; Yue et al., 2015) and vegetation succession
(Bowman et al., 2009), and remain a significant driver of land use
transformation (Lewis et al., 2015). In densely populated areas, the
impacts of fires on air quality and associated health impacts may be
very important, particularly for people with respiratory problems and
heart diseases and children (Reid et al., 2016). Emissions from forest
fires in critical years, such as the “El Niño” events in Indonesia in 1997
and 2015 (with impacts on transboundary air pollution) or the fires in
Russia in 2010, resulted in substantial health impacts (Cascio, 2018;
Koplitz et al., 2016; Hu et al., 2018; Page et al., 2002).
At regional and local scales, fires have important socio-economic

implications as well, both affecting lives and property (Chuvieco et al.,
2010). Catastrophic seasons (with many human casualties) have been
witnessed in recent years, mainly associated with heat waves and
droughts (Bowman et al., 2017): Greece, 2007 and 2018; Australia,
2009; Russia, 2010; USA, 2013, 2017 and 2018; Canada, 2016; Chile,
2017; and Portugal, 2003, 2005 and 2017, among others. Fire also af-
fects soil erosion and the hydrological cycle (Doerr et al., 2006). The
wide variety of fire effects suggests a need for comprehensive evalua-
tions of fire vulnerability (Chuvieco et al., 2014; McWethy et al., 2013),
which includes the analysis of potential damages of fires on societal and
ecological values, as well as integrating those losses throughout time
considering regeneration intervals (Rodrigues et al. 2014).
There is still much uncertainty in the area affected by biomass

burning worldwide (including forest fires, savanna and cropland
burnings). Recent assessments based on Earth observation (EO) sa-
tellites estimate that around 4 million km2 are burned globally every
year (Chuvieco et al., 2018; Giglio et al., 2018). This area is approxi-
mately equivalent to the size of India and Pakistan combined. This es-
timate is based on coarse resolution sensors (with pixels larger than
250m), and is likely to be a conservative estimate of total burned area
(BA), since most analyses comparing global with regional products have
found that they underestimate actual BA (Hall et al., 2016; Hawbaker
et al., 2017; Mangeon et al., 2016). In fact, a recent BA product cov-
ering Africa with Sentinel-2 images for a single year estimates 1.8 times
more BA than the estimates derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) products. This high discrepancy is
mostly caused by small fires (<100 ha) (Roteta et al., 2019). Future
studies with even higher resolution sensors (Whittier and Gray, 2016)
may further increase estimates of global BA.
Most burning occurs in areas with a marked dry season, mostly

savannas and their transitional zone to tropical rainforests,
Mediterranean forests, Central Asian grasslands, and boreal forests of
Asia and America (Chuvieco et al., 2016; Giglio et al., 2013). Even
though the recent trends in global BA indicate a decrease in fire-af-
fected areas due to agricultural expansion in regions with low tree
cover (Andela et al., 2017), the impacts of fire in forested and even
tundra regions are expected to increase in the future due to climate and
societal changes (Jolly et al., 2015; Roos et al., 2016). Therefore, it is
particularly relevant to improve our knowledge of drivers behind fire
occurrence and fire impacts to alleviate current and foreseen future
effects of biomass burning (Forkel et al., 2019; Hantson et al., 2016).
For doing so, a better description is needed of the spatial-temporal
patterns of biomass burning.
Historically, government agencies collected BA information from

ground estimates, based on reports from fire management teams
(Mouillot and Field, 2005). The differences in the methods used by
individual countries and the discontinuity in data collection by gov-
ernment agencies throughout the years make these sources unreliable
when analyses are performed at regional, continental or global scales.
Satellite imagery has been used for BA detection as a sound alternative
for compiling reliable information on fire-affected areas since the be-
ginning of satellite observations. Less than two years after the launch of
the first Landsat satellite in 1972 (then Earth Resources Technology
Satellite 1 or ERTS-1), a conference paper was presented using satellite
data for BA mapping (Hitchcock and Hoffer, 1974). Since then, the use

of satellite imagery for BA detection and mapping has been addressed in
many peer-reviewed journals, book chapters, and conference proceed-
ings. This review paper aims to evaluate the historical developments of
satellite-based studies on BA estimation, the different sensors and
methods that have been used, and the strengths and limitations of
current available BA products, with particular emphasis on global da-
tasets. We focus on BA mapping, assuming a binary detection (burned/
unburned). Analysis of fire effects or regeneration after fire has been
covered elsewhere (Chu and Guo, 2014; Storey et al., 2016;
Veraverbeke and Hook, 2013).
This review is organized around several sections. First, the re-

quirements of BA information by different user communities is covered,
with particular emphasis on atmospheric emissions and dynamic global
vegetation models. Then a brief section describes the spectral char-
acteristics of fire-affected areas, which are the basis of retrieving BA
information from satellite sensors. Then, a historical analysis presents
the trends in BA mapping since the early 1980s until the beginning of
this century. Next, the current state of the art and expected evolution
are appraised, distinguishing in both cases sensors and methodological
approaches. The last section briefly summarizes existing BA products,
their main strengths and limitations and provides an overview of the
main challenges ahead for retrieving BA from satellite imagery. A list of
acronyms is included at the annex to help readers with the different
products, missions and agencies involved.

2. Needs and uses of burned area information

Most global BA products initially aimed at fulfilling the needs of
climate modelers, as fire disturbance is considered one of the Essential
Climate Variables (GCOS, 2016), but increasing accuracy and sys-
tematic delivery at global scale lead to civil protection services, en-
vironmental and forest protection services, insurance companies and
health planners, among other communities to increasingly use these
data as a surrogate to the lack of local information as reviewed in
Mouillot et al. (2014). The need of BA information and effects of forest
fires at the global scale are also relevant to address international in-
itiatives and commitments related to fire emissions, such as the Kyoto
Protocol and the agreements at the United National Conference on
Climate Change in Paris (COP21), or the United Nations Sendai Fra-
mework on Disaster Risk Reduction 2015–2030, through the mon-
itoring of progress in the Sustainable Development Goals (SDGs), for
which global information on fire effects is a key variable. These com-
munities may have different needs and therefore, the BA products need
to be optimized for a wide range of end-user requirements.
The emergence of new global satellite records catalyzed substantial

progress in fire emissions estimation over the past three decades. The
first global estimates of biomass burning emissions relied on biome-
aggregated best-guess values of the average annual area burned, com-
bined with biome-averaged estimates of biomass density and burning
efficiency (Seiler and Crutzen, 1980). Subsequent efforts used vegeta-
tion and land use maps to spatially disaggregate the annual average
emission estimates to 5° (Müller, 1992; Hao and Liu, 1994) and later to
1° (Lobert et al., 1999) spatial resolution. They were based on yearly
national fire statistics and other proxies (Mouillot et al., 2006). By the
early 2000s, the integration of satellite observations allowed for a
better representation of the spatial and temporal variability of fire
emissions (Duncan et al., 2003; Ito and Penner, 2004) that relied on the
first available global BA maps computed from satellite information of
post-fire reflectance: the GBA2000 product (Grégoire et al., 2003) and
GLOBSCAR (Simon et al., 2004). The first version of the Global Fire
Emission Database (GFED) then provided 1°× 1° gridded monthly fire
emissions from 1997 to 2002 (van der Werf et al., 2003, 2004). GFED
uses gridded 0.5° or 0.25° BA data in a biogeochemical model where
available biomass to burn in vegetation and soil is determined by coarse
scale land cover types, soil types and their corresponding water holding
capacity and climate (CASA). However, bias may be introduced when

E. Chuvieco, et al. Remote Sensing of Environment 225 (2019) 45–64

46



emissions are simulated at coarse resolution as fires may be highly se-
lective so that some places might have high fire frequency while other
places may never burn (Barros and Pereira, 2014, Scholz et al. 2014).
Therefore, regional studies using fine resolution datasets are preferred
(Veraverbeke et al., 2015; Yospin et al., 2015).
Mid-resolution global remote sensing datasets recently provided

additional information on the distribution of fire within coarse resolu-
tion grid cells to estimate reburning rates and vegetation types or forest
age cohorts affected by fires. In GFED version 2, fire emissions estimates
relied on BA time series that were established by calibrating HS to the
first and, at that time, only regionally available direct BA maps from the
MODIS sensor (Giglio et al., 2006; van der Werf et al., 2006). In the
following GFED releases (GFED3, GFED4s) (van der Werf et al., 2010;
van der Werf et al., 2017), the monthly emission estimates mainly re-
lied on directly mapped MODIS BA (Giglio et al., 2006; Giglio et al.,
2010). The product's spatial resolution increased to 0.25° and HS-based
gridded scalars were added allowing for estimation of daily and 3-
hourly emission fluxes (Mu et al., 2011). In GFED4s (van der Werf et al.,
2017), HS were additionally used to estimate emissions from small fires
that are unresolved by MODIS imagery.
Three-dimensional chemical transport models (CTMs) have used

these global BA-derived fire emissions (Matthias et al., 2018) in addi-
tion to prescribed meteorological fields as input to determine atmo-
spheric composition, both as retrospective analyses and as forecasts.
Most CTM applications require high spatial and temporal resolution,
and temporal accuracy of fire emissions usually provided by GFED
(Strode et al., 2016). Additionally, near real time (NRT) CTM systems
require more prompt data availability. Fire emission inventories de-
veloped to address this last requirement alternatively rely on satellite
observations of HS or of their radiant heat released (fire radiative
power: FRP) (Wiedinmyer et al., 2011). Chemistry climate models
(CCMs) investigate the interactions between climate and atmospheric
chemistry on decadal to centennial scales (Isaksen et al., 2009). While
CCMs simulate the physical characteristics of the climate system, state-
of-the-art global CCM applications such as those supporting the Inter-
governmental Panel on Climate Change (IPCC) Assessment Reports
(AR) use prescribed anthropogenic and biomass burning emissions as
boundary conditions (Lamarque et al., 2013). These applications re-
quire low spatial and temporal resolution but long-term emission in-
ventories (much longer than available remotely sensed BA time series)
with high temporal stability in accuracy so that long-term effects of
fires on tree age cohorts and their impact on carbon budget are taken
into account (Yue et al., 2014). Such inventories rely on national sta-
tistics, historical regional remote sensing BA estimates and storylines
(Mouillot and Field, 2005; Mouillot et al., 2006; Mieville et al., 2010),
or the global charcoal database and fire models embedded in dynamic
vegetation models (DGVMs) (van Marle et al., 2017).
Beside direct aerosol emission from biomass burning, the climate

system is also linked to the terrestrial global carbon budget affected by
fires through the combustion of live and dead biomass and soil litter
and the subsequent post-fire changes in vegetation and surface fluxes.
Dynamic global vegetation models including fire modules can re-
construct and project BA under changing climate, atmospheric CO2
concentration and land use change. Processes are identified from global
BA data (Bistinas et al., 2014) and simulated BA are benchmarked with
available BA data (cf. Hantson et al., 2016 for review). Fire modules
embedded in DGVMs aim at dynamically simulating historical and fu-
ture biosphere/atm interactions accounting for the seasonal burned BA
across global biomes based on fire weather and available fuel biomass
and water status derived from a process-based dynamic vegetation
model (Hantson et al., 2016).
With the increasing availability of moderate resolution data, fire

patches, generated from 250 to 500m resolution sensors have been
recently part of global BA product assessments (Chuvieco et al., 2016;
Nogueira et al., 2017). They can be generated by aggregating neigh-
boring pixels with near-similar burn-dates (Archibald et al., 2009;

Hantson et al., 2015). Fire patch size, complexity, and unburned islands
also influence tree species colonization rates from seed dispersal
(Meddens et al., 2018), affecting subsequent carbon sequestration dy-
namics (Duncan and Duncan, 2000; Caughlin et al., 2016). Laurent
et al. (2018) estimated patch complexity, elongation and rate of spread
from a global 250-m BA dataset, to estimate proxies on fire spreading
processes to improve fire modules within DGVMs.
Beside these main topics for which global BA was initially devel-

oped, BA information is also essential for legal purposes at local to
regional scales as for proper cadastral recording of fire effects, re-
garding land use and insurance costs or illegal burning (Mouillot et al.,
2014 for review). For instance, in Europe, most countries have issued
laws by which the land use of fire-affected areas cannot be changed for
10 to 30 years, depending on the country. Insurance premium and in-
surance costs require detailed information of areas affected by fires and
the level of fire severity, as well as post fire hazards such as landslides
or mudflows after fires. Therefore, reliable BA information is required
by the country and the European Union for the assessment of economic
losses caused by the fires. Funds associated with the planning of re-
mediation and revegetation efforts after fires are based on the maps of
BA and the assessment of economic losses. For instance, the European
Union Solidarity Fund (EUSF) is provided to countries that suffered
damages by fires above a given threshold of its global domestic product
(GDP). The use of the EUSF is currently a common practice, which is
applied after the catastrophic fires, e.g. Portugal (2003, 2005, 2017),
Spain (2003, 2012, 2017), and Greece (2007, 2018). Fire managers and
ecologists rely on BA information as well, to better assess fire risk and
implement risk reduction measures, and to improve fire history char-
acterization, particularly on fuel loads (typically using fuel accumula-
tions curves: Birk and Simpson, 1980).
International cooperation was necessary to establish services such as

the International Charter Space and Major Disasters and the Copernicus
Emergency Management Services Mapping, which aim at the rapid
acquisition of satellite imagery and the immediate mapping of effects of
catastrophic fires, among other disasters. The need of BA information
and effects of forest fires at the global scale is also relevant to address
international initiatives and commitments related to fire emissions,
such as the Kyoto Protocol and the agreements at the COP21 UN
Conference on Climate Change in Paris, or the United Nations Sendai
Framework on Disaster Risk Reduction 2015–2030, through the mon-
itoring of progress in the Sustainable Development Goals (SDGs), for
which global information on fire effects is a key variable.

3. Physical basis for Earth observation of burned areas

Fire impacts on vegetation are not binary (burned/unburned), but
rather they have a wide variety of conditions, depending on the type of
fire, fire behavior, and the time between fire extinction and image ac-
quisition. Therefore, the post-fire signal as well as its changes from pre-
fire reflectance, temperature or backscatter may be very diverse. Thus,
the analysis of both post-fire and temporal changes in spectral behavior
provides relevant information to understand fire impacts, while mon-
itoring post-fire changes throughout time helps to understand re-
generation patterns.
The type of fire relates to the vegetation strata affected by the

burning: whether fire impacts the surface fuels and understory com-
ponent of the forest cover (surface fire), the canopy (crown fire), or
even just the in-depth soil layer (underground fire). Wherever the tree
cover is dense, surface fires are difficult to detect from remote sensing
measurements (Pereira et al., 2004). This is particularly challenging for
tropical fires, which tend to have moderate severity but important
impacts when they are recurrent (Cochrane et al., 1999). Crown fires
are easier to detect, while underground fires may only be detected by
thermal sensors, as vegetation reflectance changes after the root system
is affected by the intense heat (Fig. 1).
Fire behavior affects the heat released and the propagation speed of
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the fire, and therefore the actual severity of fire impacts. Combustion
completeness mainly depends on wind speed, terrain slope, pre-fire
biomass load and structure, and water content (Fearnside et al., 2001;
van Leeuwen et al., 2014; Ward et al., 1996; Kane et al., 2015). The
more intense the fire, the more complete the combustion, and the more
important the spectral contribution of ash and charcoal compared to
green vegetation. In addition, the type of combustion (smoldering or
flaming) impacts the proportion of ash over charcoal in the post-fire
signal.
Finally, the temporal difference between fire extinction and image

acquisition is critical for detecting BA. This is especially true for tropical
regions, which tend to have high cloud cover and rapid vegetation re-
generation (Sader et al., 1990). On the contrary, in boreal forests the
post-fire signal remains strong for long periods, even several years after
burning (Kasischke, 2000). In recent burns, the most important spectral
components will be ash and charcoal on the soil layer, and a mixture of
green and brown leaves in the surface and canopy vegetation, de-
pending on fire intensity and combustion efficiency. For older burns,
post-fire regeneration and the effects of rainfall and wind will reduce
the ash and charcoal signal, and only a loss of biomass will make it
possible to discriminate BA from unaffected areas (Chuvieco et al.,
2006). A brief review on the characteristics of spectral changes caused
by fire in different spectral domains follows.

3.1. Solar domain

The solar domain includes the spectral region where reflected solar
radiation dominates the signal detected by remote sensing systems:
from 0.4 to 2.5 μm. It includes the visible light (blue, green and red:
BGR), the near infrared (NIR) and the short-wave infrared (SWIR)
bands. Reflectance in these bands is determined by solar energy re-
flecting from different land surfaces and covers, which is related to their
chemical (e.g., pigments, water, dry matter) and physical (e.g., rough-
ness and geometrical arrangement) characteristics, as well as the ob-
servation and illumination angles (e.g., bidirectional reflectance dis-
tribution function (BRDF) effects). Atmospheric and terrain effects can
also affect the detected signal.
Several authors have shown that the NIR and SWIR spectral regions

are the especially sensitive to fire effects (López García and Caselles,
1991; Oliva et al., 2011; Pereira et al., 1999; Pleniou and Koutsias,
2013; Trigg and Flasse, 2001). Fire causes both a reduction in leaf area
index (when leaves are burned) and/or leaf's pigment reduction and
desiccation (when leaves are scorched). The former effects are mostly
observed as a strong decrease of the NIR reflectance after burning

(Chuvieco and Congalton, 1988; López García and Caselles, 1991; Silva
et al., 2004), while the dryness results in an increase in the SWIR re-
flectance (Ceccato et al., 2001; Chuvieco et al., 2006; Trigg and Flasse,
2000). Little sensitivity to fire effects has been detected in the visible
bands (Fuller and Rouse, 1979; Tanaka et al., 1983), although some
studies found them useful to monitor post-fire regeneration, particu-
larly in areas with bright soils (Siljeström and Moreno, 1995).
The decreasing values in NIR reflectance were used in a pioneer

study of Hall et al. (1980) to estimate burn severities in a temperate
forest. Several authors found that charcoal reflectance in the NIR band
was the lowest of all cover types, except when water was present
(Chuvieco and Congalton, 1988; Tanaka et al., 1983). The persistence
of this post-fire signal contrast is very short in tropical ecosystems
(1–3weeks) (Trigg and Flasse, 2000), while in boreal and temperate
regions it may last up to several years after fire (Kasischke and French,
1995).
The increase of SWIR reflectance after fires was first observed in

Mediterranean forests (Chuvieco and Congalton, 1988; López García
and Caselles, 1991), and was later confirmed in savanna ecosystems,
although in these regions the longer SWIR wavelengths (2–2.2 μm)
were more sensitive than the shorter SWIR wavelengths (1.4–1.6 μm)
(Eva and Lambin, 1998; Trigg and Flasse, 2000). This was also observed
in temperate ecosystems (van Wagtendonk et al., 2004; Veraverbeke
et al., 2011). In actively burning areas, the most sensitive band to ra-
diant emittance is the middle infrared band (MIR: 3–8 μm), although
the SWIR radiance also greatly increases when fires are active, which
makes it possible to use medium resolution sensors (10–80m), for ac-
tive fire detection (Chuvieco and Congalton, 1988), such as Landsat
Operational Land Imager (OLI) or Sentinel-2 Multispectral Instrument
(MSI) (Schroeder et al., 2016).
The sharp decrease in the NIR reflectance and moderate increase in

the SWIR reflectance has been used to generate different spectral in-
dices for detecting burned areas and/or burn severities. Initial efforts
were based on the normalized difference vegetation index (NDVI)
which was used by Jakubauskas et al. (1990) to estimate three levels of
burn severity. Later studies found little sensitivity of NDVI to dis-
criminate burned and unburned areas, particularly in tropical ecosys-
tems (Pereira, 1999). As an alternative to NDVI, several non-linear
spectral indices based on the NIR-R space were proposed for BA dis-
crimination, such as the global environmental monitoring index (GEMI:
Pinty and Verstraete, 1992), that worked well in tropical ecosystems
(Barbosa et al., 1999a; Pereira, 1999), or the burned area index (BAI:
Chuvieco et al., 2002; Martín and Chuvieco, 1998).
However, spectral indices combining the NIR-SWIR bands are more
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Fig. 1. Reflectance spectra for unburned vegetation canopy and fires affecting different vegetation strata. Spectra were simulated using Prospect+Geosail models.
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effective for BA discrimination than those based on the NIR-R bands.
The normalized ratio of the NIR and SWIR bands was first proposed by
López García and Caselles (1991) and later named the “normalized
burned ratio” (NBR: Key and Benson, 1999). The NBR and the multi-
temporal versions of this index (dNBR, for instance) have been widely
used in burn severity estimation (Brewer et al., 2005; Eidenshink et al.,
2007; French et al., 2008; Jin et al., 2012; Veraverbeke and Hook,
2013), forest disturbance detection (Wulder et al., 2009); and changes
in forest attributes such as biomass (Pflugmacher et al., 2012). Wilson
and Sader (2002) proposed the normalized difference moisture index
(NDMI) by replacing Landsat Thematic Mapper (TM) band 7
(2.09–2.35 μm) in the NBR with band 5 (1.55–1.75 μm). It produced
generally similar results, and the two indices have considerable corre-
lation. Other indices using the NIR and SWIR bands for burned detec-
tion are the mid-infrared burn index (MIRBI: Trigg and Flasse, 2001) or
the modified burned area index (BAIM: Martín et al., 2006; Quintano
et al., 2011). The most recent version of the NASA BA product is also
based on a NIR-SWIR detection index (Giglio et al., 2018).

3.2. Middle infrared and thermal domain

The middle infrared and thermal domain includes the spectral re-
gion where Earth outgoing radiation dominates the signal detected by
remote sensing systems: from 2.5 to 14 μm. It includes the middle in-
frared (MIR: 2.5–8 μm) and thermal infrared (TIR: 8–14 μm) bands. For
this band, the detected signal is related to how different surfaces emit
energy, which is mainly related to their temperature and emissivity. As
in the solar domain, the signal is also affected by atmospheric trans-
mittance.
The MIR has been extensively used to detect active fires which have

much higher emittance than the non-burning background. This was
clearly stated in the late 1980s after pioneering studies from the
National Oceanographic and Atmospheric Administration (NOAA)
(Matson et al., 1984). Later in the 1990s, the contrast in the MIR and
TIR radiances between active fires and the background made it possible
to create the first global fire products based on Advanced Very High-
Resolution Radiometer (AVHRR) images (Ahern et al., 2001; Dwyer
et al., 2000a).
In terms of BA, the MIR channel has not been widely used, except

for a few attempts to extract the reflective component of the MIR ra-
diance and use it in combination with other optical bands. This was the
basis of the GEMI3 index, proposed by Pereira et al. (1999) for de-
tecting BA in AVHRR images. A similar index was used to detect burned
pixels in AVHRR Pathfinder images (Carmona-Moreno et al., 2005) and
to map forest fires in Greece from AVHRR high-resolution picture
transmission images (Vafeidis and Drake, 2005). An optimized version
of the MIR/NIR ratio was developed by Libonati et al. (2011) over the
Brazilian cerrado.
The thermal contrast between burned and unburned areas was ex-

plored by Asrar et al. (1988) and López García and Caselles (1991) to
map recent forest fires. They found a significant increase in temperature
(5–6° C) for recent burns in temperate forest. This thermal difference
vanishes rapidly as vegetation regeneration proceeds. Hope and
McDowell (1992) used a combination of surface temperature and ve-
getation indices to discriminate burned and unburned grasslands.
Cahoon et al. (1994) used thermal data for classifying BA from AVHRR
images. Goodwin and Collett (2014) used Landsat TM thermal channels
along with several spectral indices to discriminate savanna fires in
Australia. Finally, Hawbaker et al. (2017) found the Landsat thermal
band to be more important than other Landsat bands and spectral in-
dices for detecting BA across the conterminous US.

3.3. Microwave domain

The microwave domain (1mm–1m) is generally independent from
atmospheric effects. It is commonly sensed by active systems, as the

natural emittance in these wavelengths is quite weak. Synthetic aper-
ture radar (SAR) systems have the capacity to provide data day and
night in this spectral region by emitting microwave pulses and re-
cording the radiation scattered back (i.e. backscatter) from the surface
(Lewis and Henderson, 1999). Modern SAR systems can measure both,
the backscatter coefficient, related to target scattering properties, and
the scattering phase, related to the distance between the sensor and the
target. Through interferometric SAR (InSAR) processing, the elevation
may be computed using the difference in phase between image pairs. As
a byproduct, the interferometric coherence (or coherence) is computed.
The coherence provides a means to estimate the correlation between
the backscattered signal from a given target seen under two slightly
different acquisition geometries and offers additional information on
scene properties. Lastly, the availability of fully polarized (VV, HH, VH,
and HV polarizations) datasets allows for a complete description of the
scattering process with polarimetric target decomposition techniques
being designed to enhance or suppress contributions from specific
scattering mechanisms thus allowing for improved retrieval of the
biophysical characteristics of interest. The use of SAR-based techniques
provides distinct advantages over other sensor types including sensi-
tivity to vegetation structure and frequent cloud-free acquisitions.
Different wavelengths such as X-, C-, and L-bands (i.e., 2.4–3.75,

3.75–7.5, and 15–30 cm, respectively) have been used in vegetation
related studies as radar sensitivity to vegetation characteristics is wa-
velength and polarization dependent (Dobson et al., 1992; Le Toan
et al., 1992; Rignot et al., 1994). Stronger relationships between radar
backscatter and vegetation structure were generally found for longer
wavelengths and cross-polarized (HV and VH polarizations) channels
when compared to shorter wavelengths and co-polarized (HH and VV
polarizations) channels (Pulliainen et al., 1994; Sandberg et al., 2011;
Tanase et al., 2014; Tanase et al., 2010a). Fires induce variations of the
backscatter coefficient that mostly depend on vegetation structure and
moisture, but is also influenced by soil moisture (Kasischke et al.,
2007). Combustion reduces the number of vegetation scattering ele-
ments potentially reducing the backscatter coefficient. However, com-
bustion may also increase scattering from the ground due to reduced
signal attenuation and the increased effects of soil surface properties
(Kalogirou et al., 2014; Tanase et al., 2010b). Such contrasting effects
may generate a wide range of backscatter behavior depending on the
interplay between the SAR sensor characteristics, fire impact, and me-
teorological conditions (Bourgeau-Chavez et al., 2002; Huang and
Siegert, 2006; Imperatore et al., 2017; Kasischke et al., 1994; Lohberger
et al., 2018; Polychronaki et al., 2013; Ruecker and Siegert, 2000;
Tanase et al., 2010b).

4. Historical approaches to BA mapping

The application of satellite images to BA mapping has a long history
in remote sensing studies starting in the early 1970s and 1980s and it is
still an active research topic employing advanced techniques that in-
tegrate geo-statistics, object oriented and machine learning methods.
During this period of more than four decades, a wide range of techni-
ques and algorithms have been developed and applied in BA mapping.
A brief description of sensors and techniques used in those first decades
(1980–2000) follows.

4.1. Sensors for early mapping of BA

The first BA products derived from satellite data relied on medium
resolution sensors, mainly Landsat multispectral scanner (MSS) and,
after 1982, TM images. Pioneer works were presented at technical
conferences or in peer-reviewed journals (Hitchcock and Hoffer, 1974;
Hall et al., 1980; Isaacson et al., 1982). These studies emphasized the
spectral change associated with fire impacts, particularly in the NIR.
The availability of TM images with SWIR and TIR bands increased the
potential of using satellite data for BA retrieval. Classification methods
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were applied to detecting burned pixels with satisfactory results
(Chuvieco and Congalton, 1988; Milne, 1986; Smith and Woodgate,
1985; Tanaka et al., 1983). The earliest attempts to detect levels of
damage were also introduced in the early 1980s (Hall et al., 1980), as
well as early proposals to use SWIR and TIR radiances for active fire
detection (Ambrosia and Brass, 1988; Chuvieco and Congalton, 1988).
Spectral indices to emphasize the BA signal over the unburned sur-
roundings from TM images were also suggested in the early 1990s
(Jakubauskas et al., 1990; López García and Caselles, 1991). Later that
decade, the use of Landsat TM images for estimating fire severity was
first proposed (White et al., 1996). A few papers were also published on
mapping BA and active fires from visual analysis of spaceborne camera
photographs (Furyaev, 1985; Furyaev et al., 1985; Helfert and Lulla,
1990).
Other medium resolution sensors used in BA mapping were the

Haute Résolution Visible (HRV) sensor, on board the Systeme Probatoire
d'Observation de la Terre (SPOT) satellite since 1986, which provided
good results in local studies (Eastwood et al., 1998), and the wide field
sensor (WIFS) – linear imaging and self-scanning sensor (LISS), onboard
the Indian Remote Sensing (IRS) satellite (Vázquez et al., 2001). Radar
studies were also published in the 1990s, based mostly on European
Remote Sensing (ERS) acquisitions (Bourgeau-Chavez et al., 1997;
Kasischke et al., 1992; Landry et al., 1995).
Coarse resolution sensors were mainly used to analyze fire activity

over large regions. A pioneering work was published by Brazilian sci-
entists on the impacts of fire in the Amazonian region based on AVHRR
images (Setzer and Pereira, 1991). Almost simultaneously, several other
papers were published from Canadian, US and Russian researchers on
fire effects in the boreal forest also using AVHRR (Cahoon et al., 1992;
Gutman et al., 1995; Kasischke et al., 1993). In the same decade,
AVHRR was used to map savanna fires in Africa (Barbosa et al., 1999b;
Langaas, 1992), Brazil (Pereira and Setzer, 1993) and Mediterranean
forest (Chuvieco and Martín, 1994a; Martín and Chuvieco, 1993;
Caetano et al., 1996). AVHRR-based studies were also developed to
generate active fire information in the mid-1980s (Flannigan and
Vonder Haar, 1986; Matson and Holben, 1987; Muirhead and
Cracknell, 1985), and later on were the basis of the first global fire
product, the world fire web, which mapped active fires and it was op-
erational from 1992 to 1993 (Dwyer et al., 2000b; Stroppiana et al.,
2000).
Further developments tried to obtain global BA products from

AVHRR images. Since the full resolution data (approximately 1.21 km2

at nadir) of this sensor was not centrally archived, these global scale
projects used degraded versions of AVHRR images. The most common
were the Pathfinder 8 km Land (PAL) used to obtain a global analysis of
spatial and temporal patterns of fire occurrence (Carmona-Moreno
et al., 2005; Riaño et al., 2007), and more recently the Land Long Term
Data Record (LTDR) with 5 km pixel size (Moreno Ruiz et al., 2014;
Moreno Ruiz et al., 2012).
Other coarse resolution sensors used in BA mapping were the Along

Track Scanning Radiometer (ATSR), VEGETATION and those in geos-
tationary satellites. The ATSR on board the European Remote Sensing
(ERS-1 and 2) satellites since 1991 was first used to map African BA
(Eva and Lambin, 1998), and afterwards to generate one of the first
global BA products, the European Space Agency's (ESA GLOBSCAR in
the early 2000s (Simon et al., 2004). The VEGETATION instrument
(VGT), onboard the SPOT satellite since 1998, was first used to map BA
in Canada (Eastwood et al., 1998; Fraser et al., 2004) and later on
served to generate the global burned area 2000 product (GBA2000;
Tansey et al., 2004a). Natural Resources Canada implemented two
national forest fire management information systems, namely the Ca-
nadian Wildland Fire Information System (CWFIS) and the fire mon-
itoring, mapping and modeling system (Fire M3) (Lee et al., 2002). Fire
M3 was designed for monitoring daily fire activity for the production of
fire maps, fire impact modeling and the dissemination of the generated
information. Fire M3 used AVHRR and VGT data to map burned areas,

which were calibrated and verified by medium- to high-resolution
imagery such as Landsat TM and SPOT-HRV. A few studies were also
developed from images of geostationary satellites such as the Geosta-
tionary Operational Environmental Satellite (GOES) (Prins and Menzel,
1992; Prins and Menzel, 1994) and Meteosat (Boschetti et al., 2003),
taking advantage of their high temporal frequency (<30min).

4.2. Early BA mapping methods

For the methods developed and applied in BA mapping, Koutsias
et al. (1999) proposed a classification scheme that identified three
general groups depending first on whether multi-temporal or single
date satellite images were employed, second on whether the output was
a direct estimate of BA or an intermediate enhanced product, and third
on the type of classification methods. In addition to digital interpreta-
tion, the first BA studies also used visual analysis, profiting from the
ability of the interpreter to consider very subtle color gradations as well
as texture and contextual information. For instance, Chuvieco and
Congalton (1988) used visual analysis of Landsat TM images to create
reference fire perimeters to validate supervised maximum likelihood
classification of a Mediterranean large fire. Visual analysis was also
used to delineate fire patches from radar images (Bourgeau-Chavez
et al., 1997; Bourgeau-Chavez et al., 2002; Siegert and Ruecker, 2000).
Multi-temporal approaches have the advantage over single post-fire

images of reducing commission errors caused by dark soils, water
bodies, topographic shades, or cloud shadows. Therefore, the BA de-
tection utilized information not only from spectral but also from tem-
poral changes between the pre- and post-fire satellite imagery.
However, multi-temporal approaches can also have several difficulties
related to radiometric and geometric adjustments, as well as the dis-
crimination of fire-caused changes from other types of temporal change,
such as seasonal floods, harvesting or deforestation.
The second group of the techniques reduces the dimensionality of

the original images. This was the case of principal component analysis
or vegetation indices, which aimed to improve spectral separability of
burned versus other covers. Single channel density slicing, and
thresholding of spectral vegetation indices were also very common
techniques for BA discrimination, both with SAR imagery (Kasischke
et al., 1994) and AVHRR data (Martín and Chuvieco, 1993). For the
single channel density slicing method, researchers were slicing the
histogram for getting different levels of severity within the fire peri-
meter. Several spectral indices were used, including the NDVI, the Soil
Adjusted Vegetation Index (SAVI), the GEMI and the BAI (Chuvieco and
Congalton, 1988; Chuvieco et al., 2002; Chuvieco and Martín, 1994a,
1994b; Koutsias and Karteris, 2000; Viedma et al., 1997). In these cases,
usually the spectral signal of pre- and post-fire image was compared
because of sharp changes in the spectral signal observed in specific
spectral channels following the fire. Principal component analysis
(PCA) has been used since early 1980s for BA and change detection
analysis (Richards, 1984). Several approaches used PCA in BA mapping
from: (i) an 8-dimensional multi-temporal image dataset consisting of
two Landsat MSS scenes (Richards, 1984), (ii) a standardized PCA on a
12-dimensional multi-temporal image dataset consisting of two Landsat
TM scenes, and a subset of spectral channels consisting of pairs of two
spectral channels with low to medium correlation (Pereira 1992), (iii)
multi-temporal ERS-2 SAR images acquired before and after the fire
event (Siegert and Ruecker, 2000), (iv) a non-standardized PCA on a
multi-temporal dataset comprising TM bands 3, 4, and 5 from both
dates (García-Haro et al., 2001), (v) a dataset consisting of a standar-
dized NDVI, surface temperature and albedo from a NOAA AVHRR time
series dataset (Nielsen et al., 2002), (vi) a standardized PCA along with
a simple, non-parametric, supervised classification (parallelepiped) on
a Landsat time series dataset consisting of 22 annual images of Landsat
MSS, TM and Enhanced Thematic Mapper Plus (ETM+) from 1972 to
2002 (Hudak and Brockett 2004), and (vii) a forward/backward prin-
cipal component analysis of Landsat-7 ETM+ data to enhance the
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spectral signal of burned areas (Koutsias et al., 2009).
Finally, the third group of studies refers to the classification tech-

niques, on whether supervised and unsupervised methods were used.
This depends on the previous knowledge of fire effects in the target
region. The maximum likelihood classification and k-means clustering
algorithms were employed in several studies either to directly map BA
or used to evaluate other classification techniques (Henry 2008; Pereira
and Setzer, 1993). Methods based on logistic regression were in-
troduced to map BA using multi-date (Koutsias and Karteris, 1998) and
single-date (Koutsias and Karteris, 2000) Landsat TM imagery. The
main consideration when implementing BA classifications was to ex-
press the classification problem in a binary way, i.e., burned vs un-
burned pixels. Other approaches, such as spectral mixture analysis
(SMA), were first applied in BA mapping in the early 1990s (Caetano
et al., 1996).

5. Current EO approaches to detect BA information

Building on the historical developments, BA detection algorithms
have been improved in the last ten years, incorporating new processing
approaches, as well as new sensors and new integration methods. The
review of these recent developments is structured in different spectral
domains: passive optical, active radar and LiDAR, with a brief section to
comment on integrated methodologies. Table 1 includes a list of sensors
from which most available BA products have been obtained.

5.1. Optical sensors

Global BA products rely on sensors that provide very high temporal
resolution (daily images, sometimes multiple images each day), and
coarse spatial resolution (≥250m pixel size). To cope with the great
diversity of worldwide fire conditions and with the potential problems
in data acquisition, algorithms need to be robust and spatially adap-
table. The first global BA products were based on regional algorithms
(Tansey et al., 2004a), which were adapted to different fire conditions
(boreal, tropical forest, grasslands, etc.). The main problems in this
approach were the impacts of borders between regions and the poten-
tial variations of accuracy among ecosystems (Humber et al., 2018). For
this reason, local-adapted or physically based approaches have been
more common in the last years for global BA algorithms. The former
aim to discriminate burned from unburned pixels based on a set of
attributes (reflectance bands or spectral indices) from which dis-
criminant functions are created by maximizing inter-class and mini-
mizing intra-class variation. Examples are Bayesian classifiers (Riaño
et al., 2007), random forests (Ramo and Chuvieco, 2017), and support

vector machines (SVM) (Cao et al., 2009) approaches.
The most common methods for global BA mapping have been based

on physically based rules that discriminate burned pixels from un-
burned. Additional spatial and temporal conditions are included to cope
with the global diversity of fire conditions. This approach was the basis
of one of the first global BA products derived from AVHRR pathfinder
data (Carmona-Moreno et al., 2005). A similar approach has been later
refined to generate the MODIS MCD64A1 (Giglio et al., 2018) and
FireCCI50 (Chuvieco et al., 2018) products. In both of these 2018 stu-
dies, the algorithms integrate reflectance changes with active fire ob-
servations (hotspots, HS) obtained from thermal anomalies. Another
way of including a physical model in BA detection is the use of BRDF
correction models. These models aim to reduce the impact of illumi-
nation and observation geometry in the estimated reflectance. BRDF
models have been used to estimate the post-fire reflectance (t+ 1) from
the pre-fire conditions (t) and compare it with the actual t+ 1 re-
flectance. When the difference between the modeled and the measured
reflectance exceeds a certain threshold, it is assumed that it indicates
significant changes in cover conditions. This approach is used for
NASA's MCD45A1 BA product (Roy et al., 2005; Roy et al., 2008).
Regional or national products have been developed in the recent

years based on medium resolution sensors, taking advantage of the
improvements in processing power and the free access to Landsat and
Sentinel-2 acquisitions. Previous use of Landsat images for BA mapping
was local, and the methods were difficult to generalize to other regions.
The public release of the Landsat archive by the USGS in 2008
(Loveland and Dwyer, 2012) initiated a new era for using medium re-
solution sensors for regional (or even global) retrieval of BA, as it
provided a wealth of freely available images, both covering large ter-
ritories and for a long period of time.
In terms of methodological developments, the availability of

Landsat time series made it possible to develop dedicated time-series
detection methods for these images. They were initially applied to de-
tect forest changes, but they have also been used for monitoring BA.
These methods include the Vegetation Change Tracker (VCT) (Huang
et al., 2010) and the Landsat-based detection of Trends in Disturbance
and Recovery (LandTrendr) (Cohen et al., 2010; Kennedy et al., 2010),
which divide annual time series of spectral responses into piecewise
segments, and then use the changes between segments and character-
istics of segments to delineate disturbances. In a further elaboration,
Cohen et al. (2018) used the Random Forests algorithm to combine an
ensemble of the LandTrendr results for different bands and indices into
a single analysis. Similarly, Schultz et al. (2016) proposed and tested a
methodology to fuse disturbance maps derived from different indices
using the Breaks for Additive Seasonal and Trend (BFAST) algorithm,

Table 1
Satellite sensors used for burned area mapping. See the Annex A for acronym descriptions.

Satellite (sensor) Operator Operational dates Temporal resolution Spatial resolution

Launch date End operation

ENVISAT (MERIS) ESA March 1, 2002 May 9, 2012 2–3 days 300–1200m
JPSS (VIIRS) NOAA October 28, 2011 Still operating 1–2 days 375–750m
Landsat 1–3 (MSS) NASA/USGS July 23, 1972 September 7, 1983 18 days 80m
Landsat 4–5 (TM) NASA/USGS July 16, 1982 June 5, 2013 16 days 30–120m
Landsat 7 (ETM+) NASA/USGS October 5, 1993 Still operating 16 days 15/30–60m
Landsat 8 (OLI/TIRS) NASA/USGS February 11, 2013 Still operating 17 days OLI: 15/30m TIRS: 100m
NOAA-7-19 (AVHRR) NOAA Oct 19, 1978 Still operating 1–2 days 1100m
PROBA V ESA May 7, 2013 Still operating 1–2 days 300m
Sentinel 1A-B (SAR) ESA April 3, 2014 (1A) April 25, 2016 (1B) Still operating 6 days 5–20m
Sentinel 2A-B (MSI) ESA June 23, 2015 (2A) March 7, 2017 (2B) Still operating 5 days 10–20-60m
Sentinel 3A-B (SLSTR, OLCI) ESA 16 February 2016 (3A)

25 April 2018 (3B)
Still operating 1–2 days 300m OLCI,

500m SLSTR
SPOT 1–7 (HRV) CNES February 22, 1986 Still operating 26 days 2.5 to 20m
SPOT 4–5 (VGT) CNES March 24, 1998 July 2013 1–2 days 1000m
Terra-Aqua (MODIS) NASA December 18, 1999 (Terra)

May 4, 2002 (Aqua)
Still operating 1–2 days 250–1000m
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which iteratively decomposes the observed time series into a trend,
seasonal pattern, and residual component, with detection of sudden
changes (DeVries et al., 2015; Verbesselt et al., 2010). Other ap-
proaches decomposed dense time series to separate seasonality and
long-term trends and detect change as departure from those trends
using Landsat data (Brooks et al., 2014; Zhu and Woodcock, 2014).
Finally, others have detected change using decision trees with pre-
dictors characterizing the entire Landsat time series (Hansen et al.,
2014). All of these methods detect abstract land change and require
additional attribution to characterize the specific type of change, such
as BA (Schroeder et al., 2017; Zhao et al., 2015).
Change-detection algorithms specific to mapping BA across the full

Landsat archive have also emerged. Using all available Landsat data for
Queensland, Australia, Goodwin and Collett (2014) combined decision
rules with a region-growing algorithm to identify areas of change and
then classified which of those areas of change were caused by fire. In
forested parts of the western US, Boschetti et al. (2015) identified areas
of spectral change using composites of Landsat 7 ETM+ data from 2002
and then used MODIS active fire data to separate BA from other types of
change. These two studies were the first to demonstrate that large
territories can be routinely mapped from Landsat data with semi-au-
tomated approaches and paved the way for the development of the U.S.
Geological Survey's Landsat Burned Area Essential Climate Variable
(BAECV) (Hawbaker et al., 2017). The BAECV algorithm was developed
to consistently map burned areas ≥4 ha across the conterminous U.S.
regardless of ecosystem type using all available Landsat data by com-
bining a gradient boosted classifier with thresholding and region
growing.
Landsat-based studies also set forth the development of approaches

to map BA using data from the Sentinel-2A and 2B missions, which
provide free accessible images, in 13 spectral channels (from 10 to 60m
of spatial resolution) and with a combined 5-day coverage period. Using
Sentinel-2 images, Roteta et al. (2019) have been recently able to map
BA for the whole Sub-Saharan Africa including all Sentinel-2A acqui-
sitions for 2016. The accuracy of this BA product significantly improved
that obtained from coarse resolution sensors, particularly in detection
of small burns (<100 ha). Landsat and Sentinel-2 images have also
been used in conjunction to estimate burn severity (Mallinis et al.,
2018).
In addition to time series analysis, recent techniques for BA map-

ping using medium resolution sensors have relied on new classification
approaches, such as fuzzy memberships, object oriented and radiative
transfer models (RTM). Fuzzy approaches have been explored by
Stroppiana et al. (2012a) to integrate partial evidence of BA provided
by different spectral indices. Variations of spectral mixture analysis
(SMA) approaches have been recently proposed, including spectral
angle mapper classifiers (Oliva et al., 2011; Quintano et al., 2013) or
the Multiple Endmember Spectral Mixture Analysis (MESMA), which
allows more than two endmembers (Roberts et al., 1998). The key
success factor in SMA and MESMA is to provide a suitable library of
spectra for well-chosen endmembers. They can be specified in advance
or be derived from known pixels within the image. Fernandez-Manso
et al. (2016) used MESMA to delineate BA and estimate fractions of the
endmembers, although it was not clear if the results were superior over
other approaches (e.g., index-based). Since burn conditions are quite
diverse, data mining techniques have been recently proposed to select
the most adequate inputs for generating machine learning classifiers
(Ramo et al., 2018).
Object-based image analysis (OBIA) constitutes an alternative clas-

sification technique to the pixel-by-pixel approach and has become
quite popular in the field of remote sensing (Benz et al., 2004). OBIA
has been used successfully to map BA (Gitas et al., 2004; Mitri and
Gitas, 2010; Polychronaki and Gitas, 2010), reducing common errors
found in pixel-based multispectral classifications (Weih and Riggan,
2010), and mitigating spectral overlapping between burned and other
land cover classes (Mitri and Gitas, 2004). In addition, the ‘per-object’

approach facilitates the synergy between advanced image analysis
techniques (e.g. feature selection methods) and classification methods,
resulting in thematic maps of higher accuracy (Dragozi et al., 2014).
Even though most OBIA studies were primarily focused on high-spatial
resolution images (Dragozi et al., 2014; Polychronaki and Gitas, 2012),
these methods have been successfully used with coarser resolution data
such as AVHRR (Gitas et al., 2004) or MODIS (Mohler and Goodin,
2012).
Another recent approach to BA discrimination has been the use of

physical-based models (radiative transfer models: RTM), which have
been mostly addressed towards burn severity estimation. Forward si-
mulation implies generating a set of realistic conditions from RTM,
while inverse modeling implies comparing satellite measured re-
flectance with modeled reflectances. The input variables used to obtain
the most similar modeled to actual pixel reflectance are then assigned
to each pixel. Both forward and backward simulations have been per-
formed, trying to obtain realistic scenarios of post-fire conditions. These
model scenarios were based on simulating Composite Burned Index
(CBI) values. CBI is a widely used protocol to estimate field severity
(Key and Benson, 2006). The simulation was obtained with a two-layer
RTM, which accounted for average values of leaf area index and leaf
pigment changes caused by the fire (Chuvieco et al., 2006). The model
was later applied to estimating CBI values for several large fires in Spain
(De Santis and Chuvieco, 2007; De Santis et al., 2009) and coastal
California (De Santis et al., 2010). Since the retrieval of CBI values from
satellite data may be greatly affected by fraction of forest cover, De
Santis et al. (2009) proposed a modification of the original CBI method
to take into account this variable.
Finally, to balance commission and omission errors, several classi-

fication approaches propose to detect BA in two phases: the first one
would be addressed to reduce commission errors by classifying only the
most clearly burned pixels, while the second would aim to reduce
omission errors, by adding to the first-stage detected pixels those
neighbors that have similar spectral characteristics (Alonso-Canas and
Chuvieco, 2015; Bastarrika et al., 2011a; Bastarrika et al., 2011b;
Chuvieco et al., 2008; Stroppiana et al., 2012b).

5.2. Radar

Burned area detection from SAR data was frequently employed over
tropical areas characterized by persistent cloud cover (Lohberger et al.,
2018; Siegert and Ruecker, 2000; Verhegghen et al., 2016) or at high
latitudes where low sun angles hindered observations with optical
sensors (Bourgeau-Chavez et al., 1997; Bourgeau-Chavez et al., 2002;
Goodenough et al., 2011; Kasischke et al., 1994; Kasischke et al., 1992).
Other studies used change-detection frameworks coupled with non-
parametric classifiers (Gimeno and San-Miguel-Ayanz, 2004), object-
based classification methods (Lohberger et al., 2018; Polychronaki
et al., 2013), empirically derived thresholds (Verhegghen et al., 2016)
or region-growing algorithms (Imperatore et al., 2017) to detect the BA.
Few studies used the C-band interferometric coherence to delineate fire
scars in tropical environments. Such studies used empirically derived
thresholds applied to temporal differences of pre- and post-fire co-
herence estimates (Liew et al., 1999). More recent studies focused on
radar polarimetric properties (Goodenough et al., 2011) and integrating
radar and optical datasets within common detection algorithms
(Stroppiana et al., 2015) or through integration of the radar and opti-
cally detected burned areas (Verhegghen et al., 2016). Such studies
demonstrated that fires result in ambiguous effects depending on the
radar wavelength, polarization, and meteorological conditions at image
acquisition (Lohberger et al., 2018; Ruecker and Siegert, 2000)
(Imperatore et al., 2017; Polychronaki et al., 2013; Tanase et al.,
2010b) (Bourgeau-Chavez et al., 2002; Huang and Siegert, 2006;
Kasischke et al., 1994) (Gimeno and San-Miguel-Ayanz, 2004) (Menges
et al., 2004).
SAR data were also used to estimate fire impacts from the
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backscatter coefficient (Kurum, 2015), the interferometric coherence
(Tanase et al., 2010a) or through polarimetric decomposition techni-
ques (Tanase et al., 2014). Most studies used post-fire images
(Bourgeau-Chavez et al., 1994; Tanase et al., 2010a; Tanase et al.,
2010b) or change detection frameworks based on pre- and post-fire
datasets (Kurum, 2015; Tanase et al., 2015b) while few authors focused
on the synergy between optical and radar sensors (Tanase et al., 2015a).
The most accurate results were obtained using the cross-polarized (HV)
backscatter and longer wavelengths such as the L-band with the re-
trieval accuracy being negatively influenced in areas of steep topo-
graphy or with high soil moisture (Kalogirou et al., 2014; Kasischke
et al., 2007; Tanase et al., 2010b). The influence of topography was
removed through change detection approaches while the use of datasets
acquired under dry environmental conditions or multi-temporal
averages were suggested to reduce the effect of varying soil and vege-
tation moisture content (Tanase et al., 2015b; Tanase et al., 2010a). In
addition, the dependency of in situ data for modeling was eliminated by
using polarimetric decomposition techniques (Tanase et al., 2014).
However, the scarcity of full polarimetric acquisitions has precluded the
use of polarimetric analysis over large areas.

5.3. Lidar

An appropriate evaluation of the impact of the fire on the vegetation
would require pre- and post-fire LiDAR acquisition. Since most of the
available data are airborne, there is a scarcity of studies based on the
bitemporal acquisitions (McCarley et al., 2017a,b). Therefore, the use
of LiDAR data for fire effects assessment commonly relies on comparing
the affected areas to adjacent unburned areas or combined with bi-
temporal multispectral data (Montealegre et al., 2014).
Most of published studies rely on the CBI to estimate post-fire effects

from airborne LIDAR data. Wang and Glenn (2009) estimated CBI va-
lues over a sagebrush rangeland in the U.S. from bitemporal LiDAR data
as the difference in mean vegetation height over 5× 5m cells. Height
differences were classified into three burn severity levels (low to high)
using ≥100 field samples to establish the height difference threshold
for each level. Montealegre et al. (2014) calibrated a logistic regression
model to relate post-fire LiDAR metrics to field CBI measures over
Mediterranean forests in Spain. The output probabilities of the model
were further grouped into different burn severity levels.
Several studies have used a combined approach of airborne LIDAR

and passive sensors to estimate post-fire effects. Kwak et al. (2010), for
instance, used LiDAR data to estimate the degree of physical damage
(loss of canopy cover), while NDVI values from a multispectral sensor
were used to determine the biological damage (vegetation vitality).
Physical and biological damage were subsequently combined to classify
the affected area into four levels of fire damage. Structural changes in
the forest cover related to fire effects were retrieved by McCarley
(2017a) from a bitemporal LiDAR dataset along with several spectral
indices derived from Landsat data in a temperate coniferous forest in
the U.S. The best relationships between multispectral and LiDAR data
occurred for changes in canopy cover whereas the relationships with
LiDAR metrics representing changes in mid and lower strata weakened
and became poorly correlated with those LiDAR metrics representing
changes near the surface layer. Wulder et al. (2009) integrated two
transects (pre- and post-fire) of data collected with an airborne profiling
LiDAR system with Landsat imagery to relate changes in forest structure
to post-fire conditions estimated by spectral indices over a burned
boreal forest in Canada. Due to the lack of spatial coincidence between
the two LiDAR transects, the post-fire image was segmented using an
object-based approach and structural metrics were summarized for each
segment, representing homogeneous vegetation patches, as well as for
the total length of the transects.
Only one study based on satellite LIDAR measurements for BA

mapping has been published so far. Goetz et al. (2010) evaluated fire
disturbance over boreal forests in Alaska, using ICESat Geoscience Laser

Altimeter System (GLAS) data. Because of observation limitations of
this sensor, structural changes were assessed after stratification of the
area based on time since fire, vegetation type (deciduous vs. coniferous)
and burn severity. Although differences in vegetation height between
burned and unburned areas were found to be significant, these authors
showed that this metric alone may not be the most adequate to evaluate
fire effects since it is affected by regrowth rates in different vegetation
types as well as the different burn severity levels.
Very few studies have analyzed the impacts of fire on soil carbon

storage. Ballhorn et al. (2009) compared the height difference between
burned and adjacent unburned areas along 79 airborne LiDAR transects
over peat swamp forests in Central Kalimantan, Borneo, during the
2006 El Niño episode. Soil consumption estimates were in close
agreement with field measurements. Reddy et al. (2015) estimated soil
consumption by a peat fire in North Carolina and Virginia, USA, based
on the elevation change from bitemporal airborne LiDAR datasets and
compared the results to consumption values estimated using the First-
Order Fire Effects Model (FOFEM). They found LiDAR estimates more
accurate than modeled estimates due to the limited representation of
peat depth in the LANDFIRE fuel model input layer. Additionally, they
analyzed the influence of LiDAR elevation errors in the carbon loss
estimates using a Monte Carlo simulation to find out that LiDAR ele-
vation errors did not significantly contribute to the uncertainty in the
soil carbon loss. The difference in elevation using pre- and post-fire
airborne LiDAR data after elevation matching over invariant targets
was used by Alonzo et al. (2017) to compute the consumption of surface
litter and organic soils in a boreal forest fire in Alaska, USA. This study
showed that elevation over the burned area had statistically significant
differences and those differences were more important in areas where
deeper organic soils developed.

5.4. Synergetic approaches

In addition to using new sensors and approaches, recent BA pro-
ducts have also taken advantage of integrating different EO techniques
to strengthen the discrimination of burned pixels and reduce both
omission and commission errors.
The most synergistic approach has been the combined use of

thermal anomalies (HS, from MIR and TIR bands) and changes in re-
flectance from NIR, SWIR and visible bands. The former identifies ac-
tive fires while the latter detects BA. Thermal amplification caused by
active fires is very distinct and helps to identify burning pixels, while
the post-fire signal of charcoal and scorched vegetation last longer and
cover the whole area affected by fire. The former avoids potential
commission errors (discriminating those reflectance changes most
likely to be actual fires), while the latter helps delineating the whole
area affected by the fire (not just the burning pixels) and therefore aids
to reduce omission errors. Typically, before running a hybrid BA al-
gorithm, the HS are filtered to remove stable thermal anomalies, which
are commonly associated with power stations, volcanos or gas flares.
Then, HS are used to discriminate between actual BA and the sur-
roundings, reducing the potential confusions caused by reflectance
changes that are unrelated to fire (such as seasonal floods, cropping,
deforestation, etc.). Hybrid algorithms were first proposed 20 years ago
(Fraser et al., 2000; Roy et al., 1999) and have been since then ex-
tensively applied to BA mapping. Two of the most recent global BA
products, MCD64A1 from NASA (Giglio et al., 2018), and FireCCI50
from ESA (Chuvieco et al., 2018) used this approach. Hybrid algorithms
have also been used with medium resolution data, for instance, merging
1 km MODIS active fire detections and multi-temporal Landsat TM-ETM
+ images over the western United States (Boschetti et al., 2015). Also,
a hybrid algorithm was utilized to map 2016 BA in the whole Sub-
Saharan Africa from Sentinel-2 images (Roteta et al., 2019).
Another approach to combine different sensors is the joint use of

optical and radar data. Some examples are the study by Stroppiana
et al. (2015) centered in Portugal that mapped BA from Landsat and
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Envisat-ASAR data, and the analysis of Verhegghen et al. (2016) who
used Sentinel-1 and Sentinel-2 images to map BA in Congo by thresh-
olding the differences in pre- and post-fire VV polarization (Sentinel-1)
and NDVI and NDWI (Sentinel-2) spectral indices. They found that
Sentinel-2 data with their 5-day revisit could effectively map BA in
places with frequent cloud cover. However, incorporating radar data
from Sentinel-1 improved their results where Sentinel-2 images were
obscured by cloud cover.
Integrated analysis of LIDAR and passive optical sensors have also

been performed for BA mapping. Garcia et al. (2017), for instance,
integrated post-fire LiDAR data and bitemporal Landsat data. Pre-fire
biomass was estimated using a two-step approach. First, a LiDAR model
was calibrated using field data to estimate biomass over the study area.
Second, in order to derive pre-fire biomass values, LiDAR-based esti-
mates across the 2 km buffer were extrapolated over the whole area
using pre-fire Landsat data. By comparing pre-fire to post-fire biomass
values, it was possible to compute the biomass consumed by the fire.

6. Existing EO-derived BA products

6.1. Global products

After the first attempts to generate global BA products in the late
1990s, the early 2000s provided the mature conditions to release the
first global semi-operational BA datasets. Building on the experience of
NOAA-AVHRR BA algorithms (Barbosa et al., 1999a; Fernández et al.,
1997; Kasischke and French, 1995; Langaas, 1992; Martín and
Chuvieco, 1995; Pereira, 1999), the new BA products were mainly
based on the MODIS sensors, on board NASA's Terra and Aqua sa-
tellites, and the SPOT Vegetation (VGT) sensor (Table 2).
The first global BA product at coarse resolution was produced by the

Joint Research Centre of the European Union. It was named Global
Burned Area (GBA2000) and was based on daily VGT images acquired
throughout the 2000. This product had 1 km2 spatial resolution and
provided monthly estimates of BA. The BA detections were based on
seven regional algorithms adapted to different fire conditions (Tansey
et al., 2004b). In parallel to the GBA project, the European Space
Agency developed the GLOBSCAR BA product for the same year 2000.
This global monthly product was derived from daytime ERS-2 ATSR-2
data with a nominal pixel size of 1 km2. BA detection relied on the
combination of a contextual and a fixed threshold algorithm (Simon
et al., 2004).
Following the experience of GBA, other global BA products have

been released by European institutions: the L3JRC (Tansey et al., 2008)
covering the period from 2000 to 2007; the Globcarbon (Plummer
et al., 2006), from 1998 to 2007, and the Copernicus GIO_GL1_BA
products, all at 1 km spatial resolution. All these products were derived
from VGT images (in Globcarbon, ATSR images were used as well). The
exception is the most recent version of the Copernicus GIO_GL1_BA,
which after 2013 has 333m resolution and is derived from PROBA-V
data (https://land.copernicus.eu/global/products/ba, last accessed
July 2018).
In a different context, the Fire_CCI project (part of the European

Space Agency's Climate Change Initiative) has generated three global
BA products over the last few years. The first one was named FireCCI41
and it was based on 300-m resolution MERIS images from the ENVISAT
satellite, covering the period from 2005 to 2011. The BA algorithm was
a hybrid and two-phase approach, where MERIS reflectances were
supplemented with first MODIS HS to detect the most clearly burned
pixels and then contextual criteria were applied for improved delinea-
tion of burned patches (Alonso-Canas and Chuvieco, 2015; Chuvieco
et al., 2016). The most recent products of the Fire_cci project
(FireCCI50 and 51) were derived from MODIS 250m bands (R and NIR
reflectance) also supplemented with HS. They cover the full time series
of Terra-MODIS (2000–2017) (Chuvieco et al., 2018). The product is
publicly available at www.esa-fire-cci.org (last accessed February Ta
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2019).
NASA has also been very active in generating global BA products.

The first one released was the MCD45A1 product derived from 500m
MODIS imagery. This product employed a BRDF model to detect sig-
nificant differences between observed and predicted daily reflectance
data (Roy et al., 2008). This product was the standard NASA BA product
from 2000 through 2016, but it has been recently superseded by
MCD64A1. In contrast to the MCD45A1 product, the MODIS MCD64A1
product employs a hybrid algorithm that uses both the reflectance
changes and the thermal anomalies associated with biomass burning
(Giglio et al., 2009). The current version of this algorithm (collection 6)
provides considerably more sensitivity than the original and identifies
26% more global BA than previous collection (Giglio et al., 2018). This
product is processed from 2000 to the present (https://lpdaac.usgs.gov/
dataset_discovery/modis/modis_products_table/mcd64a1_v006, last
accessed February 2019).
The MCD64A1 product in combination with additional variables on

fuel properties and emission coefficients has in turn been used to pro-
duce the Global Fire Emissions Database (GFED). Current versions of
the GFED (designated GFED4 and GFED4s) include data from the
MCD64A1 collection 5 product, as well as the ATSR sensor for the pre-
MODIS era (1995–2000). GFED4s adds an estimation of the area burned
by small fires (< 100 ha), which are commonly not detected by global
products based on coarse resolution sensors. GFED4s estimates the
contribution of those small fires by BA to MODIS active fire hotspots
located outside of burned patches mapped in the MCD64A1 BA product.
The BA allocated to each “outside-of-burn” hotspot is in turn estimated
using postulated relationships between dNBR, the number of “within-
burn” hotspots, and the BA actually mapped in the MCD64A1 product
(Randerson et al., 2012; van der Werf et al., 2017).
Fig. 2 shows average BA for different global products in the common

available years. Even though a full comparison of global BA products is
still to be done, those recently performed showed common spatial
patterns, particularly in those based on hybrid algorithms that use

common hotspots (Humber et al., 2018; Chuvieco et al., 2018).

6.2. Regional products

Several countries have been operationally developing BA mapping
products in the framework of various fire monitoring systems. In the
United States, the Monitoring Trends in Burn Severity (MTBS) project
was sponsored by the Wildland Fire Leadership Council (WFLC) and
implemented jointly with the U.S. Geological Survey (USGS) and Forest
Service (Eidenshink et al., 2007). The project's objective was the sys-
tematic production of BA maps and associated burn severity informa-
tion. Among the different data employed by the MTBS project, pre-fire
and post-fire Landsat TM, Enhanced TM Plus (ETM+), and OLI imagery
are mainly used for the computation of the dNBR and the subsequent
generation of estimated burn severities.
The U.S. Geological Survey has also recently developed the Landsat

Burned Area Essential Climate Variable (BAECV) project, which covers
the conterminous U.S. (Hawbaker et al., 2017). The BAECV algorithm
was used to identify burned areas ≥4 ha in every Landsat TM and ETM
+ images with <80% cloud cover from 1984 through 2015 across the
conterminous territory of USA. A modified version of the BAECV al-
gorithm has been developed for use with Landsat OLI data. New
Landsat BA products using the modified BAECV algorithm are available
through the USGS EarthExplorer (earthexplorer.usgs.gov) interface for
Landsat TM, ETM+ and OLI data from 1984-present.
The lack of harmonized BA information and a holistic approach for

forest fire prevention in Europe motivated the European Commission
services and the relevant fire services of each country to develop the
European Forest Fire Information System (EFFIS) (San-Miguel-Ayanz
et al., 2012). EFFIS is a comprehensive forest fire management system
with its core applications based on remote sensing and geographic in-
formation systems (GIS), which currently supports the monitoring of
fires in 41 countries in Europe, Middle East and North Africa (http://
effis.jrc.ec.europa.eu, last accessed September 2018). EFFIS

Fig. 2. Annual burned fraction per 0.25-degree grid cell, averaged across 2005 to 2011, for different global burned area products. See the Annex A for a list of
acronyms.
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incorporates different modules, namely FIRE Danger Forecast, Active
Fire Detection, Rapid Damage Assessment and post-fire modules.
MODIS data are employed for the detection of hot spots and BA map-
ping (for fires over 40 ha) on a European scale. Subsequently, this in-
formation is integrated into a national GIS for further analysis at a
country level. BA products of high resolution are also provided, upon
demand, by the Copernicus Emergency Management Service (EMS).
This service is based on the rapid acquisition, processing and analysis of
satellite imagery and other geospatial datasets after a fire event.
In Mexico and Central America, a semi-operational program to

provide information on BA and active fire was established in early
2000s. The system is operated by the National Commission for the
Knowledge and Use of the Biodiversity (CONABIO; Ressl et al., 2009).
Hot spots are mapped with AVHRR and MODIS data, following methods
of Flasse and Ceccato (1996) and Giglio et al. (2003). BA mapping is
derived from NDVI and NBR values computed from MODIS-Aqua data.
The Forest Research Centre in the School of Agriculture at the

Technical University of Lisbon in Portugal has developed a national
operational BA mapping system based on remotely sensed data. In
particular, the system employs time series of Landsat MSS, TM and ETM
+ data for BA delineation for the time period from 1975 to present. The
resulting maps are utilized for structural fire risk mapping and the
products are operationally used by the National Forest Authority, the
National Authority for Civil Protection and by large private landowners
(Nunes et al., 2005; Oliveira et al., 2012).
In Greece, an Operational Burned Area Mapping (OBAM) service

has been developed in the framework of the National Observatory of
Forest Fires (NOFFi) project implemented by the Laboratory of Forest
Management and Remote Sensing of the Aristotle University of
Thessaloniki (AUTh) in collaboration with the Hellenic Ministry of
Environment and Energy and financially supported by Greece's Green
Fund (Tompoulidou et al., 2016). The NOFFi-OBAM service is based on
an OBIA approach and supervised classification models. Any remote
sensing imagery (Landsat 8 OLI, Sentinel-2) can be used in the semi-
automated classification which is performed with public domain soft-
ware.
In Australia, there are automated and semi-automated methods for

BA mapping over the rangelands of northern Australia. The Queensland
government produces an annual BA map based on the Goodwin and
Collett (2014) algorithm. The North Australia and Rangelands Fire In-
formation (NAFI) system is a MODIS-based fire patch mapping system
hosted by Charles Darwin University. The NAFI methodology involves
differencing pre- and post-fire MODIS imagery with a subsequent seg-
mentation and classification step and some user input (www.firenorth.
org.au). For the other parts of Australia, BA mapping has been done ad
hoc for some events, using supervised high-resolution satellite imagery,
airborne burn mapping, ground-based surveys, or a combination of
these methods. However, an automated algorithm for nationwide BA
and severity mapping using Geoscience Australia's (GA's) Landsat and
Sentinel-2 data cube infrastructure was recently developed and is close
to operational. The algorithm includes a sequence of (i) change detec-
tion, (ii) change characterization, (iii) region growing and (iv) attri-
bution steps (http://wald.anu.edu.au/challenges/bushfires/burn-
mapping/, last accessed February 2019).

6.3. Validation of BA products

The prolific advances in BA mapping methods described in the
previous sections lead to a great variety of publicly available BA pro-
ducts. Their accuracy is inevitably a function of the characteristics of
input data (e.g. optical reflectance observations) and BA retrieval al-
gorithms. Therefore, product accuracies can vary greatly. The goal of
validation is to quantify the accuracy of data products and is a direct
way to inform end-users about their quality. Validation is “the process
of assessing, by independent means, the quality of the data products
derived from the system outputs” as defined by The Committee on Earth

Observing Satellites Working Group on Calibration and Validation
(http://lpvs.gsfc.nasa.gov/ last accessed January 2019). Accuracy is
typically inferred at the scale of study from a sample of reference data.
Coarse resolution BA products have been often validated by com-

paring them with medium resolution data (Landsat-TM, SPOT-HRV or
Sentinel-2 imagery). The Committee on Earth Observing Satellites
(CEOS) Land Product Validation team (Boschetti et al., 2009) re-
commends that reference fire perimeters be derived from a multi-
temporal pair of images to properly date the validation period. The
reference sites should be properly documented (with standard meta-
data), discriminating between burned, unburned and unobserved data
(either from clouds or technical issues).
The sampling design is critical to make the most out of the reference

data. Probability sampling designs ensure that accuracy inferences are
possible at global scale. The earliest BA product releases were published
along with validation analyses based on selective sampling of a few test
sites (Tansey et al., 2004a, 2004b; Roy et al., 2005). Therefore, global
accuracy inferences were not available (or they had no statistical
meaning). Globcarbon (Plummer et al., 2006) and L3JRC (Tansey et al.,
2008) were validated with independent data derived from 72 Landsat
scenes globally distributed mostly from the year 2000. Roy and
Boschetti (2009) reported validation results for the MCD45A1 product
using a set of 11 Landsat scenes distributed across southern Africa.
Chuvieco et al. (2008) validated a regional product for Latin America
using 19 Landsat scenes and 9 China–Brazil Earth Resources Satellite
(CBERS) scenes. The MCD64A1 collection 5 data were not formally
validated, but some quantification of uncertainty was provided (Giglio
et al., 2009; Giglio et al., 2010). The most recent MCD64A1 c6 products
were validated by using a set of 108 Landsat scenes distributed across a
wide range of fire-affected ecosystems (Giglio et al., 2018).
After the public release of the Landsat archive, the availability of

reference images was no longer a limiting factor to use probability
sampling designs. The first inferences of global product accuracies be-
came available a few years ago (Padilla et al., 2014; Padilla et al.,
2015). A great deal of attention was placed on (1) the definition of
sampling units, by attributing them with spatial and temporal dimen-
sions so that accuracy inferences could be made for specific spatial and
temporal extents (Boschetti et al., 2016), and (2) the improvement of
the efficiency of sampling designs in order to obtain as precise accuracy
inferences as possible given a sample size (Padilla et al., 2017).
The first global product accuracy inferences (Padilla et al., 2014;

Padilla et al., 2015) were probably lower than expected and even to
some extent controversial among the BA algorithm development com-
munity. The commission and omission error rates of the most accurate
product were 42% and 68%, respectively (Padilla et al., 2015). Recent
improvements in input data (higher spatial resolution) are leading to an
important increase in accuracy (Roteta et al., 2019). Ideally, any im-
provement of BA products should be tracked by validation analyses,
which should be externalized from algorithm developers and performed
by joint initiatives including competing agencies, thus ensuring the
independence that any validation should have.
If validation protocols require using higher spatial resolution

images, validation of BA products generated from Landsat and similar
resolution imagery can be challenging. Few image sources that have
finer resolution than Landsat and are consistently collected as an al-
ternative (Vanderhoof et al., 2017a). Now, commercial high-spatial and
temporal resolution satellite imagery (such as Planet's or Geoimage's)
can be acquired for statistically selected validation areas, although costs
may be high. However, limited availability of historical high-resolution
imagery may challenge sampling designs for validating time series of
those medium-resolution BA products. Practitioners are often left with
what imagery is available. Consequently, validating BA products de-
rived from Landsat data and that span the length of the Landsat archive
must also rely on Landsat-derived reference data that are independent
of the Landsat data used to train the algorithm (Vanderhoof et al.,
2017b). To further complicate matters, validation of the Landsat BA
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products with high resolution and Landsat reference imagery can give
conflicting results. For example, when using high-resolution reference
imagery, BAECV (Hawbaker et al., 2017) omission and commission
errors were 22% and 48%, respectively (Vanderhoof et al., 2017a).
However, omission and commission of the BAECV products were 42%
and 33% when validated with Landsat reference imagery (Vanderhoof
et al., 2017b). The increase in commission error was largely the result
of differences in resolution, as unburned areas within-fire patches could
be delineated with more detail in the high-resolution imagery. How-
ever, both analyses showed that the commission and omission errors of
the Landsat burned area products were less than those reported for
coarse-resolution global products.

7. The way ahead

Remote sensing of burned areas has changed our view of patterns of
burning and understanding of the drivers and impacts of fires at re-
gional, continental, and global scales. Although many national, state,
and local government agencies collect information about prescribed
fires and wildfires, they are often error prone, incomplete, and limited
because of inconsistent collection efforts over space and time, in-
troducing much uncertainty into analyses based upon them. In contrast,
the routine collection of BA data from remotely sensed imagery has
allowed us to overcome many of those limitations. By applying BA
detection algorithms over large spatial extents and over extended time
periods, remote sensing has allowed us to generate data products that
have spatial and temporal consistency, which agency reports generally
lack. This includes the spatial extent of BA (perimeters), as well as
within-fire heterogeneity such as identification of unburned islands
within the perimeters and, in some cases, estimates of burn severity.
Furthermore, the spatial progression of fires can be tracked by sensors
collecting data at high temporal frequencies (e.g. daily or better). Such
information has provided the foundation for national- and global-scale
studies on the patterns, drivers, and impacts of fires on human and
natural systems.
Chief among the strengths of existing operational BA products are

their broad spatial coverage (generally global) and the comparatively
long BA time series they provide (19 years in the case of those produced
using MODIS data), even though the temporal sequence is still short for
characterizing fire regimes and for atmospheric and carbon modelers.
The most significant limitation of the existing suite of global BA pro-
ducts is their relatively coarse native spatial resolution, which varies
from 250m (FireCCI50) to 1 km (e.g., L3JRC). The degree of fidelity
provided by such resolutions is generally not adequate for resolving
small and/or highly fragmented fires (Eva and Lambin, 1998; Laris,
2005; Roy and Boschetti, 2009), leading to a substantial underreporting
of BA (Padilla et al., 2015; Roteta et al., 2019). BA may also be missed
when fires leave little residual heat and spread rapidly between satellite
overpasses (Hawbaker et al., 2008) or when the differences between
pre- and post-fire spectral characteristics are minimal. Commission er-
rors may occur when there is confusion between BA and other dis-
turbances, for example clear cuts, land conversion, non-fire forest
mortality (Kennedy et al., 2010; Schroeder et al., 2017; Zhao et al.,
2015). Given these challenges, it is not surprising that estimates of BA
may vary substantially when detected with different sensors (Padilla
et al., 2015) or different algorithms (Hawbaker et al., 2017).
BA products incorporate different auxiliary variables that help end

users, particularly climate modelers. The uncertainty of detection is a
critical one, which still needs to be better standardized, as currently it is
based on algorithm-dependent approaches. The temporal reporting
uncertainty should also be delivered, particularly for atmospheric
modelers. The type of burned land cover generally relies on external
land cover products, which obviously imply a certain degree of un-
certainty on their own, further complicating the global assessment of
uncertainties in final BA products.
Another limitation of current BA products is the lack of information

on combustion completeness and fraction of burned area, which are two
critical parameters for atmospheric emission estimations. The combined
use of BA and active fire information, both from geo-stationary and
polar orbiting platforms, should benefit the current emission estimates
greatly, by integrating energy release by active fires with magnitude of
reflectance changes in optical images. This is particularly the case of
detection of small fires, and a good representation of the temporal
evolution of fires for which active fire detections provide the most in-
formation—especially from geostationary platforms. Reliable temporal
information is mostly needed to align emissions with the proper at-
mospheric conditions for transport which is highly variable due to
changing weather patterns. The key hurdle to overcome is a dearth of
field measurements of fuel consumption (van Leeuwen et al., 2014).
Even though Fire Radiative Power (FRP) or Fire Radiative Energy (FRE)
values derived from satellite observations provide independent esti-
mates of emissions or fuel consumption, further efforts are required to
reduce the uncertainties in estimating both (Andela et al., 2016; Ichoku
and Ellison, 2014; Kaiser et al., 2012).
The importance of small and/or fragmented fires for improving the

estimations of atmospheric emissions and for analyzing the impacts of
fire on deforestation processes is creating the momentum to undertake
the generation of global BA products based on medium resolution
sensors, now in the range of 10–30m (Roteta et al., 2019). This ob-
viously implies a high demand in terms of computer processing and
data distribution and assessment, particularly for climate modelers who
work at much coarser spatial resolution. Long-term regional BA pro-
ducts are available at much finer spatial resolution, such as the 30-m
MTBS dataset, which spans the United States, though these come at a
cost of reduced spatial coverage. Improvements in cloud processing and
distributed archive facilities (e.g. Google Earth Engine) may greatly
help to carry out global analysis at medium spatial resolution. Temporal
coverage of these sensors may also create difficulties to detect fires in
areas with frequent cloud cover and rapid vegetation regrowth
(Hawbaker et al., 2017; Padilla et al., 2015).
The combined use of optical and SAR data may help the BA detec-

tion in regions where optical sensors perform poorly on their own. The
launch of ESA's Sentinel-1 satellite constellation overcomes some of the
past limitations of SAR data for BA mapping, particularly in terms of
temporal coverage. Improvements in sensors characteristics (e.g., dual
polarization, increased spatial resolution and incidence angle, precise
orbital information), provides an excellent opportunity to develop al-
gorithms for mapping fire impacts at continental to global scales
(Engelbrecht et al., 2017; Lohberger et al., 2018; Verhegghen et al.,
2016). Future research should focus on automatic, locally adaptive
detection algorithms that take into account the large variability of post-
fire backscatter response between vegetation types as well as variability
induced by meteorological conditions during data acquisition or topo-
graphic slope.
Progress in the development of new sensors next to the rapid pro-

gress on image processing and numerical processing capabilities pro-
vide a bright future to the remote sensing applications for BA mapping
in near real time, while allowing for the creation of comprehensive
archives of data on BA from local to global scales. The main challenge
in the operational use of medium spatial resolution imagery remains in
the real-time access to the data, the timely creation of BA products
through the integration of EO products of diverse sources and spatial
resolutions, and their provision via web services to the final users.
Wildfire management services are among the users' communities that
are better adapted to use satellite products, which are often available
through stable regional information systems such as the EFFIS in
Europe, the Geospatial Technology and Applications Center (GTAC) in
the USA or the Advance Fire Information System (AFIS) in South Africa.
Although global BA products have already been available for some
time, their use by operational wildfire management organizations has
been fairly limited. These products were used by the modeler's com-
munities or in the multi-annual assessment of fire effects by either
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researchers or United Nations agencies such as United Nations Food and
Agriculture Organization (FAO). However, the development of new
initiatives such as the Global Wildfire Information System in the context
of the Group on Earth Observations work program and the Copernicus
European Union Program may be a catalyst for the operational use of

BA products and other EO products that may help in the management of
wildfires and the assessment of wildfire impacts at the global scale.
Disclaimer: Any use of trade, product, or firm names is for de-

scriptive purposes only and does not imply endorsement by the U.S.
Government.

Annex A. List of acronyms

Acronym Definition

AFIS Advance Fire Information System
AR Assessment Reports
ATSR Along track scanning radiometer
AVHRR Advanced Very High-Resolution Radiometer
BA Burned area
BAECV Burned Area Essential Climate Variable
BAECV Landsat Burned Area Essential Climate Variable
BAI Burned area index
BAIM Modified burned area index
BRDF Bidirectional reflectance distribution function
BFAST Breaks for Additive Seasonal and Trend
BGR Blue, green and red
CBI Composite Burned Index
CCI Climate Change Initiative
CCM Chemistry–climate models
CEOS Committee on Earth Observing Satellites
CONABIO Comisión Nacional para el Conocimiento y Uso de la Biodiversidad
COP Conference of the Parties
CTM Chemical transport models
CWFIS Canadian Wildland Fire Information System
DGVM Dynamic Global Vegetation Model
EFFIS European Forest Fire Information System
EMS Emergency Management Service
EMT+ Enhanced Thematic Mapper Plus
Envisat Enviromental satellite
EO Earth observation
ERS European Remote-Sensing Satellite
ERTS Earth Resources Technology Satellite
ESA European Space Agency
EUSF European Union Solidarity Fund
FAO Food and Agriculture Organization
FINN Fire INventory from NCAR
FireCCI50 MODIS based 250m global BA product derived from the Fire_cci project
FOFEM First-Order Fire Effects Model
FRE Fire Radiative Energy
FRP Fire radiative power
GA Geoscience Australia
GBA Global Burnt Area
GCOS Global Climate Observing System
GDP Global domestic product
GEMI Global environmental monitoring index
GFED Global Fire Emission Database
GIO_GL1 Global BA product derived from the Copernicus Land Service
GIS Geographic information systems
GLAS Geoscience Laser Altimeter System
GLOBSCAR Global Burn Scars
HH Horizontal-horizontal
HRV Haute Résolution Visible
HRV High Resolution Visibl
HS Hotspots
HV Horizontal-vertical
ICESat Ice, Cloud,and land Elevation Satellite
InSAR Interferometric synthetic aperture radar
IPCC Intergovernmental Panel on Climate Change
IRS Indian Remote Sensing
Landsat Land Remote-Sensing Satellite
LandTrendr Trends in Disturbance and Recovery
Lidar Light Detection and Ranging
LISS Linear imaging and self-scanning sensor
LTDR Long Term Data Record
M3 Monitoring, mapping and modeling
MERIS MEdium Resolution Imaging Spectrometer
MESMA Multiple Endmember Spectral Mixture Analysis
MIR Middle infrared
MIRBI Mid-infrared burn index
MODIS Moderate Resolution Imaging Spectroradiometer
MSI Multispectral Instrument
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MSS Multispectral scanner
MTBS Monitoring Trends in Burn Severity
NAFI North Australia and Rangelands Fire Information
NASA National Aeronautics andSpace Administration
NBR Normalized burned ratio
NCAR National Center for Atmospheric Research
NDMI Normalized Difference Moisture Index
NDVI Normalized difference vegetation index
NDWI Normalized Difference Water Index
NIR Near infrared
NOAA National Oceanographic and Atmospheric Administration
NOFFi National Observatory of Forest Fires
NRT Near real time
OBAM Operational Burned Area Mapping
OBIA Object-based image analysis
OLI Operational Land Imager
PAL Pathfinder AVHRR Land product
PCA Principal component analysis
PROBA-V Project for On-Board Autonomy Vegetation
Radar Radio detection and ranging
RSAC Remote Sensing Applications Center
RTM Radiative transfer models
SAR Synthetic aperture radar
SAVI Soil Adjusted Vegetation Index
SDG Sustainable Development Goals
SMA Spectral mixture analysis
SPOT Systeme Probatoire d'Observation de la Terre
SVM Support vector machines
SWIR Short-wave infrared
TIR Thermal infrared
TM Thematic Mapper
USGS United States Geological Survey
VCT Vegetation Change Tracker
VGT VEGETATION instrument
VH Vertical-horizontal
VV Vertical-vertical
WFLC Wildland Fire Leadership Council
WIFS Wide field sensor
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