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ABSTRACT 

Fire intensity, spread rate and ignition are very sensitive to the fuel dryness which in 

turn is strongly linked to soil moisture deficit. Though the value of soil moisture deficit 

in predicting fire danger has been long established, very few fire danger rating 

systems employ a comprehensive methodology to estimate it. Most fire danger 

rating systems use very simple empirical water balance models which are found to 

have errors. Hence they are poor drivers of the sophisticated fire models used 

operationally to manage and warn for dangerous fire conditions and spread. With 

advances in the science of measurement, in the form of satellite remote sensing, 

and in prediction, in the form of physically based land surface models, soil moisture 

can now be better analysed and predicted. Neither observations nor models give a 

complete picture of the soil moisture state in isolation, however. Data assimilation 

combines observational and model information optimally, yielding increasingly 

consistent and complete estimates of soil moisture. In this paper, we touch on the 

various operational satellite observations available. We also discuss land surface 

data assimilation methods used widely in soil moisture research and operations. This 

report is prepared for those with very limited technical and scientific background in 

satellite remote sensing or data assimilation. Hence complex mathematical and 

physical formulations are carefully omitted. However, the problems discussed here 

are highly non-trivial and inter-desciplinary, with much progress made in recent 

decades. Hence some technicalities are unavoidable. Also, the discussion is not 

intended to be complete. Our intention is to highlight, especially to the emergency 

management community, soil moisture estimation methods that may not be well 

known outside the scientific community. 
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1. INTRODUCTION 

Fire danger rating systems are devised to evaluate and integrate the individual and 

combined factors influencing fire danger. The ignition and spread of fire together 

with short temporal variations in fire danger depend on fuel availability and 

prevalent weather conditions [Chandler et al., 1983]. Fuel availability is the 

proportion of fuel which will burn in a fire [Luke and McArthur, 1978]. Because fuel 

availability measures are themselves not always readily available, fire danger rating 

systems include sub-models to estimate these quantities from weather observations. 

The McArthur Forest Fire Danger Index (FFDI) [McArthur 1967] used in Australia, for 

instance, has a component representing fuel availability called the Drought Factor, 

which in turn is partly based on soil moisture deficit, commonly calculated in 

Australia as either the Keetch–Byram Drought Index (KBDI) [Keetch and Byram, 1968] 

or Soil Dryness Index (SDI) [Mount 1972]. Soil moisture deficit therefore becomes a key 

variable in the FFDI calculations performed operationally in Australia, and accurate 

estimates and forecasts of soil moisture are crucial for effective fire danger 

calculations for fire weather forecasts and warnings, and for fire management.  

The KBDI and SDI are simplified, empirical water balance models that do not 

comprehensively account for the majority of physical factors which affect soil 

moisture dynamics such as soil type, vegetation type, terrain or aspect. They over-

simplify evapotranspiration and runoff processes, potentially leading to large errors in 

estimated soil moisture state. Studies have shown that soil moisture outputs from land 

surface models are more accurate than these indices [Vinodkumar et al., 2017]. 

With advances in the science of measurement ― in the form of satellite remote 

sensing, and in prediction ― in the form of physically based land surface models and 

advanced data assimilation schemes, soil moisture can now be better analysed and 

predicted. This report, as a basis for such research, describes the potential sources of 

remote sensing observations and data assimilation methods that can be used to 

estimate more accurate soil moisture deficit state for application in Australian fire 

danger rating systems. 

2. REMOTE SENSING OF SOIL MOISTURE 

In situ soil moisture measurements, though highly reliable, are cost-prohibitive for 

extended spatial mapping. Since soil moisture exhibits spatial variability that 

depends on the topography of an area and the soil characteristics, methods to 

characterize it on a regional scale without the necessity for exhaustive field 

measurements would be beneficial for applications like fire and flood forecasting. 

Remote sensing using satellites provides unique capability for the measurement of 

soil moisture at regional and global scales which satisfy the science and application 
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needs of hydrology. The theory behind soil moisture remote sensing stems from the 

fact that the electromagnetic response of the land surface is modified by its soil 

moisture content. The dielectric constant (or equivantly relative permittivity) of soil 

increases as its moisture content increases. Dielectric constant measures a 

substance’s ability to store electric energy. The dielectric constants for water is 

about 80 for frequencies below 5 GHz, where as that of dry soil is about 3.5. This large 

contrast between the dielectric constants of water and that of dry soil translate into 

difference of up to 100 K or more in brightness temperature between very dry and 

wet soils [Wang and Choudhury, 1995]. 

Various regions of the electromagnetic spectrum have been used to estimate soil 

moisture, including gamma [Carroll, 1981], thermal infrared [Price, 1982], and 

microwave [Jackson et al., 2005] radiation. Many factors modulate the radiation 

reaching the sensor; for example surface temperature, surface roughness, 

vegetation, atmospheric effects etc. However, these effects are negligible at low 

frequencies of the microwave spectrum (roughly 1 – 5 GHz). Further, longer 

wavelengths have a higher capacity to measure deeper (2 – 5 cm) soil moisture 

layers, the penetration depth being of the order of one tenth of the wavelength 

[Lakshmi, 2013]. These are significant advantages of microwave remote sensing and 

hence there has been considerable amount of research done to determine soil 

moisture in low-frequency microwave spectra [Jackson and Schmugge, 1995; 

Jackson et al., 1999].  Microwave instruments may make either passive or active 

measurements [Jackson, 2005]. Active instruments transmit electromagnetic pulses 

towards the Earth and measure the reflected and scattered energy back from the 

earth’s surface. Passive instruments measure radiation emitted by the Earth’s 

surface. Thus, for passive instruments, the energy source is the target itself. The 

earliest efforts to determine soil moisture from space-borne microwave sensors for 

large spatial scale hydrological studies started with the availability of Scanning Multi-

channel Microwave Radiometer (SMMR; Njoku et al., 1998) and Special Sensor 

Microwave Imager (SSM/I; Hollinger et al., 1990) data sets. Figure 1 depicts a 

schematic overview of the past, present and future soil moisture remote sensing 

missions. Table 1 summarises the results of some important validation studies done on 

historical and current satellite soil moisture datasets. For the present study, we focus 

only on the current and future soil moisture remote sensing instruments. The following 

sub-sections give a short description of each of these space-borne data sets. 

2.1 ASCAT 

The Advanced Scatterometer (ASCAT; Wagner et al., 2013) instrument on board 

EUMETSAT’s MetOp-A and B satellites is an active microwave instrument. Retrieved 

ASCAT surface soil wetness products are disseminated within 135 minutes of 

measurements. Daily coverage is about 80% of the globe. MetOp-A was launched in 
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2006 and MetOp-B was launched 2012. A third mission MetOp-C is expected to be 

launched in 2018, thus maintaining the service until at least 2020. Albergel et al. 

(2012) compared the ASCAT surface soil wetness products against ground based 

observations and concluded that ASCAT data is of very good quality, especially for 

Australia.  

 

Figure 1. Overview of soil moisture remote sensing from space – missions and their 

timelines.  

2.2 SMOS 

The Soil Moisture Ocean Salinity (SMOS; Kerr et al., 2010) is the first satellite mission 

dedicated to the global mapping of surface soil moisture. SMOS was launched in 

2009 and measures brightness temperatures in the L-band. Albergel et al. (2012) 

have compared SMOS retrieved surface soil moisture against ground based 

observations and found good agreement between the two data sets. However, 

ASCAT appears to provide more accurate estimates of soil moisture than SMOS over 

Australia. This was observed in other studies as well (e.g. Holgate et al., 2016). Al 

Yaari et al., 2014 suggest that i) the contamination of SMOS signal by Radio 

Frequency Intereference, ii) higher order surface-vegetation interaction effects that 

may increase the sensitivity of active systems (like ASCAT) to surface soil moisture 

and, ii) sensitivity of ASCAT to seaonal vegetation dynamics as few possible reasons 

for the relatively high skill of ASCAT compared to SMOS. Figure 2 shows typical time 
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averaged soil moisture products retrieved in early October 2013 from ASCAT and 

SMOS missions over Australia. 

 Instrument Resolution 
Study 

Area 

Literature 

Source 

Validation Metric 

Bias 

(m3/m3) 

RMSD 

(m3/m3) 

Temporal 

Correlation 

TMI 40km USA Gao et al., 

2006 

―― ―― 0.59 

WindSat 40km France Li et al., 

2007 

0.00 0.06 0.74 

ERS 50km Sahel Gruhier et 

al., 2010 

0.04 0.05 0.52 

AMSR-E* 

60km Australia 
Draper et 

al., 2009 

0.0 0.03 0.83 

AMSR-E# -0.01 to 0.19 0.11 0.79 

ASCAT+ 25km Australia Abergel et 

al., 2012 

0.01 0.06 0.80 

SMOS+ 40km Australia Abergel et 

al., 2012 

-0.06 0.08 0.74 

AMSR2 60km Australia Rudiger et 

al., 2013 

–0.01 to 

0.05 

0.04 to 

0.09 

―― 

SMAP 36km Australia 
Al-Yaari et 

al., 2017 
0.02 0.09 0.85@ 

Table 1. Validation studies of sensors against the in situ observations. A single value 

for a metric implies a mean value.  

*validation against smoothed and bias corrected AMSR-E data;  

#validation against the original AMSR-E data.  

+To enable a fair comparison, both in situ and remotely sensed soil moisture data 

sets are scaled between [0,1] using their own maximum and minimum values.  

@ Median value. Normalised values are converted to units of m3/m3 assuming a 

dynamic range of 0.3 m3/m3. 
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2.3 AMSR2 

The Global Change Observation Mission-Water (GCOM-W; Imaoka et al., 2010) 

launched by the Japanese Space Agency is another instrument which provides 

microwave estimates of soil moisture. GCOM-W1 was launched in 2012. The 

Advanced Microwave Scanning Radiometer–2 (AMSR2) instrument on board the 

GCOM-W1 is a successor of the AMSR-E instrument on board EOS-Aqua satellite. 

AMSR2 contains some improvements in the calibration system and an additional 7.3 

GHz channel to mitigate the radio frequency interference issues seen in some 

predecessors. An initial evaluation using in situ observations from OzNet show that 

the root means square difference is about 0.04 – 0.09 m3/m3 (Rüdiger et al., 2013). 

 

Figure 2. Five-day (1 – 5 January 2013) averaged maps of retrieved (a) soil wetness 

index from ASCAT and (b) volumetric soil moisture content from SMOS satellite over 

Australia. 

2.4 SMAP 

The Soil Moisture Active/Passive mission (SMAP; Entekhabi et al., 2010) was launched 

by NASA in January 2015. SMAP was originally designed to provide soil moisture 

measurements at a much higher resolution than the current systems by using an 

advanced L-band radiometer and a synthetic aperture radar. The original goal was 

to produce a 9 km resolution soil moisture product by combining the ~40 km 

resolution radiometer data and ~3 km radar data. However, SMAP's radar stopped 

transmitting on July 7 2015 due to a failure of radar's high-power amplifier. The 

science mission continues with data being returned only by the passive radiometer 

instrument. Al-Yaari et al. (2017) note that operational soil moisture retrieved using 

the baseline Single Channel Retrieval Algorithm has good skill when compared 

against observations from the OzNet network in the Murrumbidgee catchment. 
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3. SOIL MOISTURE DATA ASSIMILATION 

3.1 WHAT IS DATA ASSIMILATION? 

The basic idea of data assimilation in geophysical sciences is to combine valuable 

information in both observations and models to derive an optimal estimate (called 

analysis) of the field of interest. Both model estimates and observations are 

imperfect and may contain errors at the scale of interest. When combined using a 

data assimilation method, the resulting field may provide an accuracy level that 

cannot be obtained when the model or observation is used individually. The optimal 

combination of measurements with model information in advanced data 

assimilation schemes is performed by taking their respective uncertainties (error bars) 

into consideration. When the observational data is more accurate, analysis will be 

close to observations. When there are no observation for a particular time and 

location, the analyses may be close to the model solution. However, data 

assimilation can spread information in space and time and hence locations without 

any observations will still be subjected to the influence of observations in spatial or 

temporal proximity of the location of interest. Data assimilation can also spread 

information from observations to all model variables that are related to the observed 

variable.  

The theory of advanced data assimilation methods rests on the mathematical 

framework of linear estimation theory [Cohn, 1997]. Although the data assimilation 

problem in earth sciences involves large scale, highly non-linear models with 

complicated error structures, they still rely on linear estimation theory and assume 

errors have a Gaussian (or normal) distribution. A fundamental reason for assuming 

Gaussian error distribution is to make the linear statistical estimation simplier and 

easier. Because Gaussian probability distribution functions are fully determined by 

their mean and variance, the solution of the data assimilation problem becomes 

computationally practical. However, the assumption of a Gaussian distribution is 

often not justified in gephysical data assimilation applications. 

3.2 WHY DATA ASSIMILATION? 

In addition to obtaining a more accurate geo-physical state, there are additional 

potential benefits that can result from combining measurements and model through 

data assimilation. They include: 

3.2.1 Coverage 

With the advances made in microwave remote sensing of soil moisture, a number of 

satellites were launched specifically for monitoring. Their spatial and temporal 
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coverage, however, is still not sufficient for many applications. Such coverage is not 

possible with future satellite sensors either. Data assimilation methods can propagate 

information contained in measurements in both horizontal space and time using the 

physical relationships embodied in the model, providing a continuous state estimate. 

Also, the satellite observations are limited to parts of the Earth surface that can be 

penetrated by electromagnetic radiation. Thus, remote sensing can only provide soil 

moisture information of a surface (~ 5 cm) layer, not of the deeper layer including 

the root zone. Hence, these data may not directly satisfy the need of many users. 

Land surface models can estimate soil moisture at deper layers. Data assimilation 

systems can spread the surface information from these remote sensing observations 

to deep model layers. 

3.2.2 Resolution 

The spatial resolution of remote sensing data is often too coarse or too fine for a 

given application. For example, soil moisture retrievals from the ASCAT are available 

at a resolution of around 25 km, much coarser than the resolution needed for fire 

prediction. However, land surface models used in regional numerical weather 

prediction (NWP) systems run at sub-10 km resolution. By merging the satellite data 

with models that resolve the scale of interest, data assimilation methods are 

capable of aggregating or downscaling the remote sensing data. 

3.2.3 Data organization 

Depending on the instrument, there may be an overwhelming amount of data 

available from remote sensing observations, which can be beyond the processing 

capabilities with in a periodic time interval of an operational prediction. A high data 

density leads to high computational costs and need for large disk space. Data 

assimilation methods employ sophisticated thinning algorithms to retrieve the 

essential information content of the observation data for optimal use. Further, there 

may be a great deal of overlapping information from different remote sensing 

platforms. For instance, polar orbiting satellites measuring land surface temperatures 

may cross over locations that are simultaneously observed by geostationary 

platforms carrying similar sensors. These two pieces of information are useful, but 

may not necessarily agree due to measurement errors and errors in the retrieval 

algorithms. Data assimilation systems can organize and merge potentially redundant 

or conflicting satellite data and conventional observations into a single best 

estimate. 
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3.2.4 Provide supplementary information 

Geophysical models are built on the basic conservation principles of mass, 

momentum, and energy. However, remote sensing data are not constrained by any 

of these basic principles. In an assimilation system, the physical constraints imposed 

by models offer additional valuable information. Data assimilation uses the 

parsimonious observations and model's physical equations to estimate unobserved 

quantities. This allows a more complete understanding of the true state of a 

hydrologic (or other geophysical) system, which would be impossible without 

assimilation. Further, models are often forced with an analysis based on other 

independent observations (for example, precipitation inputs for land surface 

models). Such additional independent observational information about the remotely 

sensed fields (for example, soil moisture) can be captured through data assimilation. 

3.2.5 Quality control and validation 

The data assimilation system imposes some quality controls on observations by 

comparing them against model estimates. This allows identification and elimination 

of spurious data in observations. By using the statistics of this model versus 

observation comparison, it is possible to calibrate observing systems and identify 

biases or changes in observation system performance. The data assimilation system 

also validates and improves the models by continuous confrontation with quality 

data. This helps to identify systematic errors in the model and correct them. 

3.3 INTRODUCTION TO SOIL MOISTURE DATA ASSIMILATION 

Soil moisture data assimilation aims to utilise both our knowledge of factors 

governing soil moisture dynamics, as embodied in a land surface model, and 

information that can be gained from observations. Both model predictions and 

observations are imperfect. For example, a land surface model prediction is 

affected by errors resulting from inadequate model physics, parameters and forcing 

data. Thus when measured soil moisture data are available, their use to constrain 

the simulated data should improve the overall estimation of the soil moisture profile. 

Figure 3 provides an example of how data assimilation supplements a model 

simulation by using complementary observations. The general outcome of the 

studies which ingested surface soil moisture products from various satellites also is 

that the assimilation of these products yields a better estimate of the soil moisture. 

Draper et al. (2012) found that, even though correlation between in situ 

measurements and an open-loop (no assimilation) Land Surface Model (LSM) run 

(Rim) was better than that between the in situ and satellite data (Rir), assimilation of 

this satellite data still yielded positive impact on the analysed soil moisture. Their 

study showed that assimilation of satellite observation with Rir no more than 0.2 
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below Rim, generally increased the soil moisture skill up to 40% as Rir increased relative 

to Rim (Figure 4).  

Data assimilation techniques were pioneered by meteorologists [Daley, 1991] and 

have been used very successfully to improve operational weather forecasts. Since 

land parameters such as soil moisture, soil temperature and snow cover exhibit a 

strong influence on weather forecasts, assimilation schemes for the land surface 

component of NWP models to constrain these fields were also developed. One of 

the earlier approaches in land surface assimilation in NWP is to use an indirect 

Newtonian nudging method, where the evolving screen-level temperature and 

humidity ― through their assimilation ― are used to correct model soil temperature 

and moisture [Vinodkumar et al., 2009; Dharssi et al., 2011]. This method makes use of 

the denser screen level observations available, and surrogates the sparseness of 

hydrological observations to some extent. The Newtonian nudging scheme relaxes 

the model field towards observations by adding a term to the prognostic equation 

which is proportional to the  difference between model and observed states.  

 

Figure 3. An example of assimilation procedure. Push Broom Microwave Radiometer 

(middle column) images gathered over the Walnut Gulch Experimental Watershed 

in southeast Arizona were used to update soil moisture from Topmodel based Land 

Atmosphere Transfer Scheme model (first column). The observations were found to 

contain horizontal correlations with length scales of several tens of kilometres, thus 

allowing soil moisture information to be advected beyond the area of the 

observations (last column). Adapted from Houser et al., [1998]. 

However, the availability of progressively more observations, especially satellite 

observations, spurred significant advances to be made in land surface data 

assimilation in a short period of time. This was also helped by the knowledge gained 

from the experience of data assimilation in the field of meteorology and 

oceanography. Today, advanced approaches in data assimilation are widely used 

by land surface modelling community to get the best estimate on fields of primary 

interest, such as soil moisture content. More recently, operational NWP centres, such 

as the European Centre for Medium Range Weather Forecasting (ECMWF) and the 

UK Met Office, have developed specific land assimilation schemes based on the 

Kalman Filter methodology [e.g. de Rosnay et al., 2012]. These advanced data 

assimilation methods are based on some measure of model and observation error 
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characteristics. The nudging, optimum interpolation or other simple approaches 

attempted in earlier studies do not account for observation uncertainty or utilise 

system dynamics in estimating model background state uncertainty. Variational 

methods (used widely in atmospheric data assimilation) are also not generally used 

in land surface data assimilation due to the fact that the development of robust 

adjoints are difficult due to the non-linear and on-off processes involved in land 

surface models. The adjoint is simply a mathematical operator that allows one to 

determine the sensitivity of the objective cost function to changes in the solution of 

the model state equations.  

The advantage of Kalman filter based data assimilation techniques is that they allow 

flexibility in handling all sources of uncertainty along with the possibility of ingesting 

the data sequentially as it becomes available. These algorithms can also make use 

of both screen level and remote sensing observations and are found to be superior 

to earlier techniques such as optimal interpolation (de Rosnay et al., 2012). In 

addition to this, there is also the potential for using other remote sensing observations 

which contain indirect information about the surface moisture, such as skin 

temperature (e.g. Ghent et al., 2010). 

 

Figure 4. Skill improvement from assimilating either ASCAT or AMSR-E soil moisture 

measurements as a function of the open-loop skill and observation skill. The results 

show that assimilation can improve skill provided the observation skill minus open-

loop skill > -0.2. Skill is defined as the temporal correlation against ground based 

observations. The open-loop is a LSM run without data assimilation. Courtesy: Draper 

et al. (2012). 

The standard Kalman filter (KF) is used as a data assimilation method for linear 

systems and measurement processes with Gaussian error statistics (Gelb, 1974). For 

non-linear systems like land surface models, an extended Kalman filter (EKF) has 
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been used (Entekhabi et al. 1994). EKF is found to be a computationally feasible 

data assimilation method for single column land surface models and hence is widely 

used. In EKF, the estimation of model error at the time of observation is achieved by 

propagating the covariance matrix of model errors with a dynamic equation. EKF is 

the operational assimilation scheme for soil moisture in the UK Met Office’s 

operational NWP model [Candy, 2014]. It will be the soil moisture data assimilation 

scheme used in the  Bureau of Meteorology’s next operational NWP update. The EKF 

is capable of handling some non-linearity in model operators used to propogate 

errors as well as  departure from Gaussian model errors distributions. However, if the 

model becomes too non-linear or the errors become highly non-Gaussian, the 

trajectories computed by the EKF will become inaccurate [Evensen, 1994; Reichle et 

al., 2002]. 

To overcome the above limitations in EKF, a Monte Carlo (ensemble) based 

approach has been introduced [Evensen, 1994]. In this method, the necessary error 

covariances at the time of an update are estimated using an ensemble of non-

linear model runs. Each ensemble member is subject to a different realization of 

model and forcing errors. Each ensemble member could also employ different sets 

of model parameters or even entirely different land surface models. Thus, unlike EKF, 

the estimation of priori model covariance is not needed. The technique has since 

become known as the ensemble Kalman filter (EnKF). Numerous research studies 

have used EnKF to assimilate soil moisture or soil temperature measurements from in-

situ observation or remote sensing data [e.g., Crow & Wood, 2003, Reichle & Koster, 

2005; Sabater et al, 2007]. The EnKF is also used by Environment Canada in their 

operational NWP system [Candy, 2014]. 

3.4.1 A few examples of application studies  

Most studies try to address the important conceptual problems in soil moisture 

assimilation such as: i) the propagation of information from the surface to the entire 

model soil profile; ii) the optimization of assimilation techniques and update 

frequencies; and iii) estimation of uncertainty in observations. A number of studies 

have demonstrated that root-zone soil moisture in land surface models can be 

constrained accurately through the assimilation of near-surface soil moisture [e.g.: 

Walker and Houser, 2001; Crow and Wood, 2003; Reichle et al., 2007]. Assimilation of 

in-situ surface soil moisture observations have shown to improve the root-zone soil 

moisture in the model initial conditions [Calvet and Noilhan, 2000]. Crow and Wood 

[2003] improved the root-zone soil moisture forecasts from the Land Surface-

Atmosphere Transfer Scheme, by assimilating L-band brightness temperature 

observations from the SGP97 field experiment using an EnKF scheme. Reichle and 

Koster [2005] assimilated C-band Scanning Multichannel Microwave Radiometer 

(SMMR) data into the NASA Catchment Land Model with an EnKF to obtain marginal 
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improvements to root-zone soil moisture. 

Walker et al. [2001] showed that soil moisture assimilation can solve issues with errors 

in forcings or initial conditions. Georgakakos and Baumer [1996] documented the 

impact of observation noise on Kalman filter results. The effect of assimilation 

frequency was studied by Li and Islam [1999] where they used gravimetric 

measurements as surrogates for remote sensing data. De Lannoy et al. [2007) 

studied the vertical information propagation, and the effect of assimilation depth 

and frequency for an extensive set of soil profiles using an EnKF method. Sabater et 

al. [2007] used different types of filtering and ground data from the Surface 

Monitoring of the Soil Reservoir EXperiment (SMOSREX) to study the propagation of 

surface observations to deeper model layers. Han et al. [2012] used an EnKF scheme 

and surface observations to further identify and address conceptual problems with 

soil profile estimation. 

3.4.2 Example Land Data Assimilation System 

 

Figure 4. A schematic of NASA’s LIS. Courtesy: Kumar & Arsenault [2014]. 
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For illustrative purposes, we briefly describe the National Aeronautics and Space 

Administration’s (NASA’s) Land Information System (LIS; Kumar et al., 2008). LIS is a 

flexible land surface modeling and data assimilation framework developed to 

integrate satellite and ground-based observations with land surface models. LIS 

operates several community land surface models including JULES and CABLE which 

are widely used in Australia. LIS allow one to incorporate diverse data sets as input to 

the LSMs. LIS has a highly sophisticated high performance computing capability that 

enables the running of LSMs at global scales with spatial resolutions as high as 1 km. 

All functional modules in LIS are implemented as extensible components, including 

LSMs, data assimilation schemes, sources of meteorological inputs and land surface 

parameters, modeling domains and running modes. This design enables the inclusion 

of user defined extensions for each of these functional abstractions. 

The LIS data assimilation component includes Direct Insertion (DI), and the Ensemble 

Kalman filter (EnKF) approaches. The data assimilation extension in LIS is designed to 

be a sequential operator, where variables are updated at every observation time. 

Various sources of observational data including surface soil moisture [Kumar et al., 

2014], terrestrial water storage [Kumar et al., 2016], land surface temperature 

[Reichle et al., 2010] and snow water equivalent [De Lannoy, 2012] retrievals can be 

assimilated through LIS. The outputs from LIS has been used for a wide range of 

appilcations including drought estimation [Kumar et la, 2014], food and water 

security applications [McNally et al., 2017], and streamflow prediction [Liu et al., 

2015]. 

4. SUMMARY 

Landscape dryness measurement and forecasting is critical for the management 

and warning of fires, as well as numerous other phenomena of concern to 

emergency managers. Emerging approaches to evaluate landscape dryness 

through the use of satellite remote sensing data, land surface modelling and data 

assimilation techniques are available, measuring dryness more systematically than 

existing empirical methods. This report describes the available sources of soil 

moisture data and shows that existing satellite systems such as ASCAT and SMOS 

together with future systems such as SMAP are a valuable source of land dryness 

measurements. 

The above satellite measurements can be assimilated with land surface model 

simulations to provide more accurate, detailed and confident estimates and 

forecasts of land dryness, and hence more accurate operational predictions of fire 

danger and fire behaviour, flood prediction, landslip warning, and heatwave 

events. Because of its success in highly non-linear land surface modelling [Reichle, 

2008], the assimilation using EnKF has gained a lot of attention. NASA’s LIS framework 
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provides a great oppurtunity to effectively assimilate the different remote sensing 

observations with land surface models for national scale estimation of soil dryness. 

Our future work intends to head in exactly this direction. It is well established that 

high skill in short- and medium-range forecasts of temperature and humidity over 

land requires proper initialization of soil moisture [Beljaars et al., 1996; Mahfouf et al., 

2000; Drusch and Viterbo,2007]. Hence, improved soil moisture estimates from the 

proposed system can be used to initialize soil moisture in the Bureau of 

Meteorology’s operational regional NWP models. This has implications for fire danger 

ratings and other natural hazard predictions.   

While this report focuses on soil moisture state estimation, land surface parameter 

estimation and forcing data correction using data assimilation have also been 

successfully attempted [Moradkhani et al., 2005; De Lannoy et al., 2007; Vrugt et al., 

2012]. Also, assimilation of other state variables like evapotranspiration, surface or 

skin temperature, LAI (leaf area index), discharge and water storage are also 

possible. Future studies will investigate the assimilation of these additional observed 

variables. 
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